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Abstract

Partamona mulata is a stingless bee species endemic to cerrado, a severely threatened phytogeographical domain.
Clearing for pasture without proper soil treatment in the cerrado facilitates the proliferation of termite ground nests,
which are the nesting sites for P. mulata. The genetic consequences of these changes in the cerrado environment for
bee populations are still understudied. In this work, we analyzed the genetic diversity of 48 colonies of P. mulata col-
lected throughout the species’ distribution range by sequencing two mitochondrial genes, cytochrome oxidase I and
cytochrome B. A very low polymorphism rate was observed when compared to another Partamona species from the
Atlantic forest. Exclusive haplotypes were observed in two of the five areas sampled. The sharing of two haplotypes
between collection sites separated by a distance greater than the flight range of queens indicates an ancient distribu-
tion for these haplotypes. The low haplotype and nucleotide diversity observed here suggests that P. mulata is either
a young species or one that has been through population bottlenecks. Locally predominant and exclusive haplotypes
(H2 and H4) may have been derived from local remnants through cerrado deforestation and the expansion of a few
colonies with abundant nesting sites.
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The land area cleared for pasture in Brazil has in-

creased markedly in the past 40 years and has been driven

largely by the beef industry (IBGE, 1974, 2010). Consider-

able clearance of natural vegetation has occurred in the

cerrado. This phytogeographical domain is characterized

by a variety of different vegetation physiognomies ranging

from grassland to tall woodland, with well-defined seasons

that include a very dry season (April to November), when

bushfires are common, followed by a humid, rainy season

(December to March), when vegetation blossoms (Batalha

et al., 2001, 2011). Only 20% of the original cerrado re-

mains and the endemic vegetation and fauna are under con-

stant threat because of systematic deforestation to provide

land for crops or livestock (Myers et al., 2000). Damage to

this environment is a threat to bees because it reduces the

availability of nesting sites and isolates populations into

small fragments and this may lead to inbreeding depression

(Kerr et al., 1996). The genetic consequences of these

changes for bee populations endemic to the cerrado are still

poorly understood.

Habitat fragmentation in the cerrado has been shown

to increase inbreeding in populations of the stingless bee

Melipona rufiventris in Minas Gerais state, Brazil (Tavares

et al., 2007). A low genetic variability of microsatellite

markers has also been observed in 59 nests of P. mulata

from five collection sites in cerrado areas of the states of

Mato Grosso and Mato Grosso do Sul (Francisco et al.,

2006). In the latter case, the microsatellite loci were geno-

typed using heterospecific primers and the low genetic

variability was considered to be an artefact of null alleles

rather than a true status for the species.

Although deforestation is usually claimed to be a ma-

jor cause of reductions in bee populations (Kearns et al.,

1998; De la Rúa et al., 2007; Tavares et al., 2007), in the

cerrado deforestation together with inadequate soil treat-

ment contributes to the budding of termite ground nests,

thereby increasing the availability of nesting sites for

Partamona bees. Partamona is a Neotropical stingless bee

genus of the tribe Meliponini, distributed from southern

Mexico to southern Brazil (Camargo and Pedro, 2003). Ex-

cept for Partamona helleri, which usually uses abandoned

bird nests and epiphyte roots, most Partamona species

build their nests in active termite nests. Partamona mulata

is a termitophile species endemic to central Brazil (Mato

Grosso do Sul and Mato Grosso) and Bolivia and is always

associated with ground termite mounds in the cerrado (Pe-

dro and Camargo, 2003).

Genetics and Molecular Biology, 36, 1, 124-128 (2013)

Copyright © 2013, Sociedade Brasileira de Genética. Printed in Brazil

www.sbg.org.br

Send correspondence to Rute Magalhães Brito. Avenida Pará 1720
- 2E, sala 246, 38400-902 Uberlândia, MG, Brazil. E-mail:
britorm@ingeb.ufu.br.

Short Communication



The analysis of mitochondrial DNA (mtDNA) poly-

morphisms is a useful approach for investigating genetic

variability and has been successfully applied to studies of

insect populations, including Meliponini species (Queza-

da-Euán et al., 2007; Francisco and Arias, 2010). In this

work, we used the polymorphism of two mitochondrial

genes to investigate the genetic status of Partamona

mulata, a highly endemic cerrado species, and make infer-

ences about the historical events that could explain the ob-

served haplotype distribution.

