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Abstract

Milk yield records (305d, 2X, actual milk yield) of 123,639 registered first lactation Holstein cows were used to com-
pare linear regression (y = �0 + �1X + e) ,quadratic regression, (y = �0 + �1X + �2X

2 + e) cubic regression (y = �0 + �1X +
�2X

2 + �3X
3 + e) and fixed factor models, with cubic-spline interpolation models, for estimating the effects of inbreed-

ing on milk yield. Ten animal models, all with herd-year-season of calving as fixed effect, were compared using the
Akaike corrected-Information Criterion (AICc). The cubic-spline interpolation model with seven knots had the lowest
AICc, whereas for all those labeled as “traditional”, AICc was higher than the best model. Results from fitting inbreed-
ing using a cubic-spline with seven knots were compared to results from fitting inbreeding as a linear covariate or as a
fixed factor with seven levels. Estimates of inbreeding effects were not significantly different between the cu-
bic-spline model and the fixed factor model, but were significantly different from the linear regression model. Milk
yield decreased significantly at inbreeding levels greater than 9%. Variance component estimates were similar for
the three models. Ranking of the top 100 sires with daughter records remained unaffected by the model used.
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Introduction

Commercial adoption of artificial insemination by the

dairy industry has facilitated the intensification of selection

for traits such as milk, fat and protein yields. Selection is

largely based on Predicted Transmitting Ability (PTA), re-

sulting from best linear unbiased prediction (BLUP) and se-

lection indices. Both the moderate heritability of production

traits and the use of BLUP have lead to the predominant use

of specific family-lines of bulls (Weigel, 2001), especially in

the Holstein population, which in turn has resulted in mating

of related animals. A consequence of such matings is an in-

crease in average inbreeding. The development of multiple

ovulation and embryo transfer technology have also contrib-

uted to increasing levels of inbreeding by intensifying selec-

tion for high producing cows used as dams of AI bulls

(Kearney et al., 2004). The average inbreeding coefficient in

the Holstein population in the United States, as reported by

the Animal Improvement Program Laboratory for animals

born between January and June of 2009 (using 1960 as base

year), was 5.50% (ARS-AIPL, 2009). Several studies have

shown the detrimental effects of inbreeding on several pro-

duction, reproduction and health traits, even at low levels.

For example, Hudson and Van Vleck (1984a,b) studied ef-

fects of inbreeding on first lactation milk and fat production

in five dairy breeds, using a linear regression approach. They

reported decreased milk yield in inbred animals in all the five

breeds, with an estimated loss of 21 kg of milk per 1% in-

crease in the inbreeding coefficient in Holsteins. They also

noted that the effects of inbreeding were non-linear, when in-

breeding was modelled as a classification variable. With

similar statistical models, Miglior et al. (1992) reported a

significant reduction in total milk yield of 10 kg for each 1%

increase in inbreeding in Canadian Jersey cattle. The Cana-

dian group also reported the non-linear effects of inbreeding.

Thompson et al. (2000) found a decrease in milk yield of

35 kg per 1% increase in inbreeding between 0 and 7%, com-

pared to a 55 kg per 1% increase for higher levels of inbreed-

ing in Holstein cows, this again indicating a non-linear effect

on milk yield.

The most common method used to estimate effects of

inbreeding is linear regression of production on inbreeding

coefficient (e.g., Falconer and MacKay, 1996). The regres-

sion coefficient is the expected change in the trait of interest

per 1% increase in inbreeding and is a measure of inbreeding

effects. Few studies have used non-linear regression of pro-

duction on inbreeding coefficient. McParland et al. (2007),

when comparing models with higher order polynomials and

a classification model, reported significant quadratic effects

when considering inbreeding as either a continuous variable
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or a fixed factor. Nevertheless, they urged caution in inter-

preting nonlinear results, due to large-standard errors in esti-

mates at higher levels of inbreeding. Croquet et al. (2007)

compared the fit of linear (y = �0 + �1X + e), quadratic (y = �0

+ �1X + �2X
2 + e) and cubic (y = �0 + �1X + �2X

2 + �3X
3 + e)

