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INTRODUCTION

A major concern in maize breeding is to identify genes
that control disease resistance, and this may be done using
molecular markers. The general strategy involves geno-
typing individuals from a segregating population with
molecular markers scattered throughout the genome and
measuring the disease resistance of their progeny. Statis-
tical methods are then used to establish associations
between changes in allelic states at the marker-loci and
quantitative variations in resistance. A marker is said to be
linked to a quantitative trait locus (QTL) when a significant
association is demonstrated.

Currently, the two basic approaches to QTL mapping
are: single-marker analysis and interval mapping. In the
former, statistical analysis is applied to each marker-locus
in a one-at-a-time fashion, while in the latter the joint
frequencies of genotypes at two adjacent marker loci are
used to infer the genotypes at the QTL. Single-marker
analysis is a simple approach and has been used extensively
in mapping, and for learning the principles of QTL mapping.
This analysis can be implemented as a simple t-test, analysis
of variance, linear regression, and likelihood tests (Liu,
1998). However, in some cases the underlying assumptions

of these tests are not met because of heteroscedasticity,
non-linearity, and non-normality of residuals. For instance,
plant pathologists often use visual ratings of disease severity
obtained from individual plants as an estimate of the degree
of resistance. Generally, these ratings consist of an ordinal
scale that varies from 1 (resistant) to 9 (susceptible).

Ordinal data can be analyzed using ordinal categorical
response techniques (Agresti, 1984). The advantage of using
these techniques compared to traditional tests of asso-
ciation is that the models allow the inclusion of association
terms without saturation, that is, the models do not require
all the degrees of freedom. Furthermore, it is possible to
construct more parsimonious models and also detect
marker-locus associations in addition to describing certain
trends which are biologically meaningful based on para-
meters. These parameters are the odds ratio, which are easy
to interpret (Agresti, 1984).

When applied to the mapping of disease resistance
genes, the data consist of counts or frequencies arranged
in multinomial contingency tables formed by cross
classification of the response variable or disease severity
levels (columns) and the explanatory variables or genotypes
of the marker-locus under investigation (rows). The data
may involve Poisson, multinomial or product multinomial
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distributions. The most appropriate method for modelling
counts is the Poisson regression model, which is a parti-
cular case of the generalized linear models, developed by
Nelder and Wedderburn (1972). McCullagh and Nelder
(1989) showed that multinomial and product multinomial
distributions can be derived from a set of independent
Poisson random variables so long as their totals are fixed.
Particular cases occur when the response categories are
ordered. McCullagh (1980) suggested that the proportional
odds and proportional hazard models should be used to
analyze such data. These approaches are based on cumulative
response probabilities and are multivariate extensions of
generalized linear models.

This paper describes the application of the propor-
tional odds model in mapping disease resistance QTL in
maize. Some of the experimental data used in this analysis
have been published elsewhere (Camargo et al., 1998).

MATERIAL  AND METHODS

The model

Consider a multidimensional table with counts Yij,
where i = 1,…,r and j = 1,…,c. Suppose that the columns
are the ordinal response categories and that one is interested
in comparing rows, i.e., the populations formed by
combination of the levels of explanatory variables.

In such a contingency table, three types of sampling
schemes can be obtained, e.g., Poisson, multinomial and
product multinomial, depending on the constraints imposed
on the parameters of the model. For the purpose of
estimation, the Poisson distribution can be considered in
all cases. Since the Poisson process belongs to the family
of exponential distributions, such a problem can be treated
as a generalized linear model (GLM). To define a GLM,
three elements need to be identified: a probability dis-
tribution, a linear model and a link function (Demétrio,
1993). Maximum likelihood (ML) estimates can be
obtained by iterative methods such as the iterative
reweighted least squares method, which is found in the
major statistical packages, such as GLIM4 (Payne, 1986),
SAS (1988) and others. McCullagh (1980) showed how
to use the Newton-Raphson method for ML estimation in
a class of models that includes cumulative logit models.
For ordinal response scales, it is more suitable to form
the link function using the cumulative probabilities γ

j
 =

P(Y ≤ j) (Table I) instead of the response category
probabilities because of the former’s useful properties
(McCullagh and Nelder, 1989). Wolfe (1996) developed
a macro ORDINAL in GLIM4 to obtain estimates of such
models.