We analyzed one bee from each of 48 natural nests of

P. mulata throughout the species’ distribution range in

cerrado areas of central western Brazil: Cuiabá (Cba;

n = 13), Santo Antônio do Leverger (Sal; n = 4), Poconé

(Poc; n = 13), Cáceres (Cac; n = 6) and Campo Grande

(Cgd; n = 12) (Figure 1). The bees were stored at -80 °C

prior to DNA extraction. All specimens were identified by

Dr. Silvia Regina de Menezes Pedro (Faculdade de Filo-

sofia, Ciências e Letras de Ribeirão Preto, USP - FFCLRP/

USP) and voucher specimens were deposited in the collec-

tion of the Department of Biology at FFCLRP/USP.

Total DNA was extracted from one thorax per tube

using the Chelex® (Bio-Rad) protocol (Walsh et al., 1991).

For mtDNA amplification, universal primers for insects

(Simon et al., 1994) were used to amplify 451 bp of the

cytochrome oxidase I (COI) gene (mtD6+mtD9) and

402 bp of the cytochrome B (CytB) gene (mtD26+mtD28).

PCR assays were done in a final volume of 50 �L contain-

ing 4 �L of DNA, 5 �L of 10x PCR buffer, 1 �L of each

primer (20 �M), 5 �L of dNTPs (2 mM each), 1.5 �L of

50 mM MgCl2 and 2.5 U of Taq DNA polymerase (Invi-

trogen). The PCR cycling conditions were as described

elsewhere (Brito and Arias, 2005). Aliquots of the PCR

products were run on 1% agarose gels for quantification,

stained with GelRed (Biotium) and photographed under a

UV transilluminator. The remaining PCR products were

purified by digestion with 0.5 �L of ExoSAP-IT® (USB)

and sent to Macrogen, South Korea, for sequencing in an

automatic sequencer 3730xl (Applied Biosystems, USA).

Electropherogram visualization, alignments and concate-

nation were done using the program Geneious v.5.1.6

(Drummond et al., 2010). The sequences obtained were de-

posited in GenBank.

Sequences obtained from the COI (accession num-

bers: JX480903 to JX480950) and CytB (accession num-

bers: JX480951 to JX480998) genes were concatenated in

an 853 bp sequence for all samples. Haplotypes were ana-

lyzed using DnaSP v.5 (Librado and Rozas, 2009) to calcu-

late haplotype diversity (Hd) and nucleotide diversity (�)

(Nei, 1987). Exact tests (Raymond and Rousset, 1995)

were calculated using Arlequin v.3.5 (Excoffier and Lis-

cher, 2010) to estimate the genetic differentiation between

pairs of populations. A haplotype network was generated

by the median-joining network method (Bandelt et al.,

1999) using the software Network v.4.5.0.0.

The base composition of the 853 bp concatenated se-

quences of the COI and CytB genes was A: 32.8%, C:

14.2%, G: 8.1% and T: 44.9%. No insertion/deletion (in-

dels) polymorphisms were detected and only three sites

were variable, with two transitions and one transversion.

Consequently, the average nucleotide diversity was quite

low (� = 0.00137). Two silent mutations were observed in

CytB at the third base of codons; only one mutation was ob-

served in COI. The lower mutation rate in COI was ex-

pected since this gene has higher functional restriction than

CytB (Meiklejohn et al., 2007). The mutation in COI oc-
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Figure 1 - Collection sites of Partamona mulata in cerrado areas in central Brazil: Cuiabá (Cba), Santo Antônio do Leverger (Sal), Poconé (Poc), Cáceres

(Cac) and Campo Grande (Cgd). Haplotype frequencies are shown for each collection site.



curred at the first position and resulted in a conservative

amino acid substitution (Val-Ile), i.e., both amino acids

were non-polar and aliphatic.

Only four haplotypes were observed in P. mulata and

differed by one or two nucleotide substitutions. Figure 1

shows the haplotype occurrence and sharing between col-

lection sites. Haplotype H1 was shared between Sal and

Poc and H3, the most widespread haplotype, occurred at

Sal, Poc and Cac. Haplotypes H2 and H4 were exclusive to

the Cba and Cgd collection sites, respectively (Figure 1).

