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Abstract

In this work, we present a method for predicting hot spot residues by using a set of structural and evolutionary param-
eters. Unlike previous studies, we use a set of parameters which do not depend on the structure of the protein in com-
plex, so that the predictor can also be used when the interface region is unknown. Despite the fact that no information
concerning proteins in complex is used for prediction, the application of the method to a compiled dataset described
in the literature achieved a performance of 60.4%, as measured by F-Measure, corresponding to a recall of 78.1%
and a precision of 49.5%. This result is higher than those reported by previous studies using the same data set.
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Introduction

Protein-protein interactions play a key role in most
biological processes and are of great importance for living
cells. Although the principles governing this process are
still not fully understood, it is well-known that binding en-
ergy is not evenly distributed among interface residues,
with a large contribution coming from only a small subset
(Moreira et al., 2007). These residues are referred to as
binding hot spots.

Recent interest in this protein-protein interface as
drug targets (Arkin and Wells, 2004) has highlighted the
importance of identifying hot spots systematically.
Usually, this is done through site-directed mutagenesis ex-
periments such as the alanine scanning technique (DeLano,
2002). These experiments aim to evaluate the impact in
terms of free energy of binding caused by mutations to
alanine of specific interface residues. This, however, can
demand a significant experimental effort. In this scenario,
there is growing interest in cheaper and faster computa-
tional hot spot prediction, as they could help biologists fo-
cus their experimental efforts only on those interface
residues that present the best chance of being hot spots.

Most methods for predicting hot spots rely on physi-
cal models to evaluate the impact in terms of free energy of
binding due to specific site mutations inside the interface
region (Kortemme and Baker, 2002). On the other hand,
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structure-based methods try to discriminate hot spots from
the rest of the interface residues by analyzing their differ-
ences through a set of structural and chemical properties.
Bogan and Thorn (1998) reported that hot spot residues
tend to form clusters near the center of the interface, and are
characterized as polar residues protected by a ring of hydro-
phobic ones that form a structure they call an O-ring. They
also analyzed the amino acid preference for being a hot spot
and found tryptophan, tyrosine and arginine as those
presenting the highest propensities. Another property com-
monly used for characterizing hot spots is residue conser-
vation. Hot spots have been characterized both as sequen-
tially conserved polar residues (Hu et al., 2000) and as
structurally conserved ones (Ma et al., 2003). Li et al.
(2004) also analyzed the geometric organization of struc-
turally conserved residues concluding that most of hot
spots are found in regions characterized by a pocket well-
complemented by protruding residues. Other methods in-
clude those from Guney ef al. (2008) that predict hot spots
using residue conservation and solvent accessible surface
areas - ASA, and the one from Ban ez al. (2006) that applies
a geometric method to predict hot spots by detecting resi-
dues located on regions of the interface protected from the
periphery.

Only recently, Darnell et al. (2007) approached this
problem using discriminant analysis, compiling a high
quality and non-redundant data set containing interface res-
idues with both types of information: structure and site di-
rected mutagenesis. The best predictor they found involved
both structural, chemical and energetic parameters and a
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combination of classifiers using a simple OR rule. It
achieved a performance of 55%, as measured by F-Mea-
sure, corresponding to a recall of 72% and a precision of
44%. Using the same data set and a different strategy for
combining classifiers, Higa and Tozzi (2008) achieved a
slightly higher performance, corresponding to an F-Mea-
sure of 56.5%.

In this work we present a method for predicting hot
spot residues which rely on a set of structural and evolu-
tionary parameters. Unlike those used by all previously
proposed methods, this set of parameters does not depend
on the knowledge of protein structure in complex. An SVM
classifier (Cristianini and Shawe-Taylor, 2000) with the a
posteriori probability estimated according to Plat’s method
(Platt, 2000) and implemented in SVMLib (Chang and Lin,
2001) is used for prediction. Despite the fact that no infor-
mation concerning proteins in complex is used, the method
achieved a performance of 60.4%, measured by F-Measure,
corresponding to a Recall of 78.1% and a Precision of
49.5%, which is higher than those previously obtained us-
ing the same data set.