Thus, the proportional odds model is defined by:

L
j(i)  

= log                 = α
j
 + βTx

i

which can be written as row effects:

L
j(i)  
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j
 + τ

i

where ∑τ
i
 = 0, α

j
 represents the threshold of the underlying

continuous variable marking the boundaries between
categories of the response and α

1
 < α

2
 <…< α

c-1
, L

j(i)  
is the

cumulative logit used as a link function, β or τ
i
 are the

parameter vectors and x
i
 represents the covariates in the

model or design matrix.

Parameter interpretation

The β parameter can be interpreted as the logarithm
of the odds ratio such that the difference between the logits
L

j(b) 
and L

j(a)
, for each pair of rows of the contingency table,

a and b, is the log of the local-global odds ratio θ
ij
. Thus

L
j(b) 

- L
j(a) 

= log                   = log(θ
ij
) = β (1)

In other words,

θ
ij
 = eβ.

The thresholds α
j
 are ordinarily considered to be in-

cidental parameters of little interest in themselves
(McCullagh and Nelder, 1989). They can be interpreted as
threshold parameters for the distribution of an unobserved
continuous latent variable.

The statistical significance of the association between
the response and the explanatory variables can be assessed
by testing H

0
:β = 0 or H

0
:τ

i
 = 0 or, in terms of odds ratios,

as H
0
:θ

ij
 = 1. Thus, if θ

ij
 = 1, then the variables are not

associated. When 1 ≤ θ
ij
 < ∞, the individuals in row b have

a greater propensity to produce a lower response than
individuals in row a of the explanatory variable, whereas
when 0 ≤ θ

ij
 < 1, the individuals in row b are less likely to

produce a lower category response than individuals in row
a of the explanatory variable.

Table I - Cumulative probabilities of the ordinal categories.

Categories Probabilities Cumulative Probabilities

1 π1 γ1 = π1

2 π2 γ2 = π1 + π2

: : :
c π c γc = π1 +…+ πc

 j = 1, ..., c-1.
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The proportional odds model described by McCullagh
(1980) owes its name to the fact that it assumes that the
log of the odds ratio is proportional to the distance between
the values of the explanatory variables, with a constant
proportionality at each threshold. This means that there is
a single common slope parameter for each of the expla-
natory variables, i.e., a hypothesis of parallelism where
H

0
:β

1
 = β

2
 =…= β

j
 = β. Hosmer and Lemeshow (1989) use

the score test to verify this hypothesis.
After parameter estimation by the ML method, the

estimated logits can be obtained and, by inversion, the esti-
mated expected frequencies of each cell can be computed as:

γ
j(i)

 =

Hypotheses about the β parameters can be tested using
the Wald statistic given by:

W = β’V-1β

which has the χ2 distribution and V -1 is the estimated
information matrix.

Goodness-of-fit

Nelder and Wedderburn (1972) suggested that deviance
should be used to test a hypothesis of independence. The
residual deviance is a measure of goodness-of-fit, which
gives an overall indication of the fit of the model. A large
value for this statistic is a clear indication of a substantial
problem with the model. The goodness-of-fit is computed
using the log of the likelihood-ratio. For contingency table
cases in which the frequencies follow a Poisson distri-
bution, this statistic is given by:

G2 = 2∑∑ y
ij 
log           .

Under the null hypothesis, i.e., that independence is true,
G2 has an asymptotic chi-squared distribution with (r-1)(c-
1) degrees of freedom.

To assess the effect of an explanatory variable, terms
are sequentially included in the model and the deviance is
measured at each step. Thus, the difference between the
deviance of the independence model (I) and the deviance
of the current model (C) will be:

G2(I/C) = G2(I) - G2(C) ~ χ2
df

with degrees of freedom (d.f.) given by the difference
between the number of logits and the number of adjusted
parameters. The number of logits is r(c-1) since for each
row there are c-1 logits.

Case study

The experimental data used in the following analysis
were collected from an ongoing project of mapping the
disease resistance genes of maize to Puccinia sorghi, the
causal agent of common rust. Some of the results of this
project have been published elsewhere (Camargo et al.,
1998). Data from one field trial were re-analyzed using
the proportional odds model. The mapping strategy
consisted of genotyping 97 F

2
 plants derived from a cross

between the resistant L10 and the susceptible L20 inbred
lines with the microsatellite marker-loci bngl166 and
bngl669 which map to chromosome 2 and 8, respectively
(Taramino and Tingey, 1996). The F

2
 plants were self-

pollinated to generate F
3
 progeny which were evaluated for

resistance to P. sorghi in a field trial. The experimental
design consisted of a randomized complete block design
with three blocks using a fully crossed factorial treatment
scheme. The plots consisted of 10 plants per progeny grown
in 2.5-m long rows spaced 0.8 m apart. Parental lines and
hybrids were included as control treatments.

