Acessibilidade / Reportar erro
Genetics and Molecular Biology, Volume: 44, Número: 2, Publicado: 2021
  • Alpha thalassemia and alpha-MRE haplotypes in Uruguayan patients with microcytosis and hypochromia without anemia Human And Medical Genetics

    Soler, Ana María; Piellusch, Bruna Facanali; Silveira, Lorena da; Pedroso, Gisele Audrei; López, Pablo; Savio, Enrique; Sonati, María de Fatima; Luz, Julio da

    Resumo em Inglês:

    Abstract Alpha thalassemia is the most common genetic disorder across the world, being the α-3.7 deletion the most frequent mutation. In order to analyze the spectrum and origin of alpha thalassemia mutations in Uruguay, we obtained a sample of 168 unrelated outpatients with normal hemoglobin levels with microcytosis and hypochromia from two cities: Montevideo and Salto. The presence of α-thalassemia mutations was investigated by gap-PCR, restriction endonucleases analysis and HBA2 and HBA1 genes sequencing, whereas the alpha-MRE haplotypes were investigated by sequencing. We found 55 individuals (32.7%) with α-thalassemia mutations, 51(30.4%) carrying the -α3.7 deletion, one with the -α4.2 deletion and three having the rare punctual mutation HBA2:c.-59C>T. Regarding alpha-MRE analysis, we observed a significant higher frequency of haplotype D, characteristic of African populations, in the sample with the -α3.7 deletion. These results show that α-thalassemia mutations are an important determinant of microcytosis and hypochromia in Uruguayan patients with microcytosis and hypochromia without anemia, mainly due to the -α3.7 deletion. The alpha-MRE haplotypes and the α-thalassemia mutations spectrum suggest a predominant, but not exclusive, African origin of these mutations in Uruguay.
  • Gene expression evaluation of antioxidant enzymes in patients with hepatocellular carcinoma: RT-qPCR and bioinformatic analyses Human And Medical Genetics

    Alves, Andressa de Freitas; Moura, Ana Carolina de; Andreolla, Huander Felipe; Veiga, Ana Beatriz Gorini da; Fiegenbaum, Marilu; Giovenardi, Márcia; Almeida, Silvana

    Resumo em Inglês:

    Abstract Any condition leading to chronic liver disease is a potential oncogenic agent for hepatocellular carcinoma (HCC). Alterations in the expression of antioxidant enzymes could alter the redox balance. Our aim was to evaluate the expression of the genes GPX1, GPX4, SEP15, SELENOP, SOD1, SOD2, GSR, CAT, and NFE2L2 in patients with HCC. Differential gene expression analysis was performed using RNA-Seq data from the TCGA and GTEx databases, and RT-qPCR data from HCC patient samples. Bioinformatic analysis revealed significant differential expression in most genes. GPX4 expression was significantly increased (p=0.02), while SOD2 expression was significantly decreased (p=0.04) in experimental data. In TCGA samples, alpha-fetoprotein levels (mg/dL) were negatively correlated with the expression of SEP15 (p<0.001), SELENOP (p<0.001), SOD1 (p<0.001), SOD2 (p<0.001), CAT (p<0.001), and NFE2L2 (p=0.004). Alpha-fetoprotein levels were positively correlated with the expression of GPX4 (p=0.02) and SELENOP (p=0.01) in the experimental data. Low expression of GPX1 (p=0.006), GPX4 (p=0.01), SELENOP (p=0.006), SOD1 (p=0.007), CAT (p<0.001), and NFE2L2 (p<0.001), and higher levels of GSR, were associated with low overall survival at 12 months. These results suggest a significant role for these antioxidant enzymes in HCC pathogenesis and severity.
  • The paradox of autophagy in Tuberous Sclerosis Complex Human And Medical Genetics

    Reis, Larissa Brussa; Filippi-Chiela, Eduardo C.; Ashton-Prolla, Patricia; Visioli, Fernanda; Rosset, Clévia

    Resumo em Inglês:

    Abstract Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder caused by germline mutations in TSC1 or TSC2 genes, which leads to the hyperactivation of the mTORC1 pathway, an important negative regulator of autophagy. This leads to the development of hamartomas in multiple organs. The variability in symptoms presents a challenge for the development of completely effective treatments for TSC. One option is the treatment with mTORC1 inhibitors, which are targeted to block cell growth and restore autophagy. However, the therapeutic effect of rapamycin seems to be more efficient in the early stages of hamartoma development, an effect that seems to be associated with the paradoxical role of autophagy in tumor establishment. Under normal conditions, autophagy is directly inhibited by mTORC1. In situations of bioenergetics stress, mTORC1 releases the Ulk1 complex and initiates the autophagy process. In this way, autophagy promotes the survival of established tumors by supplying metabolic precursors during nutrient deprivation; paradoxically, excessive autophagy has been associated with cell death in some situations. In spite of its paradoxical role, autophagy is an alternative therapeutic strategy that could be explored in TSC. This review compiles the findings related to autophagy and the new therapeutic strategies targeting this pathway in TSC.
  • Blood groups in Native Americans: a look beyond ABO and Rh Human And Medical Genetics

