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Resumo: O estudo de Sistemas de Atendimento Emergencial – SAE visa encontrar meios de fornecer serviços de 
saúde efetivos e melhorar a qualidade de vida da população respeitando as limitações de recursos disponíveis. 
Nesse contexto, o objetivo do presente trabalho foi mostrar o potencial de aplicação do modelo hipercubo com 
prioridade na fila com mais de um servidor preferencial sem considerar a hipótese de backup parcial em Sistemas 
de Atendimento Móvel de Urgência – SAMU em que o nível de utilização do sistema é relativamente baixo. Para isso 
foram realizados alguns experimentos do modelo hipercubo com prioridade na fila sem backup parcial e prospecção 
de cenários futuros por meio de um estudo de caso no SAMU da cidade de Bauru, SP. Foram avaliados os impactos 
do aumento na demanda sobre o sistema e o quanto e como (aonde localizar?) a aquisição de uma nova ambulância 
pode melhorar as medidas de desempenho do sistema. Os principais resultados mostram que um aumento de 50% 
na demanda pode dobrar o tempo de resposta dessas ambulâncias, por outro lado, aumentos mais discretos têm um 
impacto pequeno sobre o sistema, como pode ser visto nos aumentos de 5,71% e 13,57%, nos quais o acréscimo 
nos tempos de resposta foram de 5% e 16%, respectivamente. A aquisição de uma nova ambulância foi avaliada 
em termos das medidas de desempenho e os melhores resultados em todos os cenários se deu quando ela estava 
presente no átomo Boulevard, obtendo um tempo médio de resposta 3% inferior às demais localidades, em média.
Palavras-chave: Sistemas Médicos Emergenciais; Teoria das filas; Modelo hipercubo; PO em saúde; SAMU.

Abstract: The study of EMS aims to find ways to provide effective health services and improve the quality of life 
of the population while respecting the limitations of available resources. In this context, this paper aims to show 
the potential of application of the hypercube queueing model using queue priorities with more than one preferential 
server without using partial backup on SAMU, where the workload is relatively low. To do so, were done some 
experiments with the hypercube queueing model and future scenario prospection by a case study on the SAMU 
system from Bauru, Brazil. It was evaluated the impacts of demand increase over the system and the acquisition 
of a new ambulance was evaluated considering the best options to locate it. Main results show that a 50% demand 
increase can double mean response times. In contrast, minor increases have a smaller impact over the system, as 
observed on 5.71% and 13.57% demand increases, where the mean response times raised 5% and 16% respectively. 
The acquisition of a new ambulance was evaluated in terms of mean response times also. The best location had a 
3% lower mean response time, on average.
Keywords: Emergency Medical Systems; Queueing theory; Hypercube model; OR in health care; SAMU.
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1 Introduction
Around 140.000 traffic accidents happened in Brazil 

in the year of 2014 (DNIT, 2015). Even though it is 
a reduction when compared to years before, Brazil 
still is the third country with the highest number of 
traffic deaths in the world (OMS, 2016). That turns 
the pre-hospital service (one of the least expensive 
costs on traffic accidents) of great importance on the 

reduction in the number of deaths and severe injuries 
caused by traffic accidents (Lopes & Fernandes, 1999).

The pre-hospital service, as shown, is part of 
an Emergency Medical System (EMS). These 
systems are studied since the decade of 1950, 
using Operational Research, and have shown great 
potential for improvement on firefighters, police, 
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Emergency Mobile Care Service (SAMU – “Serviço 
de Atendimento Móvel de Urgência”), and others. 
The main idea is to give effective health services 
and to improve the quality of life for the population 
considering the existent trade-off between the service 
level and the resource shortage (Simpson & Hancock, 
2009; Souza, 2010).

SAMU is a public EMS created by Brazilian 
federal government from a bilateral agreement 
between Brazil and France. The system is based on 
the French model, operating for more than 30 years 
(Takeda et al., 2004). It works 24/7; the crews have 
physicians, nurses and nursing assistants. One can 
request the service using the telephone number 192. 
Requests are labeled according to their location and 
urgency level. An ambulance answers the request in 
the street, workplaces, or home (Ghussn & Souza, 
2016).

Systems like SAMU are essentially characterized 
by uncertainties, mainly by availability, location, 
service time, demand through a neighborhood 
and response time to users. Therefore, EMS are a 
great challenge to health systems. Independently of 
the kind of urgency involved, only with a precise 
management, it is possible to offer good services 
(Souza, 2010).