Material and Methods

Dataset

We used the data set compiled by Darnell et al.
(2007). Considering that the number of protein-protein in-
terfaces with organized information characterizing them
both structurally and energetically is quite limited, this data
set constitutes the most representative one compiled for an-
alyzing hot spot residues. It is composed of interface resi-
dues experimentally mutated to alanine and having a re-
ported free energy of binding (AAG) in the AseDB database
(Bogan and Thorn, 1998) or in a data set from Kortemme
and Baker (2002). The criterion used to define an interface
residue is the presence of at least one atom within 4 A of an
atom of the interacting protein. In addition, only proteins
whose crystal structure presented a resolution inferior to
3 A and sequence identity to any other sequence in the data
set lower than 35% were considered.

Moreover, we removed from the original data set
those residues for which we could not calculate the corre-
sponding conservation property (see below). This corre-
sponds to 15 residues. So, we effectively used a data set
containing 233 residues, 24% of them corresponding to hot
spot residues. Each residue in the data set was labeled a hot
spot if its corresponding AAG reported in AseDB was
higher or equal to 2.0 kcal/mol. Otherwise, it was labeled a
non-hot spot residue.

Structural and evolutionary parameters

A set of 43 evolutionary and structural parameters,
presented below, were used to characterize an interface res-
idue. Note that all of them are calculated using only the
structure of the protein that the residue belongs to.
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* Amino acid type (X;, X;): we used two indexes

(Hagerty et al., 1999), derived from the Aaindex
database (Kidera ef al., 1985), to represent the 20
standard amino acid types. These two indexes sum-
marize a collection of more than 400 indexes de-
scribing biochemical properties for each of the 20
standard amino acids. Unlike the equidistant 20-bit
code commonly used to encode amino acid type,
the more similar two amino acids are, the closer
they are in the space defined by (x;, x,). In particu-
lar, the two indexes that we used are strongly corre-
lated to residue size and hydrophobicity on one
hand and to residue preference for being in a loop
or strand on the other (Hagerty ef al., 1999).

Evolutionary profile (x3,..., X5,): first we used the
software Blast (Altschul et al., 1997). As parame-
ters, we used substitution matrix BLOSUMSG62 and
expect value = 0.1, against the Swissprot/Uniprot
knowledgebase release 9.6 (Apweiler et al, 2004)
in order to find similar protein sequences. Then, se-
quences in the blast result were filtered according
to HSSP threshold (Rost, 1999) to keep only homo-
logue sequences. Two protein sequences in the
original data set (Darnell ef al., 2007) did not sur-
vive this filtering process (at least five homologue
sequences). Consequently, in our experiment only
233 interface residues were considered. After that,
we used the software ClustalW (Higgins et al.,
1994), with substitution matrix series BLOSUM,
gapopen = 3.0 and gap ext = 0.1, using the resulting
set of homologue sequences to build the final mul-
tiple sequence alignment (MSA). Each member of
the profile corresponds to the percentage of the
amino acid type present in the MSA.
Conservation score (X3): the residue conservation
score was calculated using the same MSA used for
extracting the evolutionary profile parameters. The
residue conservation score corresponds to evolu-
tionary pressure, calculated by using the software
ratedsite (Pupko et al., 2002). It uses information
from the phylogenetic tree built from the MSA and
an underlying stochastic process to estimate the
residue conservation rates by using the maximum
likelihood principle.

Surface Area and Solvation Energy (Xu4, ..., X34):
both solvent accessible surface area (SAS) and mo-
lecular surface (MS) were calculated by using the
program Volbl, included in the software package
Alpha Shapes (Liang et al., 1998), considering a
probe radius of 1.4 A and the set of atom radii pro-
vided in the package. Also, relative solvent acces-
sible surface area (rSAS) was calculated from the
SAS by using the values of SAS for each residue in
extended state (Ala-X-Ala), as reported by Ahmed
et al. (2004). Solvation energy per atom, in
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cal/mol.A?, was calculated considering four differ-
ent sets of atomic solvation parameters (ASP)
(Eisenberg and McLachlan, 1986; Wesson and
Eisenberg, 1992; Fernandez-Recio et al., 2004).
Additive contribution was assumed such that for
each set of ASP, absolute solvation energy per resi-
due was calculated by adding the corresponding
solvation energy per atom. In addition, the corre-
sponding solvation energy, weighted per ASA, was
also calculated for each set of ASP.