regression models for estimating the effects of inbreeding

based on milk yield. The coefficients in all the three methods

were significantly different from zero. The largest t-value

was for the simple linear regression coefficient. They pro-

posed using the linear regression model for estimating the ef-

fects of inbreeding, especially for animals less than 10% in-

bred. Gulisija et al. (2007) used a non-parametric approach

to estimate inbreeding effects on production in Jerseys. They

reported that, on including inbreeding as a linear covariate,

the fit of the model at low levels of inbreeding improved (<

7%). The lack of fit was detected in the linear regression

model at higher levels of inbreeding (> 10%), for which a

third-order regression model seemed to adequately fit the

data. Another method which could be used is cubic-spline in-

terpolation to estimate the non-linear effects of inbreeding

on milk yield. The rationale is that this method, besides pro-

viding better coverage of data points (Harrell Jr, 2001), may

result in more accurate estimates of the effects of inbreeding

on milk yield.

The objective of this study was to compare cubic-

spline interpolation to estimate effects of inbreeding on

milk yield with traditional linear regression and fixed factor

models.

Materials and Methods

Data and edits

Records of actual milk yield adjusted to 305-d in lac-

tation (2X) for first-calf Holstein heifers, freshening

between 2002 and 2006, were used. The records were pro-

vided by the Dairy Herd Information Association (DHIA-

North Carolina). Only records of registered Holstein heif-

ers were included in the analysis. Animals with less than

five recorded test-day milk yields were deleted from the

data. Records of annual milk yield included in the data set,

consisted of milk records within four times the standard de-

viation from the average (approximately 9,100 kg). As

standard deviation was approximately 1,660 kg, rounding

up the confidence range to the nearest 100 kg resulted in

some yields that were less than 2,400 kg, and others more

than 15,800 kg. Through being considered as outliers, these

were omitted from the data set. Contemporary groups were

herd-year-seasons (HYS) of freshening, with season 1 de-

fined as October 1 through March 31, and season 2 defined

as April 1 through September 30. Records of HYS with less

than 10 freshening heifers were deleted. Pedigree informa-

tion was provided by the Holstein Association, USA. The

pedigree file used was extended backwards, so that at least

one of the paternal and maternal grandsires or granddams

was known for all the heifers included in the analysis. Re-

cords of animals that did not fit the minimum requirements

were omitted. Nonetheless, these animals were included in

the pedigree file, which finally consisted of 541,249 ani-

mals. Individual inbreeding coefficients (%F) were pro-

vided by AIPL, as calculated by Wiggans et al. (1995). Af-

ter edits, the analysis included records of 123,639 heifers in

5,839 HYSs, with individual inbreeding coefficients rang-

ing from 0 to 40%. Few animals (approximately 0.1%) had

levels of inbreeding greater than 18.75%. The distribution

of inbreeding coefficients was similar to that found in pre-

vious studies (e.g., Hudson and Van Vleck, 1984a,b; Mi-

glior et al., 1992). Figure 1 presents average unadjusted

milk yields with values within one standard deviation) by

inbreeding class. Fluctuation of averages for inbreeding co-

efficients greater than 12% may be due to the small number

of animals in those categories. In fact, milk yield records of

animals with inbreeding greater than 12% constituted less

than 1% of the available data, with several of these inbreed-

ing levels (8 out of 19) having less than 10 observations

each.

Statistical models

All the models included a random animal genetic ef-

fect with HYS treated as a fixed factor. The ten models

compared were grouped as follows:

Fixed factor models

The first model was a saturated fixed-factor model,

where the inbreeding coefficients (F) were included as lev-

els of a fixed factor. Inbreeding coefficients rounded to the

nearest integer were considered as unique levels. Thus, 32

different inbreeding levels were formed (0% to 40%, with

levels 22, 24 and 33 through 39 missing).