The hypercube queueing model is a descriptive 
model based on Queueing Theory, which can calculate 
relevant performance measures for an EMS. We can 
divide the measures into two groups: external (from 
the user point of view) as mean response times, mean 
travel time, fraction of requests answered inside a 
time limit; and internal (from the system manager 
point of view) as the workload, dispatch frequencies, 
etc. (Larson & Odoni, 2007).

The hypercube queueing model was used on 
several papers in Brazil, as Chiyoshi et al. (2000), 
Iannoni et al. (2009, 2015), Iannoni & Morabito (2006, 
2008), Souza et al. (2013, 2014, 2015), Takeda et al. 
(2004, 2007), Rodrigues (2014). In other parts of the 
globe, many other papers emerge as Chelst & Barlach 
(1981), Brandeau & Larson (1986), Burwell et al. 
(1993), Sacks & Grief (1994), Swersey (1994) and 
Larson & Odoni (2007). On every study, the hypercube 
has shown to be efficient and precise.

In this context, this paper aims to show the potential 
of application of the hypercube queueing model using 
queue priorities considering more than one preferential 
server without using partial backup on SAMU, where 
the workload is relatively low. To do so, we did some 
experiments with the hypercube queueing model and 
future scenario prospection by a case study on the 
SAMU system from Bauru, Brazil.

Section 2 shows a description of SAMU system 
and its service process. Section 3 comes with an 
explanation about the hypercube queueing model 
used along the paper and its particularities. Section 4 

shows the hypotheses tests for the hypercube model 
application. Section 5 describes the results obtained, 
validating the model and the impacts of alternative 
scenarios. Finally, Section 6 shows final considerations 
and further research perspectives.

2 The SAMU system in Bauru
According to JCNet (2010), in 2010, the SAMU 

system in Bauru (SAMU/Bauru), Brazil, was 
responsible for serving 17 municipalities near Bauru 
through a partnership between them. The service 
headquarters is located on Bauru and is responsible 
for receiving the requests (calls) and distribute 
them according to their urgency level and location. 
There were around ninety professionals working on 
this operation, there were 35 drivers and 32 assistants, 
among them. The operation had 25 ambulances 
serving the 17 municipalities. The region under their 
responsibility has a population of 800,000 inhabitants, 
400,000 thousand of them are in Bauru.

Data collection used reports from SAMU/Bauru for 
the years of 2012 and 2013. The collected data refers 
to ten days from September of each year. A summary 
of the data collection and the hypothesis verifications 
are in Section 4.

Figure 1 describes the service process of a request 
in SAMU. The process starts with a call, usually 
done by the telephone number 192. If there is an idle 
ambulance, the crew is sent to set up the ambulance 
and then it leaves the base as soon as the request is 
labeled. Then the ambulance starts travelling to the 
request location. We call the time interval between the 
request receiving and the arrival at the request location 
as response time. Now starts the service itself for the 
user, which may vary depending on the appropriate 
care. The patient is taken to a destination, which 
may be a hospital or a health center. After leaving 
the patient on its destination, the ambulance returns 
to the base, finishing the job (Schmid, 2012).

The SAMU service also includes the classification 
of requests (labelling) according to their urgency 
level. The labels receive colors to distinguish them: 
red (most serious and life risk), yellow, green and 
blue (least serious). A physician labels the requests 
according to the information given by the requester 
at the time of the call. The dispatch policy uses these 
labels to decide which ambulance will answer a 
request. ASV (Advanced Service Vehicles) can only 
answer to life risk requests (red label), and they are 
also the preferential servers to these requests. We call 
this policy as Partial Backup, because ASV cannot 
answer least urgent requests (yellow, green and blue 
labels). Particularly, the SAMU/Bauru has two ASV, 
differently from the study of Souza et al. (2014), 
which had only one on the system.
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3 Hypercube queueing model
Developed by Larson (1974), the hypercube 

queueing model is a descriptive model based on 
spatially distributed queueing systems. The idea is to 
expand the states of an M/M/m system to represent m 
servers individually, on a system where servers travel 
to the users. It allows working with more complex 
dispatch policies. In order to find a solution we need 
to prepare and solve a set of steady-state equations, 
the results are the probabilities of occurrence for 
each state. From the model solution, we can calculate 
several performance measures for the system as 
workloads, dispatch frequencies, mean travel times, 
mean waiting times, and others (Souza, 2010).

To use it on different approaches, we have to fit 
the classic model proposed by Larson (1974) in a 
way to turn the model closer to the reality of the 
analyzed system. We call these modifications as 
model extensions. Among the extensions, we can 
cite some, present on SAMU/Bauru, as priorities on 
queue and dispatch randomness.

