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Resumo: O presente trabalho trata do problema de sequenciamento e alocação de trabalhadores (SPWA). No 
SPWA, objetiva-se minimizar o número de trabalhadores e o tempo total gasto para executar todas as tarefas 
(makespan). Para tanto, propõem-se o uso de dois modelos diferentes de programação matemática e uma heurística 
VNS-Multiobjetivo baseada no método heurístico VNS. Como os objetivos são conflitantes entre si, os métodos 
propostos geram um conjunto de soluções eficientes, cabendo ao gestor escolher qual solução deve ser adotada. 
Os métodos propostos obtiveram resultados satisfatórios para a resolução do SPWA, demostrando que é possível 
utilizar um número reduzido de funcionários e terminar todas as tarefas em tempo hábil, utilizando, assim, os 
recursos de uma empresa de forma otimizada.
Palavras-chave: Otimização multiobjetivo. Épsilon-restrito. Método das somas ponderadas. VNS-Multiobjetivo. SPWA.

Abstract: This paper addresses the scheduling problem with workers allocation (SPWA). In SPWA, the objective 
is to minimize the number of workers and the total time taken to perform all tasks (makespan). To this end, we 
propose the use of two different mathematical programming models and a VNS-based multi-objective heuristic. As 
the objectives are conflicting, the proposed methods generate a set of efficient solutions, and the manager chooses 
which solution should be adopted. The proposed methods achieved satisfactory results for the SPWA resolution, 
showing that it is possible to use a limited staff and finish all tasks in a timely manner, thereby utilizing the resources 
of a firm optimally.
Keywords: Multi-objective optimization. Epsilon-restricted. Method of weighted sums. VNS-Multi-objective. SPWA.
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1 Introduction
The world market is more and more competitive 

and demanding. Besides that, the world crisis and 
the threat of a recession in Europe put in danger the 
financial health of the companies. In this scenario, 
the companies need to reduce their productive 
costs. A way to reduce that cost is optimizing the 
production factors. Between a diversity of production 
factors, one of those, which has, a larger impact 
on the production costs is the workforce. This is 
motivated by the recent salary increases higher 
than the inflation rate, added to the social charges 
and benefits. So, the companies look for a reduction 
on the number of workers without affecting the 
delivering deadlines.

This problem faced by the companies is known as 
scheduling problem with worker allocation – SPWA. 
The problem consists in allocate the jobs to the 
workers in a company, minimizing the instant of 

ending of the last job executed (makespan) and the 
number of workers on it.

In general, most of the works found in the 
literature treats this problem as mono-objective. 
That means the multi-objective evaluation function 
is turned in a mono-objective evaluation function. 
That transformation, in general, is made assigning 
different weights to different objectives. Works 
as Abensur’s (2012) uses this approach. He used 
the goal programming to treat of a multi-objective 
optimization problem. This way, he converted the 
multiple objectives in a single one.

But, the objectives are conflicting with each other, 
so, doesn’t exist a single solution which optimize 
them all at the same time. In fact, the lower the 
number of workers is, bigger is the time needed to 
execute all the jobs, so as the reverse. So, adopting 
the mono-objective resolution method, we have 
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only one solution, which privileges an objective 
over the other.

Besides, in practice, the managers responsible 
for the workers designation and sequencing of jobs 
have to deal, daily, with changes in the number of 
workers available and of jobs which need to be 
executed. So, the managers need a flexible solution. 
It has to be capable to absorb the sudden changes on 
the parameters in a quick way, keeping the system 
optimized.

The multi-objective optimization looks for a set 
of efficient solutions, what makes the system more 
flexible, once it shows different solutions. The manager, 
when solves the problem, adopting this method, has 
at its service a lot of solutions, which one using a 
different number of workers. The available solutions, 
obtained through the multi-objective method, are 
closer to the reality, making the manager’s job faster 
and more flexible. So, the manager can answer to 
an absence of a worker without need to solve the 
model again, saving time.

To the resolution of the multi-objective problems, 
the methods vary between exact and heuristic. 
To  the exact approach, has certain of an optimum 
solution, but, to complex problems, usually the 
time spent is bigger than the available time for the 
decision-making. The using of heuristic methods is 
recommended when is searched for a good solution 
in a timely manner. However, this method doesn’t 
guarantee the optimality of the solution for the 
problem. Starting from those remarks made in the 
industrial and services sector, primarily in small and 
medium-sized enterprises we observe that, usually, 
those companies have a number of workers and 
jobs reduced. So, this work proposes a resolution 
of multi-objective approach for the SPWA, using 
exact and heuristic methods. These should generate 
flexible solutions which may be implemented.

Between a diversity of exact methods for the 
resolution of a multi-objective problem, this work 
focus on the models of Mathematical Programming, 
using the variable weight method and the 
epsilon‑restricted (ε-restricted) method. According 
to Coello et al. (2002), these methods are the most 
used. Besides, according to Tan et al. (2009), the 
SPWA is a NP-hard problem, so, for problems with 
bigger dimensions, is not possible to find the global 
optimum solution in a computational timely manner. 
So, a heuristic multi-objective model, based on the 
Variable Neighborhood Search – VNS algorithm is 
also proposed.