The second fixed factor model consisted of grouping

F into seven classes as shown in Table 1. This classification

has been used in several studies (e.g., Hudson and Van

Vleck, 1984a,b; Miglior et al., 1992; McParland et al.,

2007).The general form of the fixed factor models is:

yijkl = � + Fi + HYSj + Animalk + eijkl

with yijkl, milk yield of Animal k in HYS j with an inbreed-

ing coefficient F falling within inbreeding level i; �, a con-
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Figure 1 - Unadjusted average 305 d milk yield (kg) with values within 1

standard deviation by inbreeding coefficient (%F).



stant; FI, the effect of the ith level of inbreeding for i = 1, ...,

32 with the saturated fixed factor model, and i = 1, ..., 7 with

the fixed factor model; HYSj, the effect of the jth HYS con-

temporary group treated as a fixed factor; Animalk, a ran-

dom additive genetic value of the kth animal with

�a
2 = 0.5�e

2, and eijkl, a random error effect normally and in-

dependently distributed with a mean of zero and a variance,

�e
2.

Regression models

Inbreeding coefficients were included as covariates

with linear, linear and quadratic or linear, quadratic and cu-

bic effects, resulting in three models.

The linear regression model was:

yijk = �0 + �1F + HYSi + Animalj + eijk

with yijk, milk yield of Animal j in HYS i with an inbreeding

coefficient F; �0, intercept; �1, regression coefficient for the

linear effect of inbreeding; F, inbreeding coefficient of ani-

mal j; HYS, Animal and e effects as defined earlier.

The linear and quadratic regression model was:

yijk = �0 + �1F + �2F
2 + HYSi + Animalj + eijk

with yijk, milk yield of Animal j in HYS i with an inbreeding

coefficient F; �0, intercept; �1, coefficient of the linear ef-

fect of inbreeding; F, inbreeding coefficient of animal j; �2,

coefficient for the quadratic effect of inbreeding; and HYS,

Animal and e effects as defined earlier.

The cubic regression model was:

yijk = �0 + �1F + �2F
2 + �3F

3 + HYSi + Animalj + eijk

with yijk, milk yield of Animal j in HYS i with an inbreeding

coefficient F; �0, intercept; �1, coefficient of the linear ef-

fect of inbreeding; F, inbreeding coefficient of animal k; �2,

coefficient for the quadratic effect of inbreeding; �3, coeffi-

cient for the cubic effect of inbreeding; and HYS, Animal

and e effects as defined earlier.

Cubic-spline models

The spline models had three to seven knots (t3 … t7)

for F. Choice of knots was based on consideration of the

different possible inbreeding coefficients that could be at-

tained from mating of directly related animals such as

full-sibs, half-sibs,parent- progeny and grandparent-grand-

progeny matings. Some knots were also chosen to divide

the inbreeding levels into equally spaced groups. For the

cubic-spline model with seven knots, the knots were chosen

to match the seven levels of the fixed factor model. The

knot positions are presented in Table 2. This approach re-

sulted in five different models, the most complete being:

yijk = �0 + �1F + �2F
2 + �3F

3 + HYSi + Animalj + eijk

with yijk, milk yield of Animal j in HYS i with an inbreeding

coefficient F; �0, intercept; �1, coefficient for the linear ef-

fect of inbreeding; F, inbreeding coefficient of animal j;

�1, ..., �6, the Z-spline coefficients of the cubic-spline inter-

polation for F; F2, ..., F6, the knot functions; and HYS, Ani-

mal and e effects as previously described.

Depending on the number of knots in the model, some

terms were removed.

Other models could have also been used; for example,

higher order linear polynomials, such as quartic and quin-

tic. Inclusion of other fixed and /or random effects might

improve the fit of the model. The focus of the project was to

compare cubic-spline interpolation with traditionally used

models. Thus, the models used were kept as similar as pos-

sible to the traditional models. Furthermore, as discussed

later, comparisons required fixed genetic variance. Animal

genetic variance was chosen to match heritability estimates

from other studies (e.g., Swalve and VanVleck, 1987).

All analyses were conducted using ASREML 2.0

(Gilmour et al., 2006).