* Geometry (X35, ..., X41): for describing the geometry
of each surface residue, we considered a set of at-
oms composed of the residue’s atoms which were
exposed on the surface and all surface atoms as
close as 10 A to any of them. By using the set of co-
ordinates corresponding to each atom in this set,
seven geometric parameters were calculated as fol-
lows. Gaussian and Mean curvatures were calcu-
lated through an osculating quadric, as reported by
Mclvor and Valkenburg (1997), as well as the cor-
responding Principal curvatures. From those calcu-
lations, Curvedness and Shape Index were also
calculated, as proposed by Koenderink (1990).
Finally, the Index of Planarity, defined as the recip-
rocal of the root mean square deviation (rms) of a
set of atoms relative to the least square plane
through them (Jones and Thornton, 1997), was cal-
culated.

e Dihedral angles (x42, X43): the software Stride
(Frishman and Argos, 1995) was used for calculat-
ing ¢ and y dihedral angles corresponding to each
surface residue.

Support vector machines with probabilistic output

In this work, a Support Vector Machine (SVM) was
used for classification with the operating point calibrated
by using the probabilistic output calculated according to the
procedure proposed by Platt (2000) for SVM (Cristianini
and Shawe-Taylor, 2000). Considering a training set given
by D= {(x;,y)|x; € R", y; € {-1,1}},i=1, ..., m, where x; is
an-dimensional vector and y; is either -1 or 1, indicating the
class to which the object corresponding to x; belongs to, the
most popular formulation for a SVM classifier, known as
C-SVC, solves the following quadratic (QP) optimization
problem (dual form):

o1
min —a Qo —e™

aeR”

sty a=0, (1)
0<a, <C,
i=L....m

where e is a n-dimensional vector of ones, a is the m-di-
mensional vector of dual variables, C is an upper bound for
o; value, Q is a m by m positive semi-definite matrix,
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Q; = yyiK(x,, X)), and K(x;, X)) is a kernel function used for
creating non-linear classifiers. In this work, we consider
only the radial-basis kernel function, given by:

K(x,,xj):exp(—nyi-xsz), v>0. 2)

Usually, a signal function is used to produce a deci-
sion function from the SVM unthresholded output:

f(xj)=sgn(2 y,.aiK(xi,xj)+bj, 3)
i=1

where function f(¢) represents the SVM thresholded output,
b is a bias term and sgn(*) is the signal function used to pro-
duce the SVM thresholded output from its unthresholded
one. Objects are classified as belonging to the class corre-
sponding to the label given by f{(*).

However, given the practical importance of the a pos-
teriori probability in situations where the classifier is mak-
ing only part of the overall decision process, different
methods for estimating the a posteriori probabilities for
SVM classifiers have been developed (Hastie and Tibshi-
rani, 1998). In particular, Platt (2000) proposed using a
post-processing procedure where the SVM unthresholded
outputs are mapped into probabilities. For modeling the a
posteriori probability, a sigmoid function is used:

~ 1
Pis ()= 1+exp(Ag + B) @

where g is the SVM unthresholded output and the parame-
ters A and B are estimated from the training set by minimiz-
ing the corresponding negative log likelihood function:

L=-)t,log p, +(1~t,)log(1~1,) (%)
where #; is the target probability defined as #;= (y; + 1)/2 and
pi=PQi=1g).

Performance evaluation

Usually, the performance achieved by a classifier is
evaluated by assessing its overall classification error using
an independent test set. When the classes involved in the
problem have different priors and costs, according to the
Bayesian decision theory, the expected overall cost of clas-
sification can be used (Duda et al., 2001). This, however,
requires the precise specification of the cost of misclas-
sification for each class, which is not always available. For
a two-class problem an interesting alternative is to charac-
terize the classifier performance by using ROC analysis
(Fawcett, 2006).