The present work is organized as follows. In section 
2, it describes the problem studied. In section 3, the 
theoretical assumption. In section 4, we present the 
models of Mathematical Programming used. In section 
5 is presented the VNS-Multi-objective algorithm 

proposed. The presentation of the test-problems and 
the results are done in the section 6. The conclusion 
is showed in the section 7.

2 The scheduling problem with 
worker allocation
This problem is composed by a set of Workers, 

and a set of Jobs. It consists in allocate the jobs 
to the worker and propose an execution sequence, 
respecting the qualification restrictions. It means 
a worker can only execute a job if he is qualified. 
Besides, each worker, to execute a same job, needs 
different times according to their skills. The objectives 
of the SPWA are to minimize the instant of ending 
of the last job executed (makespan) and minimize 
the total number of workers on it.

In this work, we consider the following restrictions: 
every job should be executed. We don’t consider 
the workers transportation times or the time spent 
waiting in queue. The horizon on workers allocation 
planning is fixed. Each job is executed by only a 
single worker. The overworking is not considered, 
it means, we do not consider the workers will be 
overloaded with excess of work. Every job has 
the same amount of effort. The workers, who are 
used, have a minimum and maximum utilization 
rate. All workers have the same cost (salary). Each 
employee has a different skill, it means, each one 
execute the same job with a different time.

The SPWA can be considered as special case of 
the job shop scheduling problem. Such problem, in 
its general manner, is characterized by the allocation 
of jobs to same kind of resource needed for its 
execution. This resource, usually, is a work station 
or some kind of machine.

In literature, a diversity of works treats about 
the job shop scheduling problem, such as Silva 
& Rentes (2012), Tavares Neto & Godinho Filho 
(2013) and Mello & Ferreira (2014).

The work of Silva & Rentes (2012) shows off a 
new optimizing model of the job shop problem by 
a layout optimizing and applies in some companies 
of the metal mechanical sector. The goal of the 
model consists in develop alternatives that would 
be harmonic with concepts and principles of the 
lean production philosophy.

Tavares Neto & Godinho Filho (2013) utilizes 
a method that consists in two stages to deal with 
the job shop in an ambient of a machine with the 
possibility of outsourcing. On the first stage, they 
propose the jobs to be sequenced, using the SPT 
(Shortest Processing Time) rule. On the second 
stage is proposed an algorithm based on ACO (Ant 
Colony Optimization).



Pantuza, G., Jr.134 Gest. Prod., São Carlos, v. 23, n. 1, p. 132-145, 2016

Mello & Ferreira (2014) deals with the job shop 
problem with the minimizing of the makespan. 
They  use models of computer simulation of a 
manufacture system with two different scenarios. 
On the first one, they do not consider the utilization 
of alternative machines. On the second one, they 
adopt the insertion of alternative machines to execute 
the same jobs.

According to Osawa & Ida (2007), the main 
difference between SPWA and the classic job 
shop is the utilization of the workforce resource, 
considering different levels of qualification and a 
low rate of utilization. This low rate of qualification 
should be assigned to the decrease of the yield due 
to the tiredness, the environmental conditions of the 
workplace (temperature and lighting, for example), 
in addition to the labour law that guarantee the 
workers’ right to rest during the working time.

In literature we found some works which deal 
with the SPWA. Iima & Sannomiya (2001) proposed 
an heuristic to the resolution of the SPWA, based 
on the Genetic Algorithm called Module Type 
Genetic Algorithm (MTGA). Osawa & Ida (2005) 
utilized a Genetic Algorithm, but they proposed a 
new selection method of the survivor population. 
Osawa & Ida (2007) adopted the algorithm proposed 
by Osawa & Ida (2005). However, they considered 
that each worker owns a different skill level for 
each used machine.

Every work previously quoted adopted mono-
objective approaches. However, we found in the 
literature, a diversity of works which adopted 
multi-objective methods, most of them using 
metaheuristics to solve the job shop problem.

Ishibushi & Murata (1998) proposed a local 
search Genetic Algorithm. It consists in inserting 
non-dominated solutions on the population (set of 
solutions) from the proposed method, looking for a 
more adapted population. Suresh & Mohanasundaram 
(2004) proposed a multi-objective algorithm which 
they called as Pareto Archived Simulated Annealing 
(PASA). In this algorithm was used a new method of 
perturbation of the solutions, to find neighborhood 
solutions, called Segment-Randon Service (SRI).

Garcia  et  al. (2004) adopt an heuristic and 
an exact method. The heuristic method is based 
on a multi‑objective evolutionary algorithm. 
The mathematical programming model is non-linear 
and the used resolution method is epsilon-restricted. 
Their results showed the both techniques reached 
closed solutions and are capable of avoiding local 
optimum. Iima (2005) proposed a Genetic Algorithm 
with a new way to select the most adapted population 
and a new mutation operator, based on probabilities 
distribution. Lei & Wu (2005) used a multi-objective 
evolutionary algorithm (CMOEA). This is based on 

the crowding measure. It uses the crowding distance 
to adjust the external population and attribute 
different fitness for the people. They consider two 
objectives: minimize the makespan and the total 
delay of the delivering deadline.