Model comparisons

Models were compared using Akaike's Information

Criterion (AIC; Akaike, 1974), one of the several model se-

lection methods based on the principle of parsimony. Other

methods based on the same principle could have been used

but the AIC is one of the easiest methods to compute and

does not require extensive computation. Model selection

could have been also conducted in the context of null hy-

pothesis testing, however this approach has relatively poor

performance given its dependence on the significance level

specified to test if effects should be included or omitted
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Table 1 - Classification of inbreeding into seven levels, and the number of

cows per category.

Inbreeding levels Numberof cows

0% 794

0-3.125% 16308

3.125-6.250% 81805

6.250-12.500% 23832

12.500-18.750% 780

18.750-25.000% 36

> 25.000% 84

Table 2 - Position of knots at inbreeding levels (%F) for the five cu-

bic-spline models.

Number of knots Position of knots

3 0, 12.500, 25.000

4 0, 6.250, 12.500, 25.000

5 0, 3.125, 6.250, 12.500, 25.000

6 0, 3.125, 6.250, 12.50, 18.750, 25.000

7 0, 3.125, 6.250, 12.50, 18.750, 25.000, 37.500



from a model (� = 0.05 or 0.01 or 0.15). The null hypothe-

sis testing approach also has a relatively poor performance

when testing non-nested models (Burnham and Anderson,

2002). The AIC is an approximate measure of the

Kullback-Leibler information of a model based on the esti-

mate of log-likelihood and number of parameters esti-

mated: AIC = 2p - 2l, where p is the number of parameters

estimated, and l is the log-likelihood of the model used.

When the ratio of the number of observations, n, to the

number of parameters estimated, p, is less than 40, it is rec-

ommended that corrected AIC be used: AICc = AIC + [2p(p

+ 1)/(n - p - 1)] (Burnham and Anderson, 2002). As the

number of observations becomes large, AICc converges to

AIC. The idea behind AIC is that the difference between

two competing models, A and B, can be detected by differ-

ences in estimates of residual error variances from the two

models. As, by increasing the number of parameters in a

model, the goodness of fit improves, i.e., there is a reduc-

tion in the residual sum of squares and an increase in

log-likelihood in nested models, a growing penalty func-

tion, equal to twice the number of parameters included, is

deducted to discourage “overfitting”. One disadvantage of

overfitting is that, given enough parameters, an irrational

model may fit the data perfectly, even if it does include

nonsensical parameters. Models were ranked according to

their AICc because the ratio of the number of observations

to the number of parameters estimated, was always less

than 40. The model with the smallest AICc was considered

the best. The significance of differences between models

was based on their AICc values, as described by Burnham

and Anderson (2002) for comparison of models. In general,

a small difference in AICc between two competing models

(less than 2) indicates that neither of the two is adequate. A

moderate difference (4 to 7) indicates that the model with

the higher AICc does not fit the data as well as the one with

the lower AICc rank. A large difference (greater than 10)

indicates that the model with the highest AICc is inade-

quate compared to that with the lowest. The log-likelihood

used in the AIC, and subsequently the AICc, is based on

maximizing likelihood (ML). The software used in the

analysis however maximized the restricted maximum like-

lihood (REML). Comparison of the different models there-

fore required manipulation of the likelihood estimates from

REML to be converted into ML estimates. Therefore, the

animal genetic variance was fixed for all models to facili-

tate estimating random residual variance. Heritability of

milk yield at first lactation was assumed to be 0.33 (Swalve

and Van Vleck, 1987; Miglior et al., 1992). The additive

genetic component of variance was fixed at half resid-

ual-error variance to facilitate comparing models. With ge-

netic variance as a fixed function of residual-error variance,

only the residual-variance component needed to be esti-

mated. The next step was to convert the REML estimate of

residual-error variance into the ML estimate for computing

likelihood and AIC. The method of transformation from

REML to ML estimates is as follows:

The REML estimate of residual-error variance,
��eREML

2 , is equal to the sum of squares of the residuals (SSR),

divided by the degrees of freedom for error (dfe), whereas

the ML estimate of residual-error variance, ��ML

2 is equal to

SSR divided by the total number of observations (n). This

leads to the following adjustment: � /�e eREML
SSR df2 �

�
and

� /�eML
SSR n2 �

�
, then SSR df ne e eREML ML

�
� � � �� �� �2 2 so that

� �e e eML REML
df n2 2� �( / ) .