The use of the hypercube model requires many 
parameters. The use of model extensions can change 
some of these parameters. Table 1 shows the notations 
for the parameters. Concepts about subatoms and 
priorities are shown on Section 3.3.

On the hypercube model, the state space indicates the 
availability of each server individually, as mentioned 
before. Consider a system with m = 3 servers, there 
are 23 = 8 possible states on the system: {000}, {001}, 
{010}… {111}. Numbers 0 and 1 indicates whether 
a server is idle or on duty, respectively. A cube can 
represent the state space for three servers. In a case 
with more than three servers, we have a hypercube.

Figure 2 illustrates the state space for a system 
with three servers. It is possible to work with a system 
that allows or does not allow formation of waiting 
lines on the hypercube model. On the classic model, 

arriving calls wait in a line where the first server to 
become out of duty servers the users following a 
FCFS (First Come First Served) discipline. States S4, 
S5, S6 … on Figure 2 represent states with 1, 2, 3 … 
users on the waiting line of the system, respectively.

Larson & Odoni (2007) shows nine hypothesis 
that need to be satisfied to the application of the 
hypercube model on its classic shape.

1. Existence of geographical atoms: the region 
under service of the system must be divided 
into NA geographical atoms, wherein each atom 
corresponds to an independent call source and 
has a dispatch policy.

2. Arrival process according to a Poisson: users of 
each atom request service by a Poisson process, 
wherein calls are independent between each 
other. Besides this, we must know the arrival 
rates, λj, from each atom.

3. Travel times of servers: we must know or 
estimate the travel times, τij, of each server i 
to each atom j.

4. Servers: there are N servers spatially distributed 
over the system, wherein each one can travel 
and answer all atoms.

5. Location of servers: we must know the location 
of all servers (at least statistically). In other 
words, servers can move by atoms or stand still 
on one of them.

6. Simple dispatch: only one server answers a call. 
If there are no idle servers available, calls enter 
the waiting line or are considered loss of the 
system.

Figure 1. Time line with the events of an ambulance service.
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7. Dispatch policy: there is a preference dispatch 
list (matrix) for all atoms, i. e., they must follow 
an order to send servers and it must be clear. 
For example, a system with four servers and 
three atoms, when a call from atom 3 arrives, 
we must follow the preference list (1, 3, 4, 2), 
i. e., server 1 is the first one sent, if the server 
is busy, send server 3 and so on until server 2.

8. Service time: the service time of a server includes 
the setup time, travel time, time on-scene until 
the return to the base. The service time follows 
an exponential distribution; and

9. Service time dependence on travel time: the 
variation of the travel time must be considered 
to be of the second order compared to the 
variations on the on-scene time and the setup 
time. It does not mean that we ignore travel times 
in computing mean service times; though the 
mean service time (μ-1) calibration is equal to 
the sum of the mean travel time for the server, 
and the mean attendance time.

The extensions for the classic model change these 
hypotheses according to the necessity of the studied 
system. Examples of applications of the model on its 

original shape can be easily found on the literature 
for a better comprehension of its operation.

Now we present an application example of the 
hypercube classic model found in Chiyoshi et al. 
(2000). Consider a system, it do not accept waiting 
lines, three atoms form the region and they are served 
according to the dispatch preference list from Table 2.

The steady state equations show the behavior for 
the model in equilibrium (Equations 1 to 8). Note 
that, due to the dispatch preference list, the transition 
from state {100} to the state {110} has a 1 2λ λ+  rate. 
This occurs because the preferential server for atom 1, 
server 1, is on duty and the second option is server 2, 
summed to the arrival rate from atom 2, where server 
2 is the preferential server. We can solve the equations 
of the system as a determined homogeneous linear 
equation system if one of the steady state equations 
is substituted by the equation

1B
B D

P
∈

=∑  that shows that that sum of the probabilities 

of the system are equal to 1.

{ } { } { }0 1 2 3100 010 001P P P Pλ µ µ µ= + +  (1)

( ) { } { } { } { }1 2 3 1100 110 101 000P P P Pλ µ µ µ λ+ = + +  (2)

( ) { } { } { } { }2 3 1 2010 011 110 000P P P Pλ µ µ µ λ+ = + +  (3)

( ) { } { } { } { }3 2 1 3001 011 101 000P P P Pλ µ µ µ λ+ = + +  (4)

( ) { } { } ( ) { } { }1 2 3 1 2 1110 111 100 010P P P Pλ µ µ µ λ λ λ+ + = + + +  (5)

( ) { } { } { } ( ) { }1 3 2 3 1 3101 111 100 001P P P Pλ µ µ µ λ λ λ+ + = + + +  (6)

( ) { } { } ( ) { } { }2 3 1 2 3 2011 111 010 001P P P Pλ µ µ µ λ λ λ+ + = + + +  (7)

( ) { } { } { } { }( )111 110 101 011P P P Pλ µ λ+ = + +  (8)

With the state probabilities in hand one can calculate 
many performance measures for the system.