Xia & Wu (2005) used an evolutionary algorithm 
based on the particle swarm optimization. Such 
algorithm imitates the flying birds behavior and 
their ways of changing information. It combines 
such algorithm with the local search, using the 
Simulated Annealing algorithm. Quian et al. (2006), 
developed an algorithm based on the Memetic 
Algorithm, which is based in differential evolution 
called MADE. First, in such algorithm, a rule is used 
to convert the problem in a way that the differential 
evolution can be applied. In  a second place, the 
mechanism of parallel evolution is applied to 
explore the neighborhood, executing a local search. 
Besides, the Pareto Dominance concept is used for 
the solutions’ selection. They consider, as a goal, 
minimize the maximum delay.

Li et al. (2010) developed an hybrid multi-objective 
method which combines two metaheuristics: Tabu 
Search and Variable Neighborhood Search (VNS). 
This work proposes an Hybrid Tabu Search Algorithm 
(HTSA) considering three minimizing goals: 
the maximum conclusion time (makespan); the total 
time of work of the equipment and the work load 
of the machine. A neighborhood structure proposed 
combine two adaptations criteria, one for the local 
search method, other for the machines selection. 
Following, a job designation method is executed. 
Besides, a VNS algorithm is used adopting three 
neighborhood structures.

Ruiz et al. (2012) have based in a multi-objective 
genetic algorithm called Elitist Non-Dominated 
Sorting Genetic Algorithm (NSGA-II). They consider 
three goals: minimize the makespan, the energy 
costs and work accidents.

3 Theoretical assumptions
The SPWA is composed by two conflicting objectives 

(minimize the number of workers and the instant 
of ending of the last executed job). So, it does not 
exist a single solution which optimizes them all at 
the same time. As a result, to find viable solutions 
that optimize simultaneously all he objectives is the 
biggest challenge of the multi-objective optimization.

For authors like Zitzler (1999), Fonseca & 
Fleming (1995) and Arroyo (2002), for a resolution 
of this kind of problem we should search for a set of 
efficient solutions. In this case, the decision taking 
will be a responsibility of the manager, who can 
choose the solution which best fits to the needing 
among the efficient solutions. This criterion will be 
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used by the responsible, or manager, for the decision 
taking, it means, he can consider among different 
conflictive solutions.

The set of efficient solutions is also known as 
Pareto-optimum. For definition, a set S of solutions 
is Pareto-optimum if does not exist another set S* 
of viable solutions that can improve some objective 
without causing a worsens in, at least, another 
objective. In other words, a solution S belongs to 
the Pareto-optimum solutions set if does not exist 
a solution S* which dominates S.

Considering a minimization problem, we have:

•	 S dominates S* if and only if S ≤ S* for all 
purposes;

•	 S and S* are indifferent or have the same 
dominance degree if and only if S do not 
dominates S* and S* do not dominate S.

For the multi-objective problems, the conventional 
mono-objective optimization methods are not efficient 
(COELLO et al., 2002). Therefore, the search for 
new optimization methods which can win the great 
challenge of this kind of problem became necessary. 
A way to win this challenge is the utilization of 
exact multi-objective optimization methods. Those 
methods emerged from the need to find solutions with 
priorities, or weights, associated to the objectives. 
Among the exact classic methods used to solve that 
range of problems, we highlight: weighted sum 
method and epsilon-restricted (ε-restricted) method.

The weighted sum method consists in a transformation 
of a multi-objective problem in a mono-objective 
problem through the attribution of weights for each 
objective. To reach the Pareto-optimum solutions, 
this problem must be solved iteratively. It means, for 
each iteration, new weights are attributed to different 
goals, being, usually, the sum of the weights equal 1.

According to Arroyo (2002), the main disadvantage 
of that method is it can’t generate all the Pareto-
optimum solutions when the objective space is not 
convex. The  goal programming method, similar 
to the weighted sum method, also consists in the 
transformation of the multi-objective problem to 
a mono-objective problem. This happens through 
the attribution of weights for each goal. For that 
method, we consider that each goal has a different 
importance at the optimization represented through 
the weights. The bigger is the goal importance; 
bigger will be its weight.

The exact epsilon-restricted method was initially 
proposed by Ritzel  et  al. (1994). It consists in 
the optimization of the most important objective, 
represented for Equation 1, subjecting itself to the 

restrictions of other objectives, represented for 
Equation 2.

Considering, in a minimizing problem, f1 as the 
most important objective, we have:

minimize

	 ( )1f x  	 (1)

Subjected to:

	 ( )i if x e≤  i = 2, 3, ..., q 	 (2)

where ei is the superior limit of the objective i and 
q is the number of objectives.

To build a Pareto-optimum set, even when the 
objective space is not convex, must vary only the 
superior limit. But, if this is not the proper limit, 
the subset of possible obtained solutions may be 
empty, it means, there is no viable solution.