A receiver operating characteristic (ROC) curve rep-
resents the different tradeoffs between the true positive rate
and the false positive rate achieved simultanecously by a
classifier, regardless of classes’ priors and misclassifica-
tion costs. In the present context, the ROC curve represents
the tradeoff between the rate of hot spot detection and the
rate of non-hot spot residues classified as hot spots. As-
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suming classifiers whose output is a score indicating that an
object belongs to the class of interest, each operating point
has a corresponding threshold above which objects are
classified as belonging to the class of interest. Then, by
specifying this threshold, the user is able to specify the op-
erating point most appropriate for his/her application. In
addition, the classifier performance can also be summa-
rized through a single scalar, the area under ROC curve
(AUC). It represents the probability that the classifier will
rank a randomly chosen positive sample higher than a ran-
domly chosen negative sample, and is equivalent to the
Wilcoxon test of rank (Hanley and McNeil, 1982). In this
work, we use AUC for comparison of different classifica-
tion models (Linear, Quadratic, Parzen and SVM).

Once an operating point has been chosen, the perfor-
mance of a classifier for a two-class problem can be as-
sessed by using different performance measures. Among
them, we chose Precision, Recall and F-Measure, which as-
sess the classifier performance by focusing on the class of
interest, hot spot residues in this case. They are calculated
according to the following set of equations:

True Positive Rate (or Recall) = T
TP + FN
True False Rate = L
.. TP
Precision =——
TP+ FP

P 2x Precision x Recall
Precision + Recall

where TP is the number of correctly classified hot spot resi-
dues, TN is the number of correctly classified non-hot spot
residues, FN is the number of hot spot residues classified as
non-hot spot residues and FP is the number of non-hot spot
residues classified as hot spots. By using this set of perfor-
mance measures, we can promptly compare the perfor-
mance of our method to those reported by previous studies
using the same data set (Darnell et al., 2007).

Experimental procedure and implementation details

Most parameters used for classification were calcu-
lated by using algorithms available as public domain soft-
ware. For calculating solvation energy and surface shape
parameters, Python programming language and Bio.PDB
bioPython package (Hamelryck and Manderick, 2003)
were used. The Matlab environment 7.0 was used for data
analysis and plotting ROC and (Precision, Recall) vs.
Threshold curves.

The classifier was implemented using the LibSVM
software (Chang and Lin, 2001) with the radial basis ker-
nel. For selecting the regularization parameter, C, and the
kernel parameter, y, we used a grid search procedure, as
suggested in the LibSVM manual. This resulted in the fol-
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lowing parameters for the SVM classifiers: C = 0.03125
and y=0.0078125.

In order to estimate the performance measures (AUC,
Precision, Recall and F-Measure) as well as the corre-
sponding graphs (ROC and Precision, Recall, F vs. Thresh-
old curves), we used a stratified 5-fold cross-validation
procedure. It basically consists of the usual 5-fold cross-
validation procedure where the original proportion between
classes is maintained in each partition. This procedure was
repeated 100 times such that the data set was randomly par-
titioned each time. We report the average result corre-
sponding to the 100 repetitions. In addition, each time the
SVM classifier was trained, we linearly scaled each of the
43 parameters in the training set to the range [-1, 1] and
used the same scale mapping to scale the data in the testing
set.

Results and Discussion

Classifier performance

Initially, we evaluated three different models for clas-
sification - Linear, Quadratic and Parzen (Duda ef al.,
2001), using AUC as the performance measure. As the best
performance was achieved by the Parzen classifier, which
is a non-parametric method, we also evaluated the SVM
classifier, trying to achieve even higher performance. In
fact, the SVM classifier achieved the highest performance
among all tested models so that only its results are reported
in this section.