Table 1. Used notations.
Notation Meaning Measure unit

NA Number of atoms Number
N Number of servers Number
τij Travel time from atom i to atom j Minutes

τik,jh Travel time from subatom ik to subatom jh Minutes

λj Arrival rate for atom j j jk
k

 
  


=


∑λ λ Calls/hour

λjk Arrival rate for subatom jk Calls/hour
λk Arrival rate for priority k Calls/hour
λ System total arrival rate Calls/hour
μi Service rate for server i Calls/hour
μ System total service rate Calls/hour
μ-1 Service time Minutes

Figure 2. State space for the hypercube model with three 
servers.
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Workload of a server is the mean time fraction that the 
server is busy. To calculate this important performance 
measure it is necessary to sum the probabilities that 
the server is busy, the state probabilities wherein the 
server is busy {1} plus the waiting line probabilities.

Another important performance measure is the 
dispatch frequencies. Its calculation includes dispatches 
without queue delay (nq) and dispatches with queue 
delay (q) as shown on Equation 9.

( ) ( ) '

ij

j jnq q i
ij ij ij B Q

B E
f f f P P

λ λ µ
λ λ µ∈

= + = +∑  (9)

where /jλ λ is the arrival fraction corresponding to 
atom j.

nj

B
B E

P
∈
∑  is the sum of the state probabilities that the 

server n is idle and is the next on the preference list to 
answer atom j. '

QP  is the system saturation probability, 
the sum of queue states plus the probability that all 
servers are busy. Finally, /iµ µ  is the probability 
that server I will be the first to finish a job when all 
servers are busy.

Equation 10 gives the mean time for server i travel 
to atom j, when available.

1

AN

ij ik kj
k

t l τ
=

= ∑  (10)

Equation 11 calculates the mean queued request 
travel time.

2
1 1

A AN N
i j

Q ij
i j

T
λ λ

τ
λ= =

≡∑∑  (11)

Equation 12 can calculate the mean travel time 
for the system.

( ) '

1 1

ANN
nq

ij ij Q Q
i j

T f t P T
= =

= +∑∑  (12)

Equation 13 shows the mean travel time to atom j.

( )

( ) ( )' '1

11

1
A

N nq N
ij iji k

j Q kj QN nq
kiji

f t
T P P

f

λ τ
λ

=

==

 = − +  
 

∑ ∑
∑

 (13)

Equation 14 calculates the mean travel time for 
server i.

( )

( )

'
1

'
1

AN nq i
ij ij Q Qj

i
N nq i

ij Qi

f t T P
TU

f P

µ
µ
µ
µ

=

=

+
=

+

∑

∑
 (14)

To calculate waiting times, we can use Little’s 
Formula, as shown on Equation 15 (Little, 2011).

( )1
Q

Q
perda

L
W

Pλ
=

−
 (15)

3.1 Priority in queues
Systems that consider priorities in a queue define 

classifications for users in terms of their priority. 
For modelling purposes, geographical atoms are 
divided in layers so each layer represents a specific 
priority (Takeda et al., 2007). Figure 3 illustrates the 
layering process for atoms requests on a system with 
three different priorities: a, b, and c. These layers 
form nonphysical subatoms of the original atoms.

Priority means the order that the requests are 
answered in the queue following the urgency level of 
the request, i.e. its classification (Souza et al., 2015). 
Figure 4 shows an example shown in Souza et al. 
(2015) illustrating transitions between queue states 
with priority. The nodes represent the system states 
(situations), for example, state {abb} is the situation 
where we have a priority a (high priority) request 
and two priority b (average priority) requests on the 
waiting line. The arcs that unite states represent the 
transitions between states, for example, the system 
goes out of the situation {ab} and enters on the 
situation {b} when a server finishes its job and starts 
to serve the first queued request. Note that priority 
a has higher priority compared to priority b and so 
priority b over priority c. So, while there is a priority 

Table 2. Dispatch preference list for the example.

Atom Preference
1º 2º 3º

1 1 2 3
2 2 3 1
3 3 1 2

Figure 3. Layering process ilustration.