Milk yield was assumed to be approximately nor-

mally distributed, y ~N(X�, V�e
2), so that the likelihood

function given y is:

L y V
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| |
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where y is the n x 1 vector of observations; n is total number

of observations; V is a matrix of constants, since the animal

genetic variance was fixed at one-half residual-error vari-

ance; �e
2 is the residual-error variance; and �e

2 is the product

of the design matrix, X, and the vector of fixed effects, �.

Thus, the log-likelihood function is:

l y
n n n
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�

To find the estimate of �e
2 that maximizes likelihood,

the first derivative with respect to �e
2:

� � �

�� �

� �

�

l y n y X V y Xe

e e e

( , | ) ( )' ( )
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2 2
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�
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is equated to zero. This permits estimating �e
2 from

n y X V y X

e e��
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and

so that
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The log-likelihood is therefore:
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2 2
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Because n, 2� and V are constants,

l y
n

e eML ML
(� , � | ) ln( � )� � �2 2

2
� �constant .

The constant is the same for all models because n, 2�
and V are the same for all models.

Comparison of models for inbreeding effects

The analyses were re-run without restrictions on the

animal genetic variance to obtain, not only estimates of

variance components and predicted animal breeding values

for traditional linear regression and fixed factor models, but

also the best cubic-spline model for comparing estimates of

the effects of inbreeding on milk yield and of variance com-

ponents and heritability. For each model, the predicted

breeding values (EBV) for sires of daughters with records

were compared to detect changes in sire-ranking due to the

model used. The pedigree file contained 9,618 sires of

which 1,409 had daughters with records. The proc reg pro-

cedure in SAS© 9.2 was used to regress EBVs of these sires

from the cubic-spline model, on the corresponding EBV

from the fixed factor and linear regression models. The cal-

culated correlations among EBV of sires of daughters with

records from all three methods were examined using the

proc corr procedure in SAS© 9.2. Ranking of the top 100

sires for the three models were also compared. Finally, the

estimated milk yields by inbreeding level using the best

model were regressed on estimated milk yields by inbreed-

ing level from the linear regression and fixed factor models

using the proc reg procedure in SAS© 9.2.

Results and Discussion

Estimates of residual-error variance, log-likelihood,

and AICc for each model, as well as differences in AICc

from the model with the lowest AICc (assumed best), are

given in Table 3. Based on AICc, the best model was cu-

bic-spline interpolation of inbreeding with seven knots.

The model with the highest AICc was the saturated fixed

factor model (a difference of +50.447 from the best model).

The fixed factor model and simple linear regression model,

i.e. the traditional methods of analysis, ranked second and

third to last, respectively. The cubic-spline model with 4

knots had 0.48 higher AICc than the model with seven

knots indicating that the two models are nearly equivalent.

The cubic-spline models with five and six knots as well as

the cubic regression model had AICc differences from the

best model ranging between 2 and 6 reflecting that these

models do not fit the data as well as the best model. The re-

maining models (i.e. linear regression, linear and quadratic

regression, cubic-spline with three knots, fixed factor and

saturated models) all had differences of AICc larger than 10

units compared with the best model indicating a poor fit to

the data compared to the cubic-spline with seven knots.

The counter-intuitive result of the cubic-spline mod-

els with five and six knots, which performed worse than

that with four, is explained by differences in log-like-

lihoods and the number of parameters between the mod-

els. Compared to the model with four knots, one

additional parameter was estimated in the model with five

knots, and two in that with 6. Even though this difference

was small, it lead to AICc ranking differing from what was

to be expected.
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Table 3 - Estimates of residual variance, logarithm of the likelihood and AICc for each model, with differences in AICc from the cubic-spline model with

seven knots.