Figure 1a presents the ROC curve corresponding to
the average performance of the SVM classifier considering
100 repetitions of the stratified 5-fold cross-validation.
This corresponds to an AUC of 0.8386 (+0.0380) which
represents the probability that the classifier ranks a positive
sample higher than a negative one, both randomly chosen.

Given that our work is based on the dataset compiled
by Darnell ez al. (2007), it is convenient to compare their re-
sults to ours. In their work, Darnell et al. (2007) used a deci-
sion tree as classifier and achieved a performance of 55%,
as measured by the F-measure, corresponding to a Preci-
sion 0f 44% and a Recall of 72%. At this level of Precision,
our method achieves a Recall of 83.8% (+5.1), correspond-
ing to an F-Measure of 57.9% (£3.7). In Figure 1b, we pres-
ent a plot showing how Precision, Recall and F-Measure
vary according to the ROC curve operating points, such that
the user can choose the most appropriate operating point for
his/her application. For instance, if we choose the ROC op-
erating point resulting in the maximum F-Measure value
(threshold 0.2427), the classifier achieves a performance
0f 60.4% (£3.9), as measured by F-Measure, corresponding
to a Recall of 78.1% (£5.1) and a Precision of 49.5%
(x 4.2). According to the one tail t-test with significance
level of 1%, these results are higher than those reported by
previous studies using the same dataset (Darnell e al.,
2007).
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Figure 1 - (a) Average operating curve. (b) Average Precision/Recall/F vs. Threshold curve.

Predicting hot spot residues without knowing the
interface region

Usually, methods for predicting hot spots (Kortemme
and Baker, 2002 and Darnell et al., 2007) assume that the
interface region is known, so that their predictions are re-
stricted to interface residues only.

In the present work, we propose a method for predict-
ing hot spots based on a set of structural and evolutionary
parameters which do not depend on the availability of the
structure of the protein of interest in complex. Only knowl-
edge of the monomer to which the residue belongs is
needed. Consequently, the method can be used whether or
not the interface region is known. Nevertheless, we empha-
size that our method is supposed to detect hot spots among
interface residues as defined by Darnell et al. (2007).

In order to assess the behavior of the hot spot predic-
tor when the interface region is unknown, we run a simple
experiment using the set of residues compiled by Darnell as
a training set and all other residues at the surface of the
structures considered by Darnell as a testing set. The same
regularization and kernel parameters adjusted before were
used for training the classifier. The testing set was divided
into two groups: one containing residues whose distance to
the interacting protein was less than or equal to 7 A (resi-
dues close to the interface region) and another containing
the remaining surface residues. The distance between a res-
idue and its interacting protein is defined as the shortest dis-
tance between a residue’s atom and an interacting protein’s
atom.

Considering a threshold of 0.2427 to classify a resi-
due as hot spot or non-hot spot, we found that of the 1,023
residues in the group close to the interface region, 384 were
predicted as hot spots, corresponding to a rate of positive
predictions equal to 37.5%. Similarly, from the 2,155 resi-
dues in the group far from the interface region, 632 were
predicted as hot spots, corresponding to a rate of positive

predictions equal to 29.3%. These numbers suggest that the
concentration of positive predictions near the interface re-
gion is higher than for distant residues. Moreover, we point
out that this difference can become even higher by consid-
ering only positive predictions forming clusters at the pro-
tein surface (Bogan and Thorn, 1998). Since the interface
region is supposed to present a higher probability of hot
spot occurrence, the observed higher rate of positive pre-
dictions for the group of residues close to the interface re-
gion corroborates our a priori expectation.

Case studies

In order to illustrate the application of the method, we
present two examples not included in Darnell’s data set. In
both cases, the entire data set was used as a training set with
regularization and kernel parameters adjusted as before.
The threshold of 0.2427 was used for classification. The
first example concerns the tetramerization domain of the
p53 tumor repressor, a 393 amino acid transcription factor
which plays a key role in protecting organisms against can-
cer (el-Deiry et al, 1992). The p53’s tetramerization
domain is located at p53’s COOH terminal portion and en-
compasses residues 325-356.