Another way to solve multi-objective problems 
is through heuristic methods. Among a variety 
of works related to the multi-objective heuristic 
approach, we highlight as the most used the Genetic 
Algorithms, which are based on the evolution 
theory. On the multi‑objective genetic algorithms, 
at each generation, or iteration, there is a set of 
individuals, or father-solutions. To  create a new 
population (offspring‑solutions), the genetic 
operators (so as crossover and mutation) are applied 
on those father‑solutions. This way, we obtain a 
new population of solutions formed by father and 
offspring-solutions. At the end, of each iteration, 
the most able individuals survive and the rest is 
discarded. Among a variety of Multi-Objective 
Genetic Algorithm, we highlight: VEGA, MOGA, 
NPGA, SPEA and NSGA.

On the Vector Evaluated Genetic Algorithm 
(VEGA), proposed by Schaffer (1985), at each 
generation, a set of individuals that overcome the 
others according to one of the n goals is selected, 
until that n groups be formed. Then, the n groups 
are mixed together and the genetic operators are 
applied to create the following generation.

On the Multi-objective Genetic Algorithm 
(MOGA), proposed by Fonseca & Fleming (1993), 
each individual i is qualified in a level according 
to the number of individuals who that individual 
i dominates. Every non-dominated individuals are 
qualified at level 1. The fitness of each individual is 
attributed according to an interpolation between the 
best and the worst level. The final fitness attributed 
to all individuals from a same level is the same 
and equal to the fitness measure of the own level. 
This way, every individual on the same level are 
indifferent between themselves.

On the Niche Pareto Genetic Algorithm (NPGA), 
proposed by Horn et al. (1994), the selection of the 
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individuals is given through a tournament based on 
the Pareto dominance concept. Two individuals are 
selected and compared with a subset of the solutions 
population, being selected to the next generation 
those not dominated.

On the Non-dominated Sorting Genetic Algorithm 
(NSGA), proposed by Srivivas & Deb (1995), 
the individuals are qualified in levels according 
to their dominance degree, such as the previous 
algorithms. However, it is attributed a fitness value 
to each individual, according to their level and their 
distance to the other solutions of the same level, 
the so called crowd distance. The selection is made 
through tournament using the fitness value until 
every vacancies to the next generation be filled.

On the Strength Pareto Evolutionary Algorithm 
(SPEA), proposed by Zitzler (1999), is used the 
selection based on the dominance relation to 
evaluate and select the solutions. To evaluate this 
dominance relation and qualify the individuals in 
dominance levels, the SPEA uses an additional set of 
the population. But, unlike the previous algorithms, 
which discard the non-selected individuals, it uses 
the non-dominated individuals of the population from 
the previous generation to determine the fitness of 
the individuals of the current population.

Despite being the most utilized, not always the 
Genetic Algorithms are the recommended ones 
(GUIMARÃES et al., 2007). Besides these, we also 
find other heuristics to multi-objective problems, 
such as the Multi-Objective Tabu Search procedures 
proposed by Arroyo (2002). Also the Tabu Search 
heuristics, proposed, initially, to mono-objective 
problems, other ones can also be used such as the 
VNS and Variable Neighborhood Descent (VND) 
heuristic methods.

The VNS heuristic method, exemplified by the 
Chart 1, proposed by Mladenovic & Hansen (1997), 
is a method that consists in explores the space of 
solutions by systematic changes of the neighborhood 
structures. In contrast to other metaheuristic based 
in local search methods, the VNS method does not 
follow a path. It explores different neighborhood 
of the current solution and focus the search to a 
new solution if and only if an improvement move 
is realized.

The VNS also includes a local search procedure 
to be applied on the current solution. In this work, 
we adopted the VND method, exemplified by the 
Chart 2 to make a local search, also used by the 
original VNS.

The VND is a technique used for the refining of 
initial solutions. This is made through an analysis 
of the feasible solutions region through systematic 
changes on the neighborhood structures of current 
solutions. This method accepts only the improvement 

solutions of the current solution, returning to the 
first structure when a better solution is found.

Among the countless VNS applied to the 
multi‑objective optimization, we highlight Geiger 
(2004), so called MOVNS. In this procedure, the 
neighborhood structure and the solution to be 
explored are chosen randomly, changing at each 
iteration. A  solution between the non-dominated 
is selected. From this solution, new neighborhood 
solutions are generated.