Model ��e

2 (kg2) (x10,000) LogL (-865,000) AICc (1,742,500) Difference in AICc

Cubic-spline with 7 knots 125.515 -122.913 15.995 0

Cubic-spline with 4 knots 125.519 -126.458 16.473 0.479

Cubic-spline with 5 knots 125.520 -126.425 18.612 2.618

Cubic-spline with 6 knots 125.521 -126.393 20.751 4.756

Linear, quadratic and cubic regression 125.524 -128.920 21.398 5.404

Linear and quadratic regression 125.532 -133.385 28.124 12.130

Cubic-spline with 3 knots 125.534 -134.370 30.094 14.100

Linear regression 125.539 -137.357 33.865 17.870

Fixed factor 7 125.546 -138.180 50.934 34.940

Saturated (fixed factor 32 levels) 125.509 -118.383 66.441 50.447



Estimates of the effects of inbreeding on milk yield

for a cubic-spline model with seven knots are represented

in Figure 2. Table 4 contains t-values to test for significance

of reduction in 305d milk yield between each inbreeding

level and no inbreeding. Significant differences at the 0.05

rejection level were at |t-value| > 1.96. These results

showed no significant decrease in milk production up to an

inbreeding level of 8%. Milk yields significantly decreased

at inbreeding levels of 9% to 21%. No significant differ-

ences in milk yields were found for inbreeding levels of

23% to 27%. Significant differences in milk yields were de-

tected for inbreeding levels of 28% and beyond.

The linear regression model indicated a decrease of

21.49 kg of milk per 1% increase in inbreeding, in agree-

ment with estimates in the literature for Holstein cattle,

which ranged from 9.84 to 26.00 kg (Thompson et al.,

2000). Estimates of losses due to inbreeding using the fixed

factor model are represented in Table 5. These estimates

generally agree with previous studies in which five in-

breeding classes were used (Hudson and Van Vleck,

1984a,b; Miglior et al., 1992; Thompson et al., 2000).

Estimates of variance components and heritability for

the cubic-spline model with seven knots, for the linear re-

gression model and for the fixed factor model with seven

levels are shown in Table 6. The three models resulted in

similar estimates of variance components and heritability
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Figure 2 - Estimated 305 d milk yields (kg) by inbreeding level (%F) from

the cubic-spline model adjusted for herd-year-season effects.

Table 4 - t statistics for testing significance in the reduction of 305 d milk yield (kg) between different inbreeding levels and 0% inbreeding from the cu-

bic-spline interpolation model with seven knots.

%F 305d milk yield reduction per cow (kg) t-value %F 305d milk yield reduction per cow (kg) t-value

0.00 0.00 0.00 20.00 -332.00 -3.46*

1.00 13.00 0.75 21.00 -276.00 -2.47*

2.00 22.00 0.72 23.00 -170.00 -1.12

3.00 25.00 0.64 25.00 -146.00 -0.84

4.00 21.00 0.49 26.00 -191.00 -1.11

5.00 10.00 0.20 27.00 -275.00 -1.68

6.00 -9.00 -0.27 28.00 -394.00 -2.56*

7.00 -32.00 -0.91 29.00 -546.00 -3.50*

8.00 -61.00 -1.64 30.00 -727.00 -4.04*

9.00 -95.00 -2.38* 31.00 -933.00 -4.10*

10.00 -132.00 -3.05* 32.00 -1162.00 -3.95*

11.00 -172.00 -3.70* 34.00 -1673.00 -3.61*

12.00 -216.00 -4.40* 36.00 -2231.00 -3.38*

13.00 -262.00 -5.18* 40.00 -3390.00 -3.13*

14.00 -308.00 -5.85*

15.00 -349.00 -6.12*

16.00 -381.00 -5.98*

17.00 -399.00 -5.60*

18.00 -399.00 -5.08*

19.00 -377.00 -4.39*

*Significant reduction in milk yield from the estimated milk yield at 0% inbreeding (p < 0.05).