Figure 4. State transitions for queued requests with priority. 
Source: Souza et al. (2015, p. 276).
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a request in a queue priorities b and c will not be 
served. Souza (2010) shows illustrative examples 
for this extension.

One can prepare steady state equations from these 
state transitions for the queue states with priorities. 
Equation 16 shows the equation for the state {ab} 
shown on Figure 4.

( ) { } { } { } { }a bab b a aabP P P Pλ µ λ λ µ+ = + +  (16)

The main alteration on performance measures is 
the possibility to calculate mean waiting times for 
each priority (Souza et al., 2015). Considering nr as 
the number of class r users, Equation 17 gives sum 
of probabilities that a state S has j users of priority 
r in a queue.

( )
( )

{ }
S . .  ,

r
s t n r S j

P n j P S
∀ =

= = ∑  (17)

where S is the queue state and n(r, S) is the number 
of class r users on S. Equation 18 enumerates the 
mean number of class r users in a queue, following 
the distribution from Equation 10.

( )qr r
j

L jP n j= =∑  (18)

So, the mean waiting time in a queue is obtained 
by Little’s Formula again (Equation 19).

/qr qr rW L λ=  (19)

3.2 Dispatch randomness
This extension tries to represent systems where 

a dispatch preference matrix is not well defined. 
Cases which once a server has the preference to 
answer a request, but another time other server may 
have the preference, and what decides it is not clear, 
it is a random choice.

There are at least two different ways to represent 
such system. Firstly, we can model and solve many 
models with a randomly created dispatch preference 
lists for each solution, as seen in Takeda et al. (2004). 
By the end of the solutions, a mean value is calculated 
to find the final probabilities for each state. On a 
different way, according to Chiyoshi et al. (2011), 
is to solve a single model where the transition rates 
are shared among idle servers. For example, on a 
transition between {000} to {001}, where all servers 
on the same location and there is no difference of 
their dispatch preference, the transition rate is equal 
to 1/3 of the total arrival rate. Equation 20 illustrates 
this case.

{ } { } { } { }2 3100 000 110 1013
P P P Pλλ µ µ= + +  (20)

Larson (1974) and Batta et al. (1989) show a 
way that uses “correction factors” to choose which 
server answers a request. The idea is that the closest 
server answers the request and server location is 
statistically known. The probability that a specific 
server answers the request is proportional to the 
product of the probability that this server is available 
and the probability of the preferential server is busy. 
This process is not exactly random, as the “correction 
factors” really are deterministic.

4 Hypotheses verification for 
hypercube model application

4.1 Existence of NA geographic atoms
In the year of 2013, the SAMU/Bauru separated its 

requests according to their place of origin, geographic 
atoms. Figure 5 contains the city map with the area 
division.

The SAMU/Bauru divides the requests according 
to their urgency levels: red (urgent requests with 
life risk), yellow (serious emergency), green 
(moderate emergency), blue (light emergency). 
Therefore, atoms were divided into layers, forming 
subatoms.

4.2 Arrival process
Using Kolmogorov Smirnov fit test for the time 

interval between arrivals, we verified that they follow 
and exponential distribution, confirming the second 
hypothesis of hypercube model. Figure 6 shows 
the test results considering a significance level of 
0.05, where the hypothesis that the data follows 
an exponential distribution could not be rejected, 
observing the p-value of 0.172.

The calculations for each subatom arrival rate is 
done multiplying the proportion of requests from 
subatom (pjk) and the total arrival rate of the system. 
Table 3 shows the identification, according to the 
atom and priority label, for each subatom and their 
respective arrival rate.

Figure 5. Bauru city map and its atoms and bases.
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4.3 Travel times
Mean travel times between atoms were estimated 

using the data sample. In cases where there was not 
observations, we used the software Google Earth 
to create an estimative. With the software, we could 
calculate the distance between atoms centroids, and 
supposing a 60km/h travel speed, we estimated mean 
travel times. Table 4 shows all travel times, an asterisk 

(*) indicates those that did not come from the sample, 
they were calculated using the explained method.

4.4 Servers

SAMU/Bauru has nine ambulances in Bauru. 
Wherein, two of them are ASV and seven are BSV 
(Basic Service Vehicles). Moreover, all ambulances 

Figure 6. Fit test for exponential distribution.

Table 3. Atom and subatom identification and their arrival rates.