    Rodrigues, Mirelen Moura de Oliveira; Höher, Gabriela; Waskow, Gabriela; Hutz, Mara Helena; Lindenau, Juliana Dal-Ri; Petzl-Erler, Maria Luiza; Callegari-Jacques, Sidia Maria; Almeida, Silvana; Fiegenbaum, Marilu

    Resumo em Inglês:

    Abstract The study presents comparisons between blood group frequencies beyond ABO and Rh blood systems in Native American populations and previously published data from Brazilian blood donors. The frequencies of Diego (c.2561C>T, rs2285644), Kell (c.578C>T, rs8176058), Duffy (c.125A>G, rs12075, c.1−67T>C, rs2814778) and Kidd (c.838A>G, rs1058396) variants in Kaingang (n=72) and Guarani (n=234) populations from Brazil (1990-2000) were obtained and compared with data from these populations sampled during the 1960s and with individuals of different Brazilian regions. Data showed high frequencies of DI*01 and FY*01 alleles: 11.8% and 57.6% in Kaingang and 6.8% and 75.7% in Guarani groups, respectively. The main results indicated: (1) reduction in genetic distance over time of Kaingang and Guarani in relation to other Brazilian populations is suggestive of ongoing admixture; (2) significant differences in some frequencies of blood group markers (especially Diego, Kidd and Duffy) in relation to Native Americans and individuals from different geographical regions of Brazil. Our study shows that the frequency of red blood cell polymorphisms in two Native American groups is very different from that of blood donors, when we evaluated blood groups different from ABO and Rh systems, suggesting that a better ethnic characterization of blood unit receptors is necessary.
  • Structural analysis of new compound heterozygous variants in PEPD gene identified in a patient with Prolidase Deficiency diagnosed by exome sequencing Human And Medical Genetics

    Linhares, Natália D.; Wilk, Piotr; Wątor, Elżbieta; Tostes, Meire A.; Weiss, Manfred S.; Pena, Sergio D. J.

    Resumo em Inglês:

    Abstract Prolidase Deficiency (PD) is an autosomal recessive rare disorder caused by loss or reduction of prolidase enzymatic activity due to variants in the PEPD gene. PD clinical features vary among affected individuals: skin ulcerations, recurrent infections, and developmental delay are common. In this study, we describe a 16-year-old boy with a mild PD phenotype comprising chronic eczema, recurrent infections and elevated IgE. Whole exome sequencing analysis revealed three PEPD variants: c.575T>C p.(Leu192Pro) inherited from the mother, and c.692_694del p.(Tyr231del) and c.1409G>A p.(Arg470His), both inherited from the father. The variant p.(Tyr231del) has been previously characterized by high-resolution X-ray structure analysis as altering protein dynamics/flexibility. In order to study the effects of the other two prolidase variants, we performed site directed mutagenesis purification and crystallization studies. A high-resolution X-ray structure could only be obtained for the p.(Arg470His) variant, which showed no significant structural differences in comparison to WT prolidase. On the other hand, the p.(Leu192Pro) variant led to significant protein destabilization. Hence, we conclude that the maternal p.(Leu192Pro) variant was likely causally associated with the proband´s disease, together with the known pathogenic paternal variant p.(Tyr231del). Our results demonstrated the utility of exome sequencing to perform diagnosis in PD cases with mild phenotype.
  • miR-34a regulates phenotypic modulation of vascular smooth muscle cells in intracranial aneurysm by targeting CXCR3 and MMP-2 Human And Medical Genetics

    Yuan, Xuesong; Bian, Xiaoxing; Wei, Wenfeng; Bao, Qing; Liu, Ping; Jiang, Wenqing

    Resumo em Inglês:

    Abstract MicroRNAs (miRNAs) dysregulation is tightly related to diseases including tumor, neuro disease and cardiovascular disease. In this study, we investigated the potential biological effects of miR-34a and its target CXCR3 in phenotypic modulation of vascular smooth muscle cells (VSMCs) of intracranial aneurysms (IAs). MiR-34a was found to be down-regulated in IAs patients tested by Real-time PCR and decreased in GEO data. Meanwhile, our study also showed miR-34a inhibited matrix metalloproteinases (MMPs) and migration of VSMCs. Besides, CXCR3 is a direct target of miR-34a identified via luciferase assay. CXCR3 showed inhibitory effect on SM-MHC, SM22 while promoted MMPs expression, cell proliferation and migration in VSMCs. MiR-34a reversed the effect of CXCR3 in VSMCs. In addition, MMP-2 is a competitive endogenous RNA (ceRNA) of CXCR3 sharing common miR-34a target. CXCR3 increased MMP-2 level through competitive endogenous RNA regulation by sponging endogenous miR-34a. In conclusion, miR-34a is down-regulated in IAs while CXCR3 is the direct target of miR-34a that regulates phenotypic modulation of VSMCs. CXCR3 increased MMP-2 level through competitive endogenous RNA regulation by sharing common miR-34a targets.
  • Increased prevalence of the CVD-associated ANRIL allele in the Roma/Gypsy population in comparison with the majority Czech population Human And Medical Genetics

    Hubáček, Jaroslav A.; Šedová, Lenka; Olišarová, Věra; Adámková, Věra; Tóthová, Valérie