Haplotype diversity (Hd) calculated for all collection sites

together was 0.765; for individual collection sites, Hd var-

ied from 0.000, where only one haplotype was observed

(Cba, Cac and Cgd), to 0.500 (Sal).

Population differentiation values were significant

(p < 0.05) but exceptions were observed between collection

sites Cac/Sal and Poc/Sal. The haplotype network showed

H3 positioned in the centre with all other three haplotypes

distant from it by a single mutation step (Figure 2).

Unlike other Meliponini genera that are commer-

cially exploited because of their high quality honey and

by-products, Partamona is not harvested and consequently

not transported by beekeepers, probably because of this ge-

nus’s anti-hygienic habit of collecting animal faeces (per-

sonal observation). This fact led us to discard the hypothe-

sis that haplotype sharing was due to human interference. In

addition, Partamona queens are philopatric, meaning that

they do not move more than 300 m from the maternal nest

when they swarm (Wille and Orozco, 1975). Consequently,

haplotype sharing by gene flow involving female P. mulata

is also very unlikely since Poc is 100 km from Sal and Cac

is almost 300 km from the other two sites (Figure 1).

Haplotype sharing in P. mulata is probably explained

by ancient expansion of this species in the cerrado. Paly-

nological and geological records indicate that, in the past,

coastal areas of Brazil experienced greater modifications in

vegetation cover than the central part of the country (Ab’

Saber, 1979; Carnaval and Moritz, 2008; Carnaval et al.,

2009). Thus, while the Atlantic forest contracted and many

isolated fragments of vegetation emerged on mountain

tops, in cerrado areas woodlands were replaced by grass-

lands that expanded during cooler periods (Amorim and

Pires, 1996).

The low polymorphism rate observed here could be a

consequence of small sampling size. However, a study of P.

helleri that used a similar sample size (n = 47) to ours but a

less sensitive marker (PCR-RFLP) identified 10 haplotypes

in five sub-populations in the Brazilian Atlantic forest

(Brito and Arias, 2010). Since these two species differ

markedly in their distribution ranges, with P. mulata occu-

pying a smaller area than P. helleri (Camargo and Pedro,

2003), a lower polymorphism rate would be expected for P.

mulata. Other explanations for the low genetic variability

observed here include the possibility that P. mulata is a

young species or that it has experienced population bottle-

necks in the recent past. According to Avise (2000), a

star-like network is evidence of a species’ expansion from a

small number of founders. This phenomenon has been re-

ported in natural populations of Hymenoptera, such as the

ants Diacamma indicum (Viginier et al., 2004) and For-

mica cinerea (Goropashnaya et al., 2004) and the bees

Bombus insularis (Estoup et al., 1996), Apis cerana

(Sihanuntavong et al., 1999) and Melipona rufiventris

(Tavares et al., 2007).

Our data suggest that H3 is the most ancient of the ob-

served haplotypes since it was present at three collection

sites and was located in the centre of the network

(Figure 2). Population expansion from a center of disper-

sion and the accumulation of mutations in mtDNA proba-

bly gave rise to the other haplotypes. A similar historical

pattern has been postulated for stingless bees of the genus

Melipona (Tavares et al., 2007; Batalha-Filho et al., 2010)

and for the plant species Caryocar brasiliense and

Hymenaea stigonocarpa (Collevatti et al., 2003; Ramos et

al., 2007). The exclusive haplotypes can also be interpreted

as local remnants after bottlenecks. However, given the fact

that nucleotide divergence among the four haplotypes was

very low, the first explanation seems to be more likely, i.e.,

dispersion from a central location followed by mutations in

mtDNA.

Partamona mulata is currently undergoing successful

opportunistic expansion because of the abundance of nest-

ing sites in termite nests. Future samplings over a broader

area will be very helpful in understanding the correlation

between cerrado degradation and P. mulata population ex-

pansion, as well as the increase in nest density.
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Figure 2 - Media joining network of concatenated partial sequences of the

COI and CytB mtDNA genes of samples of Partamona mulata showing

the relationships among the haplotypes identified in this work. Cac -

Cáceres, Cba - Cuiabá, Cgd - Campo Grande, Poc - Poconé and Sal - Santo

Antônio do Leverger.
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