Table 5 - Estimated annual milk yield loss (kg) at different inbreeding lev-

els for the fixed factor model with seven levels.

Inbreeding levels Milk yield loss (kg)

0+-3.125% 5.92 � 18.85

3.125+-6.25% 78.64 � 21.15

6.25+-12.5% 386.10 � 52.45

12.5+-18.75% 366.17 � 208.70

18.75+-25% 479.75 � 148.62

> 25% 2863.37 � 1291.89



of approximately 0.31 (SD = 0.01) which agrees with esti-

mates of heritability reported in the literature of 0.33 (e.g.,

Swalve and Van Vleck, 1987).

Regression of EBV from the cubic-spline model on

EBV from the linear regression model for the 1,409 sires

having daughters with records, resulted in R2 of 0.99, a

correlation of 0.99 and a regression coefficient of 0.97.

Regression of EBV from the cubic-spline model on EBV

from the fixed factor model had a R2 of 0.99, a correlation

of 0.99 and a regression coefficient of 0.99. The regres-

sion coefficient from regression of EBV from the cu-

bic-spline model on the EBV from the linear regression

model, was significantly different from 1.00 (p < 0.0001).

The regression coefficient of the regression of EBV from

the cubic-spline model on the EBV from the fixed factor

model, was not significantly different from 1.00

(p = 0.31). Correlations between EBV from the cubic-

spline model and EBV from the linear regression and

fixed factor models were both significantly different from

1.00 (p < 0.0001), when the Fisher (rho0 = 1.00) option

was specified in the CORR procedure in SAS©. Thus, esti-

mates of breeding values could possibly be different for

the three models. Nonetheless, ranking of the top 100 sires

by each method revealed that only the rank of one sire

changed between the linear regression model and the two

other models indicating that selection for breeding value

was minimally affected by the model used.

The regression of milk yield estimates by inbreeding

level from the cubic-spline model on milk yield estimates

by inbreeding level from the linear regression model had a

R2 of 0.99, a correlation of 0.79 and a regression coefficient

of 0.97 that was significantly different from 1.00 (p = 0.02).

The regression of estimates by inbreeding level from the

cubic-spline model on estimates by inbreeding level from

the fixed factor model had a R2 of 0.99, a correlation of 0.88

and a regression coefficient of 0.98 that was not signifi-

cantly different from 1.00 (p = 0.13).

Consequently, the linear regression model is appar-

ently not the best for estimating the effects of inbreeding on

milk yield. Despite its lower AICc ranking, the fixed factor

model appears to be a simpler and more effective alterna-

tive to the more complex cubic-spline. Estimates of the ef-

fects of inbreeding on milk production were similar for the

cubic-spline model and the fixed factor model. This may be

due to the positions of the knots in the cubic-spline model

which coincide, for the most part, with the inbreeding lev-

els for the fixed factor model.

A substantial reduction in profit is reflected from

losses derived from the detrimental effects of inbreeding.

At an inbreeding level of 9%, the estimated loss in milk

yield would be 95 kg, thereby reflecting a potential loss of

US$ 26.18 per lactation at the average milk-price of

US$ 12.5 per hundred weight. The average inbreeding in

the U.S. Holstein population was 5.50% for the year 2009,

and is on the increase, as reported by the Animal Improve-

ment Program Laboratory.

In this study, knots were positioned at inbreeding lev-

els reflecting the possible mating of directly related animals

(within a family line). Therefore, given the similarity in es-

timates of effects of inbreeding on milk yield, the fixed fac-

tor model, despite poorer AICc, presents a simple and

effective alternative to using the complex cubic-spline.

If adjustment of milk yields for inbreeding is to be

based on estimates using a cubic-spline model, it would be

advantageous to develop an algorithm, useful in detecting

the positions of knots providing the best fit to the data.

Their positioning would first need to be defined in one or

several reference data sets, and then validated in others. Cu-

bic-spline coefficients would require periodical re-valida-

tion.
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