In Ottoni et al. (2011), the authors deal with the 
job shop scheduling problem, which n jobs should 
be processed in a single machine that can process 
a job at time. They proposed to incorporate a new 
intensification method to the MOVNS algorithm, 

Chart 1. VNS Heuristic.
Procedure VNS (f(.), N(.), r, s);
1 Being so a starting solution;
2 Being r the number of different neighborhood 

structures;
3 s ← so ;
4 While (non-satisfied stopping criterion) do
5 k ← 1;
6 While (k ≤ r) do
7 Generate any neighbor s’ ∈ N (K)(s);
8 s” ← LocalSearch (s’);
9 if (f(s”) < f(s)) them
10 s ←s”;
11 k ← 1;
12 else
13 k ← k + 1;
14 End-if
15 End-while;
16 End-while;
17 Return s;
End VNS;

Chart 2. VND Heuristic.
Procedure VND (f(.), N(.), r, s);
1 Being r the number of different neighborhood 

structures;
2 k ← 1 ;
3
4

While (k ≤ r) do
Find a neighbor s’ ∈ N (K)(s);

5
6
7

if (f(s’) < f(s)) them
s ←s’;
k ← 1;

8 else
9 k ← k + 1;
10 End-if
11 End-while;
12 Return s;
End VND;
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proposed by Geiger (2004). This intensification 
consists in a perturbation on the solution, generating 
new solutions.

Arroyo et al. (2011) also deal with the job shop 
scheduling problem, considering a time window 
machine with setup times. The authors consider two 
goals: the first one is to minimize the jobs delay 
or advance and the second is to minimize the total 
flow. To solve the problem, was proposed a new 
MOVNS algorithm combined with a perturbation 
process, different of the proposed by Ottoni et al. 
(2011).

4 Mathematical programming 
models

4.1 Epsilon-restricted

To solve the SPWA using the epsilon-restricted 
method, we adopted, as the main objective, the instant 
of ending of the last executed job. The number of 
workers is considered a secondary goal, so, at each 
execution of the proposed mathematical model, the 
maximum number of workers who can be used (ε) is 
reduced. For this model, we consider the following 
entry parameters.

Job: Set of jobs.

Worker: Set of workers.

Tij: Time needed for the worker j to finish the job i.

e: Maximum amount of workers.

H: Planning horizon.

Tui: Maximum utilization rate of the worker i.

Tli: Minimum utilization rate of the worker i.

The following decision variable are:

s: Instant of ending of the last executed job.

If the workeriexecute the job .
Othe

1 
:

0 .                           rwis     e  ijx
j




If the worker  is used.
Oth

1 
:

0 .                 er   wis   e  i
i

y 



The mathematical programming model 
proposed, relative to the SPWA, is presented by 
the Equations 3 to 10:

Objective function:
The Equation 3 looks to minimize the instant of 

ending of the last job.

	 min f s=  	  (3)

Subjected to restrictions:
The Equation 4 ensure that every job j will be 

executed only once for a single i worker.

	
Worker

1                                ij
i

x j Job
∈

= ∀ ∈∑  	  (4)

The Equation 5 stipulates the maximum amount of 
workers i which can be used. The ε value is reduced 
at each iteration of the proposed model.

	
Worker

i
i

y e
∈

≤∑  	 (5)

The Equation 6 determine the instant of ending 
of the last job j executed by the operator i.

	
Job

                           ij ij
j

T x i Workers
∈

≤ ∀ ∈∑ 	  (6)

The Equation 7 define if the worker i are executing 
some job j.

	                        
Job

ij
j Job

i

x
y i Worker∈ ≤ ∀ ∈

∑
 	 (7)

The Equations 8 and 9 define the gap for the using 
rate of the worker i who are being used.

	                                 
ij ij

j Job
i i

x T
y Tu i Worker

H
∈ ≤ ∀ ∈
∑

 	 (8)

	                               
ij ij

j Job
i i

x T
y Tl i Worker

H
∈ ≤ ∀ ∈
∑

 	 (9)

The Equations 10 to 12 assure the domain of the 
decision variables.

	 { }0,1                        eijx i Worker j Job∈ ∀ ∈ ∀ ∈  	(10)

	 { }0,1                                 iy i Worker∈ ∀ ∈  	 (11)

	 s +∈ 	 (12)

4.2 Weighted sum method
To solve the SPWA using the weighted sum method, 

we adopted, as a goal, the instant of ending of the last 
executed job (makespan) and the number of workers 
used on it. On this method, for each iteration k, the 
value of the penalty (wk) of the objective function 
is changed at each iteration. Initially, it assumes the 
value 1 and for each iteration its value is decreased 
according to the Equation 13. In this equation, for 
each iteration, the new wk value is equal to the value 
of the previous iteration penalty, wk–1, minus the 
value of the division of 1 for the number of adopted 
solutions. This way, for each iteration, we change 
the space of searching, privileging some goal.
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	 1
1

k kw w
NSol−= −  	 (13)

Being:
wk: Penalty of the objective function on the iteration k.
NSol: Number of solutions.

The decision variables and parameters are the same 
as the previous model, except for the withdrawal 
of the (maximum amount of workers) parameter 
and for the inclusion of the parameter w (objective 
penalty). The proposed mathematical programming 
model for the weighted sum method is similar to 
the method on the 4.1 section, but they are different 
for the substitution of the Equation 3, regarding 
to the objective function; for the Equation 14 and 
for the exclusion of the restriction showed on the 
Equation 5.

Objective function
The Equation 14 looks to minimize the instant 

of ending of the last job.