    Resumo em Inglês:

    Abstract Cardiovascular disease (CVD) is a major cause of death around the world, with highest prevalence reported in minority Roma/Gypsy populations living in developed countries. Whether these differences are caused by unhealthy lifestyles or genetic factors remain unknown. The aim of our study was to examine the genotype frequencies of the rs10757274 polymorphism in the 9p.21 locus within ANRIL (antisense non-coding RNA in the INK4 locus), a long non-coding RNA located in the vicinity of the CDKN2A/2B inhibitors loci. ANRIL is understood to be the strongest genetic determinant of CVD in Caucasians. Using PCR-RFLP, we analysed the ANRIL rs10757274 polymorphism in 298 non-Roma (50% male) and 302 Roma/Gypsy (50% male) adult (39.5 ± 15.1 years and 39.2 ± 12.8 years, respectively) subjects. We found that frequencies of the ANRIL GG, GA and AA genotypes were 20.1%, 52.4% and 27.5% in the majority population and 32.9%, 47.9% and 19.2% in Roma/Gypsy subjects, respectively. The distribution of genotypes was deemed significantly different at P < 0.001. Within the Roma/Gypsy population, we detected increased prevalence of the CVD-associated GG genotype. Increased prevalence of CVD among Roma/Gypsies subjects may be significantly linked to genetic background.
  • Association of TYK2 polymorphisms with autoimmune diseases: A comprehensive and updated systematic review with meta-analysis Human And Medical Genetics

    Pellenz, Felipe Mateus; Dieter, Cristine; Lemos, Natália Emerim; Bauer, Andrea Carla; Souza, Bianca Marmontel de; Crispim, Daisy

    Resumo em Inglês:

    Abstract Autoimmune diseases are characterized by the loss of self-tolerance, leading to immune-mediated tissue destruction and chronic inflammation. Tyrosine kinase 2 (TYK2) protein plays a key role in immunity and apoptosis pathways. Studies have reported associations between single nucleotide polymorphisms (SNPs) in the TYK2 gene and autoimmune diseases; however, results are still inconclusive. Thus, we conducted a systematic review followed by meta-analysis. A literature search was performed to find studies that investigated associations between TYK2 SNPs and autoimmune diseases (multiple sclerosis, systemic lupus erythematosus, Crohn’s disease, ulcerative colitis, psoriasis, rheumatoid arthritis, type 1 diabetes, and inflammatory bowel disease). Pooled odds ratios (OR) with 95 % CI were calculated using random (REM) or fixed (FEM) effects models in the Stata 11.0 Software. Thirty-four articles were eligible for inclusion in the meta-analyses, comprising 9 different SNPs: rs280496, rs280500, rs280523, rs280519, rs2304256, rs12720270, rs12720356, rs34536443, and rs35018800. Meta-analysis results showed the minor alleles of rs2304256, rs12720270, rs12720356, rs34536443, and rs35018800 SNPs were associated with protection against autoimmune diseases. Moreover, the A allele of the rs280519 SNP was associated with risk for systemic lupus erythematosus. Our meta-analyses demonstrated that the rs2304256, rs12720270, rs12720356, rs34536443, rs35018800, and rs280519 SNPs in the TYK2 gene are associated with different autoimmune diseases.
  • Long noncoding RNA POU6F2-AS1 regulates lung cancer aggressiveness through sponging miR-34c-5p to modulate KCNJ4 expression Human And Medical Genetics

    Wu, Xiao-Yan; Xie, Yi; Zhou, Li-Yun; Zhao, Yuan-Yuan; Zhang, Jing; Zhang, Xiu-Feng; Guo, Shuai; Yu, Xue-Yan

    Resumo em Inglês:

    Abstract It has been extensively reported that long noncoding RNAs (lncRNAs) were closely associated with multiple malignancies. The aim of our study was to investigate the effects and mechanism of lncRNA POU6F2-AS1 in lung adenocarcinoma (LADC).The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets provided us the information of LADC clinical samples. High-regulation of POU6F2-AS1 was presented in LADC tissues compared with adjacent normal tissues, which was correlated with poor outcome of LADC patients. Functional experiments in Calu-3 and NCI-H460 cells showed that POU6F2-AS1 significantly promoted LADC cell proliferation, colony formation, invasion and migration. Moreover, through online prediction, luciferase reporter assay and Pearson’s correlation analysis, we found that POU6F2-AS1 may act as a competing endogenous RNA (ceRNA) of miR-34c-5p and facilitated the expression of potassium voltage-gated channel subfamily J member 4 (KCNJ4). The promoting effect of cell aggressiveness induced by POU6F2-AS1 was enhanced by KCNJ4, whilst was abrogated due to the overexpression of miR-34c-5p. Collectively, POU6F2-AS1 might function as a ceRNA through sponging miR-34c-5p to high-regulate KCNJ4 in LADC, which indicates that POU6F2-AS1 might be a promising therapeutic target with significant prognostic value for LADC treatment.
  • The fructose-1,6-bisphosphatase deficiency and the p.(Lys204ArgfsTer72) variant Human And Medical Genetics