Subarea Atom Subatom Nº of requests pjk
λjk  

(requests/hour)
Geisel blue 1 1d 1 0.0050 0.0174
Geisel green 1 1c 12 0.0594 0.2090
Geisel yellow 1 1b 15 0.0743 0.2612
Geisel red 1 1a 5 0.0248 0.0871
Nações blue 2 2d 5 0.0248 0.0871
Nações green 2 2c 20 0.0990 0.3483
Nações yellow 2 2b 23 0.1139 0.4005
Nações red 2 2a 3 0.0149 0.0522
Ipiranga blue 3 3d 3 0.0149 0.0522
Ipiranga green 3 3c 11 0.0545 0.1916
Ipiranga yellow 3 3b 9 0.0446 0.1567
Ipiranga red 3 3a 4 0.0198 0.0697
Mary Dota green 4 4c 15 0.0743 0.2612
Mary Dota yellow 4 4b 7 0.0347 0.1219
Mary Dota red 4 4a 2 0.0099 0.0348
Bela Vista blue 5 5d 7 0.0347 0.1219
Bela Vista green 5 5c 18 0.0891 0.3134
Bela Vista yellow 5 5b 23 0.1139 0.4005
Bela Vista red 5 5a 6 0.0297 0.1045
Boulevard blue 6 6d 1 0.0050 0.0174
Boulevard green 6 6c 3 0.0149 0.0522
Boulevard yellow 6 6b 6 0.0297 0.1045
Boulevard red 6 6a 1 0.0050 0.0174
SAMU/Bauru 202 1.0000 3.5176
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can travel between atoms, confirming the fourth 
model hypothesis.

4.5 Server location
Each server is located on a fixe base. Both ASV 

are located on SAMU/Bauru headquarters, on Geisel. 
While BSV are located on different bases, as follows: 
one in Geisel, one in Nações, one in Ipiranga, one in 
Mary Dota, two on Bela Vista and one in Boulevard.

4.6 Simple server dispatch
In the great majority, around 96% of all cases, 

requests where served by only one ambulance. Only 
in some cases, less than 4%, there was the dispatch of 
more than one vehicle to the scene. Moreover, ASV 
answer only red requests, which does not comply with 
the hypercube model hypothesis, but the workload 
over the system is low, allowing a relaxation of this 
hypothesis as seen in Takeda et al. (2004, 2007). 
The system allows the formation of waiting lines 
and there is no limit for its size, wherein requests 
are organized following their priority.

4.7 Dispatch preference
The server dispatch policy take some aspects in 

count, they are request location, urgency level and 
servers locations. The preferential server is the one 
located at the request atom, if this server is busy, a 
server from an adjacent atom is chosen. However, for 
red requests ASV are preferential servers regardless 
of the request location. These aspects cause dispatch 
randomness, i.e. it is not possible to write a fixed 
dispatch preference list (Burwell et al., 1993; 
Takeda et al., 2007).

4.8 Service times
Each server had its service time tested on an 

exponential curve fit test. We used Kolmogorov-Smirnov 
test on all servers and the hypothesis was rejected 
on a significance level of 0.05. Moreover, we tested 

if servers were homogeneous using an Analysis of 
variance (ANOVA) on a significance level of 0.05. 
Results show differences between their mean service 
times on all BSV, except those located on Bela Vista, 
so that servers are heterogeneous except ASV and 
Bela Vista’s BSV.

Table 5 shows mean service rates for each server, 
obtained using their mean service times.

4.9 Service time dependence on travel time
Table 6 compares mean service times and the mean 

travel times. One can note that the mean travel times 
are relatively small, compared to mean service times, 
as it never represents more than 25%. This validates 
the hypothesis for the hypercube model application.

5 Model application and results 
analysis on SAMU/Bauru
The used model on SAMU/Bauru was the hypercube 

model, because the system is too complex to apply 
simpler queueing models than the hypercube model 
and almost no hypercube model hypotheses could 
be rejected considering the hypercube extensions 
of priority in a queue and dispatch randomness. 
The priority in a queue extension was chosen because 
SAMU/Bauru label requests according to their 
urgency level. The dispatch randomness extension 
was chosen because the system do not obey a fixed 
dispatch preference list.

It is worth mention that the dispatch randomness 
method used was the random creation of dispatch 
preference lists. Model was programmed on a 
Pascal interface. We ran the model 50 times before 
calculating the mean probabilities and, if necessary, 
we did a service time calibration considering a 
0.1 requests/hour tolerance.

The first model (original), used on model validation, 
compared workloads and mean travel times. We did 
not compare waiting times because there was no data 
about screening times, which affects waiting times 
inside the sample.