	
Worker

min (1 )k k i
i

f w w ys
∈

= + − ∑  	 (14)

5 Proposed algorithm
To a variety of problems, find the global 

optimum solution of big dimension problems can 
be impracticable. To problems of this nature, like 
SPWA, the use of exact methods become a lot 
restrict. This is the reason for what uncountable 
works concentrates efforts in using heuristics to 
solve problems this level of complexity. Heuristics 
can be defined as a technique which search for good 
solutions, it means, close to the global optimum.

So, we also presented a multi-objective heuristic 
model based on the VNS algorithm, exemplified by 
the Chart 1 on the section 3.

The proposed algorithm, called Multi-objective-VNS 
(VNSM), exemplified by the Chart  3, starts its 
execution from a set of S0 initial solutions. This set 
is generated through a partially greed procedure, 
using a binary contest. The number of solutions 
(NSol) of the S0 set was defined in an empirical 
way, considering the complexity of the problem.

After this step, each solution sl ∈ S0 is evaluated 
according to an evaluation function with variable 
weights. The weight value of each objective vary 
from each iteration, this way, from each iteration, 
an objective owns bigger or lower importance to 
determine a solution.

Following, the first solution, s1, of the set S0 is 
selected, and selects a s1’ neighbor on the neighborhood 
N(1)(s1) of the current solution s1. This neighbor, s1’, 
is subjected to a local search procedure, returning 
the s1” solution. If the local-optimum solution, s1”, 
is better than the current s1, the search continues in 

s1”, restarting from the first N(1)(s1”) neighborhood 
structure.

Otherwise, the search continues from the next N(K+1)

(sl) neighborhood structure. This step is repeated until 
we have a maximum number of iterations without 
an improvement, It_SM, empirically defined. At the 
end of this stage, the better found solution is added 
to the set of final solutions S.

After the end of the previous stage, the procedure 
return to its begins, selection the next solution sl of 
the set S0, and all the previous procedure repeats. 
The algorithm is repeated for all solutions si of the 
initial solutions set S0.

5.1 Representing a solution
A solution can be represented by a (sl)

[Worker×(Job+1)] matrix. This way, the moves of 
the neighborhood structures become more simple 
and natural. So, the algorithm becomes less complex 
and the evaluation of the solutions become easier. 
The set of S solutions is formed by the union of all 
NSol (number of solutions) matrix sl.

The Table 1 exemplifies a possible sl solution. 
The  first column shows the workers. The “Useful” 
column shows if the worker i realizes a job j. 
The columns “Jobs” shows the jobs allocated for 

Chart 3. Multiobjective-VNS heuristic.
Procedure VNSM (f(.), N(.), r, S0)
1 Being S0 a set of initial solutions;
2 Being r the number of different neighborhood 

structures;
3 for (l < NSol) do
4 s ← sl ∈ S0;
5 it ←0;
6 While (it < It_SM) do
7 k ← 1;
8 While (k ≤ r) do
9 Generates any neighbor sl’∈ N(K)(sl);
10 s” ← LocalSearch (s’);
11
12
13

if (f(sl”) < f(sl)) them
sl ←sl”;
k ← 1;

14 else
15 k ← k + 1;
16 it ← it+1;
17 End-if
18 End-while;
19 End-while;
20 sl ∈ S;
21 End-for
22 Return S;
End VNSM
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each worker and its respective sequence. On the 
example of the Table 1, the value 1 of the first line 
(Worker 1) and “Useful” column shows the worker 
1 is being used. The values of the other columns 
show the worker 1 will execute the jobs 1, 2 and 4, 
this order. The value 0 on the second line (worker 2), 
column ‘Useful” shows the worker 2 is idle. Soon it 
will not execute any job. For the worker 4 we know 
he will execute jobs 2 and 5, this order.

5.2 Generation of the initial solution
The initial solution generates NSol matrix sl 

through a partially greed procedure using a binary 
tournament. For each matrix solution sl, at each 
iteration of the procedure, a job j is selected. Besides, 
two workers are also chosen randomly. The worker, 
who finish the j selected job in a smaller time, is 
chosen. For example, for the job 1 is chosen the 
workers number 2 and 4. The worker 2 finishes 
the job 1 in three hours and the worker 4 in two 
hours. In  this case, the job j will be executed by 
the worker 4.

This procedure is executed until all jobs be 
attributed to some worker i for all the matrix sl ∈ S.

5.3 Evaluation of a solution

A sl ∈ S solution is evaluated following the 
evaluation function f(sl). This function tries to 
minimize the number of workers and the makespan 
through penalties. The evaluation function f(sl) is 
exemplified by the Equation 15.

	 ( ) ( ) 1 ( )          l l l
l

l
lmin f s s s s Sw w

s ts t−  ∀ ∈ ∆ ∆ 
= +  	(15)

Being:
wl: Penalty of the solution sl.
s: makespan.
t: Number of workers used.
∆s: Correction factor for the s parameter.
∆t: Correction factor for the t parameter.