    Pinheiro, Franciele Cabral; Ligabue-Braun, Rodrigo; Siqueira, Ana Cecília Menezes de; Matuella, Camila; Souza, Carolina Fischinger Moura de; Monteiro, Fabíola Paoli; Kok, Fernando; Schwartz, Ida Vanessa Doederlein; Sperb-Ludwig, Fernanda

    Resumo em Inglês:

    Abstract Fructose-1,6-bisphosphatase (FBPase) deficiency is a rare inborn error of fructose metabolism caused by pathogenic variants in the FBP1 gene. As gluconeogenesis is affected, catabolic episodes can induce ketotic hypoglycemia in patients. FBP1 analysis is the most commonly used approach for the diagnosis of this disorder. Herein, a Brazilian patient is reported. The proband, a girl born to a consanguineous couple, presented with severe hypoglycemia crisis in the neonatal period. At the age 17 months, presented a new crisis accompanied by metabolic acidosis associated with a feverish episode. Genetic analysis was performed by next-generation sequencing (NGS), identifying the NM_000507.3:c.611_614del variant in homozygosis in the FBP1 gene. In silico analysis and 3D modeling were performed, suggesting that this variant is associated with a loss of sites for substrate and Mg2+ binding and for posttranslational modifications of FBPase. The c.611_614del variant is located in a repetitive region of the FBP1 gene that appears to be a hotspot for mutational events. This frameshift creates a premature termination codon in the last coding exon which escapes the nonsense-mediated decay mechanism, according to in silico analysis. This variant results in an intrinsically disordered protein with loss of substrate recognition and post-translational modification sites.
  • The clinical significance and function of miR-146 in the promotion of epidural fibrosis Human And Medical Genetics

    Fang, Yuan; Hu, Xiaoli; Liu, Shuzhen; Zou, Yunwen; Wang, Zhijie; Chu, Yanchen

    Resumo em Inglês:

    Abstract Epidural fibrosis is the main cause of failed back surgery syndrome. To investigate the role of miR-146 in the diagnosis and development of epidural fibrosis. Lumbar disc tissues were collected from 72 lumbar disc herniation patients (45 developed epidural fibrosis and 27 did not). The expression of miR-146 in collected tissues and isolated epidural fibroblasts was detected by RT-qPCR. The relative levels of pro-inflammatory cytokines were analyzed by ELISA. The effect of miR-146 on the proliferation of fibroblasts was evaluated by MTT assay. miR-146 was significantly upregulated in epidural fibrosis patients compared with control patients. The expression of miR-146 was closely associated with the location, lower limb symptom and duration of disease of epidural fibrosis patients, and was positively correlated with the relative levels of pro-inflammatory cytokines. Moreover, miR-146 could discriminate epidural fibrosis patients from control patients. In isolated epidural fibroblasts, the overexpression of miR-146 dramatically enhanced its proliferation and the inflammatory response. miR-146 serves as a diagnostic biomarker for the early detection of epidural fibrosis. The upregulation of miR-146 enhanced the fibroblasts proliferation and inflammatory response in epidural fibrosis. This study provides a novel potential therapeutic target for epidural fibrosis.
  • A novel mutation in ext2 caused hereditary multiple exostoses through reducing the synthesis of heparan sulfate Human And Medical Genetics

    Xian, Caixia; Zhu, Mingwei; Nong, Tianying; Li, Yiqiang; Xie, Xingmei; Li, Xia; Li, Jiangui; Li, Jingchun; Wu, Jianping; Shi, Weizhe; Wei, Ping; Xu, Hongwen; Tang, Ya-ping

    Resumo em Inglês:

    Abstract Hereditary multiple exostoses (HME) is a rare skeletal disorder characterized by the formation of multiple benign cartilage-capped tumors, usually in the metaphyseal region of the long bones. Over 70% of HME cases arise from monoallelic mutations in either of the two genes encoding the heparan sulfate (HS) synthesis enzymes, ext1 and ext2. To identify more HME-associated mutations, genomic DNA from members of five independent consanguineous families with HME was sequenced with whole exome sequencing (WES). A novel heterozygous splice site mutation (c.1173+2T>A) in ext2 was detected in all three affected members of family V. Further study showed that the novel mutation caused exon 7 of ext2 mRNA to be skipped during splicing and caused a frameshift after the codon for Arg360, which results in the appearance of new 43 codons, followed by a termination codon. Although the resulting truncated protein was still localized to the Golgi, similar to the full-length EXT2, its HS synthesis activity decreased by 40%. In this study, a novel splice site mutation in ext2 was identified and suggested to be a pathogenic mutation of HME, which may expand the genetic etiology spectrum of HME and may be helpful for clinical genetic counseling and prenatal diagnosis.
  • Genetic information improves the prediction of major adverse cardiovascular events in the GENEMACOR population Human And Medical Genetics

    Mendonça, Maria Isabel; Henriques, Eva; Borges, Sofia; Sousa, Ana Célia; Pereira, Andreia; Santos, Marina; Temtem, Margarida; Freitas, Sónia; Monteiro, Joel; Sousa, João Adriano; Rodrigues, Ricardo; Guerra, Graça; Reis, Roberto Palma dos

    Resumo em Inglês:

    Abstract The inclusion of a genetic risk score (GRS) can modify the risk prediction of coronary artery disease (CAD), providing an advantage over the use of traditional models. The predictive value of the genetic information on the recurrence of major adverse cardiovascular events (MACE) remains controversial. A total of 33 genetic variants previously associated with CAD were genotyped in 1587 CAD patients from the GENEMACOR study. Of these, 18 variants presented an hazard ratio >1, so they were selected to construct a weighted GRS (wGRS). MACE discrimination and reclassification were evaluated by C-Statistic, Net Reclassification Index and Integrated Discrimination Improvement methodologies. After the addition of wGRS to traditional predictors, the C-index increased from 0.566 to 0.572 (p=0.0003). Subsequently, adding wGRS to traditional plus clinical risk factors, this model slightly improved from 0.620 to 0.622 but with statistical significance (p=0.004). NRI showed that 17.9% of the cohort was better reclassified when the primary model was associated with wGRS. The Kaplan-Meier estimator showed that, at 15-year follow-up, the group with a higher number of risk alleles had a significantly higher MACE occurrence (p=0.011). In CAD patients, wGRS improved MACE risk prediction, discrimination and reclassification over the conventional factors, providing better cost-effective therapeutic strategies.
  • Cytogenetic and genetic data support Crossodactylus aeneus Müller, 1924 as a new junior synonym of C. gaudichaudii Duméril and Bibron, 1841 (Amphibia, Anura) Animal Genetics

    Vittorazzi, Stenio Eder; Lourenço, Luciana Bolsoni; Zattera, Michelle Louise; Weber, Luiz Norberto; Recco-Pimentel, Shirlei Maria; Bruschi, Daniel Pacheco

    Resumo em Inglês:

    Abstract The nominal anuran species Crossodactylus gaudichaudii Duméril and Bibron, 1841 and Crossodactylus aeneus Müller, 1924 are indistinguishable based on adult and larval morphology, being subject of taxonomic doubts. Here, we describe the karyotypes of C. gaudichaudii and C. aeneus, using classical and molecular cytogenetic markers. In addition, we used sequences of the H1 mitochondrial DNA to infer their phylogenetic relationships by Maximum Likelihood (ML) and Maximum Parsimony (MP) approaches and species delimitation test (by bPTP approach). The karyotypic data do not differentiate C. gaudichaudii and C. aeneus in any of the chromosome markers assessed. In both phylogenetic analyses, C. gaudichaudii and C. aeneus were recovered into a strongly supported clade. The species delimitation analysis recovered the specimens assigned to C. gaudichaudii and C. aeneus as a single taxonomic unit. Taken the cytogenetic and genetic results together with previous studies of internal and external morphology of tadpoles and biacoustic pattern, C. gaudichaudii and C. aeneus could not be differentiated, which supports the hypothesis that they correspond to the same taxonomic unit, with C. aeneus being a junior synonym of C. gaudichaudii.
  • Establishment of rapid and non-invasive protocols to identify B-carrying individuals of Psalidodon paranae Animal Genetics

    Goes, Caio Augusto Gomes; Silva, Duílio Mazzoni Zerbinato de Andrade; Utsunomia, Ricardo; Yasui, George Shigueki; Artoni, Roberto Ferreira; Foresti, Fausto; Porto-Foresti, Fábio

    Resumo em Inglês:

    Abstract Supernumerary, or B, chromosomes are present in several eukaryotes, including characid fish of the genus Psalidodon. Notably, Psalidodon paranae carries the most studied B chromosome variant, a macro-B chromosome. The origin of this element was determined to be an isochromosome; however, data regarding its inheritance remain unavailable due to methodological barriers such as the lack of an efficient, non-invasive, and rapid protocol for identifying B-carrying individuals that would enable the design of efficient crossing experiments. Thus, in this study, we primarily aimed was to develop two non-invasive and fast (approximately 2 h) methods to identify the presence of B chromosomes in live specimens of P. paranae based on satellite DNA (satDNA) sequences known to be present in this element. The methods include fluorescence in situ hybridization in interphase nuclei and relative gene quantification of satDNAs using quantitative polymerase chain reaction. Our results reveal the efficiency of quick-fluorescence in situ hybridization and quantitative polymerase chain reaction for identifying B-carrying individuals using the proposed satDNA sequences and open up new possibilities to study B chromosomes.
  • Genetic structure of the endangered Irrawaddy dolphin (Orcaella brevirostris) in the Gulf of Thailand Animal Genetics

    Dai, Yufei; Chantra, Rachawadee; Kittiwattanawong, Kongkiat; Zhao, Liyuan; Sakornwimon, Watchara; Aierken, Reyilamu; Wu, Fuxing; Wang, Xianyan

    Resumo em Inglês:

    Abstract The Irrawaddy dolphin (Orcaella brevirostris) is an endangered, small cetacean species which is widely distributed in rivers, estuaries, and coastal waters throughout the tropical and subtropical Indo-Pacific. Despite the extensive distribution of this species, little is known of individual movements or genetic exchange among regions in Thailand. Here, we evaluate the genetic diversity and genetic structure of O. brevirostris in the eastern, northern and western Gulf of Thailand, and Andaman Sea. Although phylogenetic relationships and network analysis based on 15 haplotypes obtained from 32 individuals reveal no obvious divergence, significant genetic differentiation in mitochondrial DNA (overall FST = 0.226, P < 0.001; ΦST = 0.252, P < 0.001) is apparent among regions. Of 18 tested microsatellite loci, 10 are polymorphic and successfully characterized in 28 individuals, revealing significant genetic differentiation (overall FST = 0.077, P < 0.05) among the four sampling sites. Structure analysis reveals two inferred genetic clusters. Additionally, Mantel analysis demonstrates individual-by-individual genetic distances and geographic distances follow an isolation-by-distance model. We speculate that the significant genetic structure of O. brevirostris in Thailand is associated with a combination of geographical distribution patterns, environmental and anthropogenic factors, and local adaptations.
  • Cytotaxonomy of Gallinula melanops (Gruiformes, Rallidae): Karyotype evolution and phylogenetic inference Animal Genetics

    Furo, Ivanete de Oliveira; Kretschmer, Rafael; O’Brien, Patricia C. M.; Pereira, Jorge Claudio da Costa; Gunski, Ricardo José; Garnero, Analía Del Valle; O’Connor, Rebecca E.; Griffin, Darren Karl; Ferguson-Smith, Malcolm A.; Oliveira, Edivaldo Herculano Corrêa de

    Resumo em Inglês:

    Abstract Although Rallidae is the most diverse family within Gruiformes, there is little information concerning the karyotype of the species in this group. In fact, Gallinula melanops, a species of Rallidae found in Brazil, is among the few species studied cytogenetically, but only with conventional staining and repetitive DNA mapping, showing 2n=80. Thus, in order to understand the karyotypic evolution and phylogeny of this group, the present study aimed to analyze the karyotype of G. melanops by classical and molecular cytogenetics, comparing the results with other species of Gruiformes. The results show that G. melanops has the same chromosome rearrangements as described in Gallinula chloropus (Clade Fulica), including fission of ancestral chromosomes 4 and 5 of Gallus gallus (GGA), beyond the fusion between two of segments resultants of the GGA4/GGA5, also fusions between the chromosomes GGA6/GGA7. Thus, despite the fact that some authors have suggested the inclusion of G. melanops in genus Porphyriops, our molecular cytogenetic results confirm its place in the Gallinula genus.
  • Cytogenetic and molecular characteristics of Potamotrygon motoro and Potamotrygon sp. (Chondrichthyes, Myliobatiformes, Potamotrygonidae) from the Amazon basin: Implications for the taxonomy of the genus Animal Genetics

    Cruz, Vanessa Paes da; Nobile, Maria Ligia Oliveira; Paim, Fabilene Gomes; Adachi, Aisni Mayumi Correia de Lima; Ribeiro, Giovana da Silva; Ferreira, Daniela Cristina; Pansonato-Alves, José Carlos; Charvet, Patrícia; Oliveira, Claudio; Foresti, Fausto

    Resumo em Inglês:

    Abstract The chromosomes of two freshwater stingrays, Potamotrygon motoro and Potamotrygon sp., from the Amazon River basin in Brazil were investigated using integrated molecular (cytochrome c oxidase subunit 1) and cytogenetic analyses. Potamotrygon motoro presented intraspecific variation in the diploid number, with 2n=66 in the females and 2n=65 in the males, while Potamotrygon sp. had a karyotype with 66 chromosomes, in both sexes. The C-banding revealed the presence of heterochromatic blocks accumulated in the centromeric region of all the chromosomes in both species. The FISH assays with 18S DNA probes highlighted the terminal region of three or four chromosome pairs in P. motoro and seven chromosomes in Potamotrygon sp. The rDNA 5S sequences were found in only one chromosomal pair in both species. The interspecific genetic distance based on the COI sequences, between P. motoro and Potamotrygon sp. from Amazon River was 10.8%, while that between the Amazonian P. motoro and Potamotrygon amandae from the Paraná River was 2.2%, and the genetic distance between Potamotrygon sp. and P. amandae was 11.8%. In addition to the new insights on the cytogenetics of the study species, the results of the present study confirmed the existence of heteromorphic sex-linked chromosomes in P. motoro.
  • TLR4 and TLR8 variability in Amazonian and West Indian manatee species from Brazil Animal Genetics

    Oliveira, Tatiana Maia de; Burlamaqui, Tibério Cesar Tortola; Sá, André Luiz Alves de; Breaux, Breanna; Luna, Fábia de Oliveira; Attademo, Fernanda Löffler Niemeyer; Klautau, Alex Garcia Cavalleiro de Macedo; Oliveira, Jairo Moura; Sena, Leonardo; Criscitiello, Michael F.; Schneider, Maria Paula Cruz

    Resumo em Inglês:

    Abstract Amazonian (Trichechus inunguis) and West Indian (Trichechus manatus) manatees are aquatic mammals vulnerable to extinction found in the Amazon basin and the coastal western Atlantic. Toll-like receptors (TLR) play a key role in recognizing pathogen-associated molecular patterns using leucine-rich repeats (LRRs). We described the diversity of TLR4 and TLR8 genes in these two species of manatee. Amazonian manatee showed seven SNPs in TLR4 and the eight in TLR8, while West Indian manatee shared four and six of those SNPs, respectively. In our analysis, TLR4 showed one non-conservative amino acid replacement substitution in LRR7 and LRR8, on the other hand, TLR8 was less variable and showed only conserved amino acid substitutions. Selection analysis showed that only one TLR4 site was subjected to positive selection and none in TLR8. TLR4 in manatees did not show any evidence of convergent evolution compared to species of the cetacean lineage. Differences in TLR4 and TLR8 polymorphism may be related to distinct selection by pathogens, population reduction of West Indian manatees, or an expected consequence of population expansion in Amazonian manatees. Future studies combining pathogen association and TLR polymorphism may clarify possible roles of these genes and be used for conservation purposes of manatee species.
  • Molecular cytogenetic analysis and the establishment of a cell culture in the fish species Hollandichthys multifasciatus (Eigenmann & Norris, 1900) (Characiformes, Characidae) Animal Genetics

    Soares, Letícia Batista; Paim, Fabilene Gomes; Ramos, Lucas Peres; Foresti, Fausto; Oliveira, Claudio

    Resumo em Inglês:

    Abstract Hollandichthys is a fish genus of the family Characidae that was until recently considered to be monotypic, with cytogenetic, morphological, and molecular data being restricted to a few local populations. In the present study, the karyotype of a population of Hollandichthys multifasciatus was analyzed using classical and molecular cytogenetic approaches for the investigation of potential markers that could provide new perspectives on the cytotaxonomy. H. multifasciatus presented a diploid number of 2n=50 chromosomes and a karyotype formula of 8m+10sm+32st. A single pair of chromosomes presented Ag-NORs signals, which coincided with the 18S rDNA sites visualized by FISH, whilst the 5S rDNA sequences were mapped in two chromosome pairs. The distribution of the U snRNA genes was mapped on the Hollandichthys chromosomes for the first time, with the probes revealing the presence of the U1 snDNA on the chromosomes of pair 20, U2 on pairs 6 and 19, U4 on pair 16, and U6 on the chromosomes of pair 11. The results of the present study indicated karyotypic differences in comparison with the other populations of H. multifasciatus studied previously, reinforcing the need for further research to identify isolated populations or the potential existence of cryptic Hollandichthys species.
  • Molecular tools confirm natural Leishmania (Viannia) guyanensis/L. (V.) shawi hybrids causing cutaneous leishmaniasis in the Amazon region of Brazil Animal Genetics

    Lima, Ana Carolina S.; Gomes, Claudia Maria C.; Tomokane, Thaise Y.; Campos, Marliane Batista; Zampieri, Ricardo A.; Jorge, Carolina L.; Laurenti, Marcia D.; Silveira, Fernando T.; Corbett, Carlos Eduardo P.; Floeter-Winter, Lucile Maria

    Resumo em Inglês:

    Abstract Seven isolates from patients with American cutaneous leishmaniasis in the Amazon region of Brazil were phenotypically suggestive of Leishmania (Viannia) guyanensis/L. (V.) shawi hybrids. In this work, two molecular targets were employed to check the hybrid identity of the putative hybrids. Heat shock protein 70 (hsp70) gene sequences were analyzed by three different polymerase chain reaction (PCR) approaches, and two different patterns of inherited hsp70 alleles were found. Three isolates presented heterozygous L. (V.) guyanensis/L. (V.) shawi patterns, and four presented homozygous hsp70 patterns involving only L. (V.) shawi alleles. The amplicon sequences confirmed the RFLP patterns. The high-resolution melting method detected variant heterozygous and homozygous profiles. Single-nucleotide polymorphism genotyping/cleaved amplified polymorphic site analysis suggested a higher contribution from L. (V.) guyanensis in hsp70 heterozygous hybrids. Additionally, PCR-RFLP analysis targeting the enzyme mannose phosphate isomerase (mpi) gene indicated heterozygous and homozygous cleavage patterns for L. (V.) shawi and L. (V.) guyanensis, corroborating the hsp70 findings. In this communication, we present molecular findings based on partial informative regions of the coding sequences of hsp70 and mpi as markers confirming that some of the parasite strains from the Brazilian Amazon region are indeed hybrids between L. (V.) guyanensis and L. (V.) shawi.
  • Reference genes for quantitative real-time PCR normalization of Cenostigma pyramidale roots under salt stress and mycorrhizal association Plant Genetics

    Frosi, Gabriella; Ferreira-Neto, José Ribamar Costa; Bezerra-Neto, João Pacífico; Lima, Laís Luana de; Morais, David Anderson de Lima; Pandolfi, Valesca; Kido, Ederson Akio; Maia, Leonor Costa; Santos, Mauro Guida; Benko-Iseppon, Ana Maria

    Resumo em Inglês:

    Abstract Cenostigma pyramidale is a native legume of the Brazilian semiarid region which performs symbiotic association with arbuscular mycorrhizal fungi (AMF), being an excellent model for studying genes associated with tolerance against abiotic and biotic stresses. In RT-qPCR approach, the use of reference genes is mandatory to avoid incorrect interpretation of the relative expression. This study evaluated the stability of ten candidate reference genes (CRGs) from C. pyramidale root tissues under salt stress (three collection times) and associated with AMF (three different times of salinity). The de novo transcriptome was obtained via RNA-Seq sequencing. Three algorithms were used to calculate the stability of CRGs under different conditions: (i) global (Salt, Salt+AMF, AMF and Control, and collection times), (ii) only non-inoculated plants, and (iii) AMF (only inoculated plants). HAG2, SAC1, aRP3 were the most stable CRGs for global and AMF assays, whereas HAG2, SAC1, RHS1 were the best for salt stress assay. This CRGs were used to validate the relative expression of two up-regulated transcripts in Salt2h (RAP2-3 and PIN8). Our study provides the first set of reference genes for C. pyramidale under salinity and AMF, supporting future researches on gene expression with this species.
  • Identification and characterization of repetitive DNA in the genus Didelphis Linnaeus, 1758 (Didelphimorphia, Didelphidae) and the use of satellite DNAs as phylogenetic markers Evolutionary Genetics

    Dias, Cayo Augusto Rocha; Kuhn, Gustavo C. S.; Svartman, Marta; Santos Júnior, José Eustáquio dos; Santos, Fabrício Rodrigues; Pinto, Christian Miguel; Perini, Fernando Araújo

    Resumo em Inglês:

    Abstract Didelphis species have been shown to exhibit very conservative karyotypes, which mainly differ in their constitutive heterochromatin, known to be mostly composed by repetitive DNAs. In this study, we used genome skimming data combined with computational pipelines to identify the most abundant repetitive DNA families of Lutreolina crassicaudata and all six Didelphis species. We found that transposable elements (TEs), particularly LINE-1, endogenous retroviruses, and SINEs, are the most abundant mobile elements in the studied species. Despite overall similar TE proportions, we report that species of the D. albiventris group consistently present a less diverse TE composition and smaller proportions of LINEs and LTRs in their genomes than other studied species. We also identified four new putative satDNAs (sat206, sat907, sat1430 and sat2324) in the genomes of Didelphis species, which show differences in abundance and nucleotide composition. Phylogenies based on satDNA sequences showed well supported relationships at the species (sat1430) and groups of species (sat206) level, recovering topologies congruent with previous studies. Our study is one of the first attempts to present a characterization of the most abundant families of repetitive DNAs of Lutreolina and Didelphis species providing insights into the repetitive DNA composition in the genome landscape of American marsupials.
  • Role of N6-methyl-adenosine modification in mammalian embryonic development Cellular, Molecular And Developmental Genetics

    Li, Chengshun; Jiang, Ziping; Hao, Jindong; Liu, Da; Hu, Haobo; Gao, Yan; Wang, Dongxu

    Resumo em Inglês:

    Abstract N6-methyl-adenosine (m6A) methylation is one of the most common and abundant modifications of RNA molecules in eukaryotes. Although various biological roles of m6A methylation have been elucidated, its role in embryonic development is still unclear. In this review, we focused on the function and expression patterns of m6A-related genes in mammalian embryonic development and the role of m6A modification in the embryonic epigenetic reprogramming process. The modification of m6A is regulated by the combined activities of methyltransferases, demethylases, and m6A-binding proteins. m6A-related genes act synergistically to form a dynamic, reversible m6A pattern, which exists in several physiological processes in various stages of embryonic development. The lack of one of these enzymes affects embryonic m6A levels, leading to abnormal embryonic development and even death. Moreover, m6A is a positive regulator of reprogramming to pluripotency and can affect embryo reprogramming by affecting activation of the maternal-to-zygotic transition. In conclusion, m6A is involved in the regulation of gene expression during embryonic development and the metabolic processes of RNA and plays an important role in the epigenetic modification of embryos.
  • Fantastic databases and where to find them: Web applications for researchers in a rush Genomics And Bioinformatics

    Villalba, Gerda Cristal; Matte, Ursula

    Resumo em Inglês:

    Abstract Public databases are essential to the development of multi-omics resources. The amount of data created by biological technologies needs a systematic and organized form of storage, that can quickly be accessed, and managed. This is the objective of a biological database. Here, we present an overview of human databases with web applications. The databases and tools allow the search of biological sequences, genes and genomes, gene expression patterns, epigenetic variation, protein-protein interactions, variant frequency, regulatory elements, and comparative analysis between human and model organisms. Our goal is to provide an opportunity for exploring large datasets and analyzing the data for users with little or no programming skills. Public user-friendly web-based databases facilitate data mining and the search for information applicable to healthcare professionals. Besides, biological databases are essential to improve biomedical search sensitivity and efficiency and merge multiple datasets needed to share data and build global initiatives for the diagnosis, prognosis, and discovery of new treatments for genetic diseases. To show the databases at work, we present a a case study using ACE2 as example of a gene to be investigated. The analysis and the complete list of databases is available in the following website <https://kur1sutaru.github.io/fantastic_databases_and_where_to_find_them/>.
  • Erratum Erratum

Sociedade Brasileira de Genética Rua Cap. Adelmio Norberto da Silva, 736, 14025-670 Ribeirão Preto SP Brazil, Tel.: (55 16) 3911-4130 / Fax.: (55 16) 3621-3552 - Ribeirão Preto - SP - Brazil
E-mail: editor@gmb.org.br