The plants were infected naturally and visual ratings
of disease severity were made 1-2 weeks after flowering
on a scale of 1 to 9, where 1 corresponded to no symptoms
and 9 to more than 75% of the leaf area affected by the
disease. To apply the ordinal categorical data method, the
disease severity level of each plot, and not of each plant,
was considered the response variable.

The proportional odds model applied to the experi-
mental data can be written as:

log                   = α
j
 + τL1 + τL2 + τL1*L2

1 ≤ i ≤ 3; 1 ≤ k ≤ 3
1 ≤ j ≤ 5 - 1

where ∑τL1 = 0, ∑τL2 = 0 and ∑τL1*L2 = 0, α
j
 represents the

jth threshold, τL1 is the ith locus bngl669 level effect on
the severity of common rust, τL2 is the kth locus bngl166
level effect on the severity of common rust and τL1*L2 is the
interaction effect.

Although the scale for the severity of disease varied
from 1 to 9, there were no extreme values so that scores of
1 to 3 and 7 to 9 were condensed, resulting in c = 5 response
classes. Since the genotypes of some progenies could not
be identified, the number of observations was reduced to
225 points.

RESULTS AND DISCUSSION

The frequencies of each cell and the jth cumulative
probabilities at each level of disease severity relative to
microsatellite-marker genotypes are shown in Table II and
Figure 1, respectively.

Plant homozygous for L10 alleles at bngl669 and
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Table II  - Observed frequencies of marker genotypes in
each cell of the contingency table.

Marker-genotype Disease severity Total

QTL669 QTL166 3 4 5 6 7

11* 11 0 2 4 7 2 15
22 11 0 1 3 4 4 12
12 11 0 6 10 7 4 27
11 22 5 1 0 0 0 6
22 22 0 3 2 1 0 6
12 22 6 8 8 4 1 27
11 12 4 3 9 13 4 33
22 12 4 2 12 10 5 33
12 12 14 18 18 10 6 66
Total 33 44 66 56 26 225

*1 and 2 denote alleles from L10 and L20, respectively.
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Table III -  Analysis of deviances for marker genotypes at
loci bngl669 and bngl166.

Source of variation d.f. Deviance P value

Thresholds 4
Blocks 2 13.70 0.001
bngl669 2 9.78 0.004
bngl166 2 21.99 0.000
bngl669*bngl166 4 15.57 0.000
Residual 94 67.09 0.984

Figure 1 - Cumulative probabilities at the jth category.

Single-marker analysis performed by fitting each term
individually yielded a significant association, showing that
the two marker-loci were linked to two QTL. The inclusion
of the interaction term after single-marker analysis provided
strong evidence of an interaction between the two loci
(Table III). This means that disease resistance varied for
different combinations of genotypes at the two QTL, and
indicated epistasis, i.e., the joint effect of genes loci acting
in different ways.

Table IV presents the maximum likelihood estimates
and odds ratios based on β parameters calculated using
equation (1). These parameters measure the magnitude of
the association between the markers and the disease
resistance QTL. Using the double heterozygote as a baseline
for comparison because of the presence of both alleles from
L10 and L20, genotype 1122 was 27 times more resistant,
whereas 2222 and 1222 did not differ from the double
heterozygote. A third group would be formed by the
remaining genotypes, with negative values for these
parameters indicating that they were more susceptible to
common rust disease than genotype 1212.

The above technique has advantages over methods
based upon single-QTL models in which QTL are mapped
individually, when considering the effects of other QTL.
Ordinal categorical data models have the advantage that they
provide multilocus models which allow the inclusion of
interaction terms between the environment and QTL. One
problem with multilocus analyses is that the number of
parameters increases rapidly relative to the amount of data,
although these are methods for the statistical selection of
the most important markers. For this, Hosmer and
Lemeshow (1989) recommended the use of univariate
analysis for the selection of variables and then a multiple
regression analysis using stepwise procedures. Backward
selection is preferred in multiple QTL model (MQM)
mapping, since the unexplained variance is immediately
reduced as much as possible. The use of a significance level

homozygous for L20 alleles at bngl166 (genotype 1122)
were the most resistant as shown by their higher frequencies
at lower severity scores (Figure 1).