Table 5. Mean service rates on SAMU/Bauru.

Ambulances Mean service time 
(minutes) μi (requests/hour)

1 - GA1 (VSA) 56.8 1.0562
2 - GA2 (VSA) 56.8 1.0562
3 - GB (VSB) 47.2 1.2719
4 - NÇ (VSB) 40.8 1.4720
5 - IP (VSB) 42.9 1.3998
6 - MD (VSB) 47.9 1.2517
7 - BV1 (VSB) 49.0 1.2254
8 - BV2 (VSB) 49.0 1.2254
9 - BLV (VSB) 45.8 1.3089
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5.1 Original scenario versus sample
The results for the original model was compared to 

the sample data. Performance measures of both validates 
de used of the hypercube model on SAMU/Bauru.

Table 7 shows the workloads obtained on the 
original model and those obtained on the sample. It also 
compares their relative deviation. This measure had a 
good adherence to the sample with a mean deviation 
of 8%. One can note that ASV (GA1 and GA2) had 
a 7.4% increase compared to the sample, this could 
have happened because we did not restricted ASV 
service to red requests. However, this deviation did 
not compromise the model validation. The ambulance 
form Mary Dota (MD) had the highest error, 
15%, which was considered acceptable, considering 
the mean results.

Table 8 shows subatoms mean travel times 
comparisons. The mean relative deviation was 
9%. In the other hand, due to the small size of the 
sample for some subatoms (only 5 requests or less 
for 11 out of 24 subatoms) the data for labels b, c 
and d were aggregated. It diminished the deviations 
found, without losing precision, since they receive 
service from the same ambulances and have the same 
dispatch preference lists. The highest deviations, but 
considered acceptable, were from priority a subatoms, 
because of their small samples and low arrival rates 
(approximately 10% of requests) and they could not 
be aggregated with other priorities.

Lastly, we analyzed servers mean travel times. 
Table 9 shows the comparisons for these mean times 
between the model and the sample. Here, the mean 
deviation is lower than 6%, presenting the model good 
adherence. Sample size helps here, because all servers 
had at least 20 requests in the sample, some of them 
also had more than 50 (BV1 and BV2). The largest 
observed deviation (ambulance NÇ) was from the 
server with the smallest sample, with 21 requests.

Another number that shows the model adherence 
to the sample is the mean travel time of the system, 
which was 9.7 minutes, less than 1% deviation from 

Table 6. Relation between mean service times and mean travel times of servers.

Ambulances Mena service time 
(minutes)

Mean travel times 
(minutes) Proportion

1 - GA1 56.8 13.6 0.2389
2 - GA2 56.8 13.6 0.2389
3 - GB 47.2 10.8 0.2281
4 - NÇ 40.8 8.4 0.2056
5 - IP 42.9 8.8 0.2047
6 - MD 47.9 10.0 0.2079
7 - BV1 49.0 9.0 0.1838
8 - BV1 49.0 9.0 0.1838
9 - BLV 45.8 7.3 0.1597

the sample. Besides, there was no need to calibrate 
mean service times, a good information about the 
model adherence.

As results from workloads and mean travel times 
show a good adherence to the real system, one can 
consider the model as validated, turning possible to 
analyze alternative scenarios. Firstly, we studied the 
effects of demand increasing, based on SAMU/Bauru 
data from the years of 2012 and 2013. Then the 
inclusion of a new ambulance in order to mitigate 
middle and long-term demand increase was analyzed.

5.2 Demand increase
For demand increase scenarios, we forecasted 

some system trends for the years of 2014 (sample 
coming year). Three different methods were used to 
obtain the forecasts:

• Requests proportion (13.57%): with an increase 
on requests proportion on demand peak periods 
from 2012 and 2013, we suppose that this increase 
could be the same for coming year of 2014;

• Time series analysis (5.71%): using 2012 and 
2013 requests summary, we tried to find forecasts 
to September 2014 using decomposition method, 
where September was chosen arbitrarily;

• Other forecasts (25% and 50%): arbitrary increase 
choices to represent extreme untypical situations.

Demand increase scenarios show the impact 
over the system caused by the increase of the mean 
number of arriving users on the system, turning it 
more congested. This makes mean waiting times to 
increase, the number of requests served by backups 
(non-preferential ambulances) to increase.