The value of wl is changed at each iteration of 
the VNSM algorithm, for each solution sl evaluated. 
Initially, it assumes the value 1, and at each iteration, 
for each solution sl, its values decreased following 
the Equation 16. In this equation, at each iteration, 

a new sl value is equal to the penalty value of the 
previous iteration, wl-1, minus the value of the 
division of 1 for the number of solutions adopted. 
This way, at each iteration, changes the space of 
searching, privileging some objective.

	 1
1

l lw w
NSol−= −  	 (16)

In the evaluation function, Equation 15, we also 
adopted correction factor ∆. This factor guarantees 
the decision variable t e s to be inside the same 
order of magnitude.

5.4 Neighborhood structures

To explore the space of problem’s solutions, it 
means, to find a solution sl’, neighborhood of sl, we 
used two movies, presented as follows:

Job Relocation Movement, NRT(sl): this movement 
consists in picking up randomly a worker i who 
are being used. Following, the last job j is selected 
and relocated to another worker randomly picked. 
In Table 2, the worker 1 is selected and the job 4 is 
relocated to the worker 4.

Worker Movement, NT(sl): this movement consists 
in picking up randomly a worker i who are being used 
and relocate all of your jobs to the other workers, 
randomly. In Table 3, the worker 1 is selected, the 
job 3 is relocated to the worker 4 and the job 1 is 
relocated to the worker 2.

5.5 Local search

The local search is applied to all solutions sl ∈ S. 
It consists in applying the VND (see Chart 3). Initially, 
we consider a set of r = 2, distinct neighborhood, 
each one defined by one of the kind of movements 
defined in section 5.4. In the sequence, starting from 
the solution sl’, certain amount of neighbors sl” of 
the first neighborhood are analyzed.

Following, we go to the second neighborhood 
structure. Again, a determined amount of neighbors 
is analyzed. The sl” neighbor who shows the biggest 
improvement related to the sl’, according the 
evaluation function on the section 5.3, is chosen 
and we finish the local search.

Table 1. Representation of a sl solution.
Useful Jobs

Worker

1 1 1 3 4 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 1 2 5 0 0 0
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6 Results
To test the proposed models we used 4 test-problems. 

They can be found in http://www.4shared.com/zip/
m7xmUfpi/Instance_-_SPWA.html. They are different 
between themselves by the number of workers and 
jobs. The Table  4 shows us some characteristics 
of the problems. The columns #Worker and #Job 
show, respectively, the amount of workers and the 
number of jobs which need to be executed.

The mathematical programming models, developed 
in Section 4, were implemented in LINGO 10.0 
optimization app, interfacing with EXCEL 2010 
spreadsheets. The VNSM algorithm proposed were 
developed in C language, using the Bordland’s 
C++ compiler Builder 5.0. All of those tests were 
realized in a Pentium Core 2 Duo PC, with, 4 GHz 
and 4 GB of RAM on Windows 7 platform.

6.1 Results of the exact method

The set of solutions S, Pareto-optimum, found, 
using the ε-restricted method, for the Problem 1, is 
presented in Table 5. The Epsilon column shows the 
adopted value for ε, that represents the maximum 
amount of workers. The column #Worker shows 
the amount of used workers. The column makespan 
shows, in minutes, the instant of ending of the last job.

According to the Table 5, for the Problem 1, we 
can observe we obtained the same results for the 
two exact methods, both with 5 different solutions 
each. In solution 1, we adopted the value ε = 0. 
We will use 5 workers who will execute all jobs in 
8 minutes. For the solution 5, we adopted the value 
ε = 4. We will use 1 worker who will execute all 
jobs in 43 minutes.

The Table  6 shows a set of Pareto-optimum 
solutions, using a ε-restricted method and the 
weighted sum, respectively, for the Problem 2. 
In this problem we adopted 10 different solutions. 
The value of ε varies from 0 to 9 (the maximum 
amount of available workers).

The Table 7 shows the results of the exact model for 
the Problem 3. The set of Pareto-optimum solutions 
is formed by 7 different solutions. The  value of 
ε varies from 0 to 14, being reduced in two units 
for each solution.

Table 2. Job Relocation Movement, NRT(sl).
Useful Jobs

Worker

1 1 1 3 4 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 1 2 5 0 0 0

Useful Jobs

Worker

1 1 1 3 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 1 2 5 4 0 0

Table 3. Worker Movement, NT(sl).
Useful Jobs

Worker

1 1 1 3 0 0 0
2 1 4 0 0 0 0
3 0 0 0 0 0 0
4 1 2 5 0 0 0

Useful Jobs

Worker

1 0 0 0 0 0 0
2 1 4 1 0 0 0
3 0 0 0 0 0 0
4 1 2 5 3 0 0

Table 4. Test-problems characteristics.
#Worker #Job

Problem 1 5 10
Problem 2 10 50
Problem 3 15 100
Problem 4 25 100
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Table 7. Results of the Exact Method for the Problem 3.
Epsilon-Restricted Weighted sum

Solution Epsilon - ε #Worker makespan 
(min)

#Worker makespan 
(min)