In an extensive site-directed mutagenesis study, Kato
et al. (2003) constructed 2,314 mutants representing all
possible amino acid substitution caused by a point muta-
tion. By evaluating the level of activity of the mutants, they
found that a set of 15 residues at the tetramerization do-
mains were sensitive to inactivation by amino acid substitu-
tion: Phe:328, Leu:330, Ile:332, Arg:333, Gly:334,
Arg:337, Phe:338, Phe:341, Arg:342, Leu:344, Asn:345,
Ala:347, Leu:348, Leu:350 and Lys:351. Considering the
32 residues in the domain, our method identified 12 of the
15 residues reported as sensitive to inactivation, as well as 5
false positives, 3 false negatives and 12 true negatives (Fig-
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ure 2). This corresponds to an F-Measure of 75% corre-
sponding to a Recall of 80% and a Precision of 70.6%.
The second example is the bone morphogenetic pro-
tein-2 (BMP-2), a member of the transforming growth fac-
tor-f (TGF-P) with a pivotal role in bone formation and
regeneration in adult vertebrates (Reddi, 1998). It signals
by binding two types of serine/threonine kinase receptors,
classified as type I and type II. Kirsch et al. (2000) analyzed
interactions of BMP-2 mutants with type I and type II re-
ceptor ectodomains and found two different epitopes, each
corresponding to a specific type of receptor. One epitope,

Figure 2 - One monomer from the tetramerization domain of the p53 tu-
mor repressor (3sak:A). True positives are indicated in green, false posi-
tives in purple and false negatives in yellow.
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the strongest one, comprises residues from both monomers
(Val:26, Asp:30, Trp:31, Lys:101, Tyr:103 from one mo-
nomer and Ile:62, Leu:66, Asn:68, Ser:69, Phe:49, Pro:50,
Ala:52 and His:54 from the other) while the other includes
residues from only one monomer (Ala:34, His:39, Ser:88,
Leu:90 and Leu:100).

In this example, we suppose that the epitopes in
BMP-2 are unknown and we used our method for evaluat-
ing all surface residues of a monomer. The analysis resulted
in 29 residues predicted as hot spots, from a total of 101 sur-
face residues. After that, we filtered the set of predicted res-
idues using a sequential window of five adjacent residues
so that a positive prediction was kept only if among its two
left and two right sequential neighbors at least two of them
were also positive predictions. This kind of post-processing
is quite common for interface region prediction methods
(Yuan et al., 2004; Res et al., 2005). A total of 13 positive
predictions survived this filtering process, 5 of them corre-
sponding to residues in the first epitope (true positives).
There were also 14 false negatives, 5 false positives and 83
true negatives, resulting in an F-Measure of 34.5% corre-
sponding to a Precision of 50% and a Recall of 26.3%. If
only the strongest epitope is considered, it results in an
F-Measure of 43.5%, corresponding to a Precision of 50%
and a Recall of 38.5%. Even though these levels of cover-
age (Recall) are quite low, they are typical for interface re-
gion prediction methods (Bradford et al., 2006; Neuvirth ez
al.,2004) and, at a level of Precision of 50%, are considered
as satisfactory for locating interface regions (Bradford and
Westhead, 2005). Figure 3 summarizes these predictions.
While no residue in the second epitope was found, all false
positive predictions are close to those in the true positive in
the first epitope.

=

Hig54

Ala52 \JE

Chain C

Figure 3 - Homodimeric molecule of bone morphogenetic protein-2 (BMP-2) (1es7:A and C). For the larger epitope (left), true positives are indicated in
blue, false positives in red and false negatives in yellow. Residues in the smaller epitope (right) are indicated in orange.
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Concluding Remarks

In this work, we presented a method for predicting hot
spot residues within the interface region. By using ROC
analysis, we allow the user to choose the most appropriate
trade off between true positive and false positive rates, ac-
cording to his/her specific application. In addition, since
the method does not depend on the knowledge of the struc-
ture of the protein in complex, it can also be used in situa-
tions where the interface region is unknown. Despite these
advantages, the performance achieved by the method was
also higher than those reported by previous studies using
the same dataset.
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