The analysis of deviance is shown in Table III for the
randomized complete block design. The residual deviance
indicated a good fit for the proportional odds model (P =
0.984). The assumption of parallelism was verified by the
chi-squared score statistic (P = 0.697) indicating that the
odds had a constant proportionality at each threshold.
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of 2-16% per marker test during the selection procedure
is also recommended (Jansen, 1996).

The ordinal categorical data method allows the
analysis of data such as disease severity that are usually
difficult to measure and in which the assumptions of the
ANOVA test are almost never reached.

In addition, the parameter estimates are not only useful
in detecting marker-locus associations, but can also descri-
be trends which are biologically meaningful. The increasing
use of computers should permit the development of new
tools for analyzing complicated QTL mapping problems.
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RESUMO

Marcadores moleculares têm sido extensivamente usados
para o mapeamento de loci de características quantitativas (QTL)
que controlam a resistência às doenças em plantas. O mapeamento
é usualmente feito estabelecendo uma associação estatística entre
os genótipos dos marcadores moleculares e as variações quan-
titativas na resistência à doença. No entanto, a maioria dos méto-
dos estatísticos requer uma distribuição contínua da variável
resposta, um pressuposto nem sempre encontrado, já que a
avaliação da resistência às doenças é freqüentemente feita
visualmente através da atribuição de escores numa escala ordinal
ao grau de severidade da doença. Este artigo apresenta a aplicação

Table IV - Maximum likelihood estimates.

Parametersd.f. Estimates S.E. Wald’s P value Odds ratio

α1 1 -2.2405 0.3357 44.5449 0.0001 .
α2 1 -0.9045 0.3011 9.0256 0.0027 .
α3 1 0.5706 0.2991 3.6391 0.0564 .
α4 1 2.2867 0.3422 44.6561 0.0001 .
Block 2 1 1.0411 0.3058 11.5926 0.0007 2.832
Block 3 1 1.1923 0.3079 14.9979 0.0001 3.295
1111 1 -1.6034 0.5297 9.1641 0.0025 0.201
1122 1 3.3082 1.1837 7.8105 0.0052 27.337
1112 1 -1.2492 0.3953 9.9894 0.0016 0.287
2211 1 -1.6516 0.6541 6.3748 0.0116 0.192
2222 1 -0.1083 0.7675 0.0199 0.8877 0.897
2212 1 -1.1945 0.3945 9.1700 0.0025 0.303
1211 1 -1.0245 0.4046 6.4116 0.0113 0.359
1222 1 0.2057 0.4140 0.2468 0.6193 1.228

do modelo de chances proporcionais no mapeamento de genes
de resistência à doença em plantas, adequado aos casos de da-
dos ordinais. O modelo foi utilizado para mapear dois QTL de
resistência a Puccinia sorghi em milho. Os marcadores moleculares
bngl166 e bngl669, localizados nos cromossomos 2 e 8, respec-
tivamente, foram usados para a genotipagem de indivíduos F2 de
uma população segregante. Os genótipos em cada locus foram,
então, comparados com relação ao grau de severidade da doença,
avaliada em plantas F3 geradas através da auto-polinização das
plantas F2, usando uma escala ordinal do grau de severidade. A
“deviance” residual indicou uma boa qualidade de ajuste do mo-
delo aos dados, assim como o teste escore confirmou a suposição
de proporcionalidade constante das chances a cada ponto de corte.
A análise individual dos marcadores detectou diferenças significa-
tivas entre os genótipos para ambos os loci, indicando que estes
marcadores estão associados aos QTL de resistência à doença.
Além disso, a inclusão do termo de interação indicou uma forte
evidência de epistase entre os dois QTL. Os resultados indicaram
que o modelo de chances proporcionais pode ser usado como
uma alternativa aos métodos tradicionais, em casos onde a variável
resposta segue uma escala ordinal, eliminando, assim, os proble-
mas de falta de homogeneidade das variâncias, de linearidade e
de normalidade dos resíduos, comuns neste tipo de dados.
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