Figure 7 shows these impacts over mean response 
times of servers. It is important to note that a demand 
increase 50% can double the response time for these 
ambulances. On the other hand, modest demand 
increases have small impact over the system, for 
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Table 7. Model and sample workloads comparison.
Ambulance Sample Model Relative deviation

GA1 0.1657 0.1779 7.4%
GA2 0.1657 0.1779 7.4%
GB 0.3800 0.3580 -5.8%
NÇ 0.3343 0.3690 10.4%
IP 0.2619 0.2884 10.1%

MD 0.3994 0.3388 -15.2%
BV1 0.3672 0.3506 -4.5%
BV2 0.3672 0.3506 -4.5%
BLV 0.3183 0.3485 9.5%

Table 8. Model and sample mean travel times (minutes) for subatoms comparison.
Subatoms Sample Model Relative deviation

1 a 9.6 10.1 4.9%
1 b 10.7 11.2 4.7%
1 c 10.7 11.2 4.7%
1 d 10.7 11.2 4.7%
2 a 12.7 13.1 3.3%
2 b 8.6 8.5 -0.9%
2 c 8.6 8.5 -0.9%
2 d 8.6 8.5 -0.9%
3 a 13.3 13.6 2.7%
3 b 10.0 9.6 -4.2%
3 c 10.0 9.6 -4.2%
3 d 10.0 9.6 -4.2%
4 a 10.5 13.3 27.1%
4 b 8.5 9.9 17.5%
4 c 8.5 9.9 17.5%
4 d 8.5 9.9 17.5%
5 a 17.0 13.6 -20.2%
5 b 8.7 9.0 3.4%
5 c 8.7 9.0 3.4%
5 d 8.7 9.0 3.4%
6 a 14.0 10.9 -22.4%
6 b 9.6 8.1 -15.3%
6 c 9.6 8.1 -15.3%
6 d 9.6 8.1 -15.3%

Table 9. Model and sample mean travel times (minutes) for servers comparison.
Ambulance Sample Model Relative deviation

GA1 13.6 12.7 -6.6%
GA2 13.6 12.7 -6.6%
GB 10.8 11.0 2.5%
NÇ 8.4 9.6 14.8%
IP 8.8 9.6 9.9%

MD 10.0 10.4 4.1%
BV1 9.0 8.9 -1.5%
BV2 9.0 8.9 -1.5%
BLV 7.3 7.0 -4.0%

example, 5.71% and 13.57% demand increases raise 
response times in 5% and 16% respectively.

The impact is visible over urgency levels too. 
Figure 8 shows different effects over each urgency 

level label of the system. Users with higher priorities 
have larger mean response times on initial scenarios 
because ASV serves them and ASV usually must cross 
the entire system to serve. However, the demand 
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increases have minor impact over them. Users of 
smaller priorities, served by local BSV, have smaller 
response times (around 11 minutes on initial scenarios). 
Although, demand increases have major impact over 
them, taking them to a mean of 34 minutes for green 
and blue requests. This also shows the importance 
to represent different urgency levels.

5.3 New server inclusion
For each demand increase scenario, we analyzed 

the impacts over performance measures of including a 
new BSV. The ambulance was tested on all six existing 
bases (atoms). It used the same data (location and 
attendance time) as the ambulances already on those 
bases. The demand increase effects mitigation were 
evaluated using mean response time of the system.

Figure 9 compares the impact over mean response 
time caused by the inclusion of the new ambulance. 
Note that the model enables us to find the best location 
for the new ambulance and to quantify the effect 
over the performance measures. Thus, in the case 
the manager wants to be prepared for a period with 
a 25% demand increase, it is possible to maintain 
the same mean response time with a single new 
ambulance over atom Boulevard, mitigating demand 
increase effects.

The best location for the new ambulance was over 
Boulevard atom on all scenarios, with a 3% average 
lower mean response time than other locations. On the 
other hand, putting the ambulance over Mary Dota 
atom gives the least advantageous results until a 
25% demand increase. On the most serious scenario, 
with 50% demand increase, the two best locations 

Figure 7. Demand increase impact over mean response times (minutes) of servers.

Figure 8. Demand increase impact over mean response times (minutes) for subatoms.
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over Boulevard atom, obtaining a 3% lower result 
than other locations, on average. On the other hand, 
putting the ambulance over Mary Dota atom gives 
the least advantageous results until a 25% demand 
increase. On the most serious scenario, with 50% 
demand increase, the two best locations are Nações 
and Boulevard atoms, both are central regions of 
the city.

For further research is proposed to use the 
model considering partial backup and queue, with 
restrictions for urgency levels as seen for the ASV on 
SAMU/Bauru, where they only serve red requests. 
Moreover, evaluate dynamic server positioning using 
time dependent models capable of finding the effects 
of system variations through the day.
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