Instance 3

1 0 15 27 15 27
2 2 13 31 13 31
3 5 10 39 8 49
4 7 8 49 7 58
5 9 6 65 5 81
6 12 3 130 4 107
7 14 1 430 1 430

Table 8. Results of the Exact Method for the Problem 4.
Epsilon-Restricted Weighted sum

Solution Epsilon - ε #Worker makespan 
(min)

#Worker makespan 
(min)

Instance 4

1 0 25 16 25 16
2 3 22 18 22 18
3 6 19 22 19 22
4 9 16 25 15 28
5 12 13 31 11 37
6 15 10 40 10 40
8 18 7 57 8 49
9 21 4 100 3 135
10 24 1 433 1 433

Table 5. Results of the Exact Method for the Problem 1.
Epsilon-Restricted Weighted sum

Solution Epsilon - ε #Worker makespan 
(min)

#Worker makespan 
(min)

Problem 1

1 0 5 8 5 8
2 1 4 10 4 10
3 2 3 13 3 13
4 3 2 20 2 20
5 4 1 43 1 43

Table 6. Results Exact Method for Problem 2.
Epsilon-Restricted Weighted sum

Solution Epsilon - ε #Worker makespan 
(min)

#Worker makespan 
(min)

Instance 2

1 0 10 20 10 20
2 1 9 22 9 22
3 2 8 25 8 25
4 3 7 28 7 28
5 4 6 33 6 33
6 5 5 39 5 39
7 6 4 49 4 49
8 7 3 65 3 65
9 8 2 98 2 98
10 9 1 215 1 215
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The results, of the exact model for the Problem 4, 
are presented in Table 8. In this problem, we adopted 
10 different solutions. The value of ε varies from 
0 to 24, being reduced in 3 units for each solution.

For the Problem 4, unlike the other problems 
(1, 2 and 3), we couldn’t find a set of Pareto-optimum 
solutions, due to the SPWA problem be NP-hard 
(TAN  et  al., 2009). It means, for problems with 
bigger dimensions, is not possible to find the global 
optimum solution in a computational timely. In this 
case, we adopted as the maximum execution time 
900 seconds for each generated solution. For both 
exact methods, only for the solutions 1 and 10 
(first and last solution), we could solve the problem 
and find a solution in less than 900 seconds, being: 
for the epsilon-restricted method, the execution 
time for the solution 1 is 41 seconds and for the 
solution 2, 24 seconds. For the weighted sum method, 
the execution time for the solution 1 is 39 seconds; 
for the solution 2, 28 seconds.

6.2 VNSM results
Initially, the proposed algorithm was subjected 

to a preliminary marathon of tests to calibrate the 
variety of existing parameters. Such parameters 

are: the number of iterations of each execution 
(It_SM), number of solutions (NSol), the penalty 
of the solution sl (wl) and the correction factors 
(∆s e ∆t). After determining the parameters, the 
algorithm was subjected to a marathon of tests with 
100 executions for each test problem.

The chart of the Figure  1 shows the obtained 
results after 100 executions of the VNSM and the 
exact methods. The x-axis represents the total time 
spent to execute all the jobs. The y-axis represents 
the amount of workers used. The chart shows the 
Best set of solutions found between the executions 
of the VNSM. In this chart we noticed that, for the 
test-problem 01, the VNS and the two exact methods 
(epsilon-restricted and weighted sum) obtained 
the same result. For the other test-problems, we 
observed the results of the exact methods were 
close and the VNS was able to find solutions close 
to the exact methods.

The Table 9 shows the time spent, in seconds, 
by the used methods to solve the SPWA. For the 
VNSM, in ‘Smaller’ line, we have the smaller time 
spent among the 100 executions. The line ‘Medium’ 
shows the average time and in the line ‘Bigger’ we 
have the larger time spent by the proposed algorithm. 
We can observe the exact method of the weighted 

Figure 1. VNSM Results.
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sum, for all the problems, obtained a better or equal 
performance to epsilon-restricted.

7 Conclusions
This work showed two exact models of 

mathematical programming and a multi-objective 
algorithm to solve the scheduling problem with 
worker allocation – SPWA.

The mathematical programming models proposed 
were based in two classic methods of resolution 
of multi-objective problems: the ε-restricted 
multi-objective resolution method which is based 
in the optimization of the most important goal, 
subjecting to the restrictions of the other goals; 
and the weighted sum iterative method, which 
consists in the transformation of the multi-objective 
problem in a mono-objective one through the 
attribution of weights to each goal. The proposed 
multi-objective algorithm (VNSM) was based on 
the VNS heuristic combined with the local search 
VND algorithm.

The results show it’s possible to optimize the amount 
of workers and maximum time of execution of the 
jobs by using a multi-objective approach. The both 
exact methods obtained similar results, seeing the 
weighted sum obtained a better performance about 
the computational time. The VNSM was capable to 
find solutions close to the exact methods, proving 
it is a good option, especially for more complex 
problems.

When presented a variety of solutions serving 
different goals, is provided to the manager alternatives 
for its decision-taking. This way, is possible to pick 
up the better solution which better adapts to the 
operational reality of the company.
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