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Sweet corn (Zea mays  subsp. 
saccharata) produced in Brazil 

is commonly directed to industrial 
processing (Pereira Filho & Teixeira, 
2016). Despite being the third-largest 
yellow corn producer in the world 
(FAO, 2019), Brazil does not produce 
a significant yield of sweet corn. One 
of the major obstacles has been low 

productivity. Brazilian edaphoclimatic 
conditions are capable of increasing 
productivity (Lima et al., 2020), and, 
thus, the search for new techniques for 
improving the selection process during 
genetic improvement is fundamental.

In this context, high-throughput 
phenotyping (HTP) is a promising 
alternative due to its high speed and 

accuracy and low cost in obtaining 
phenotypic information (Tardieu et 
al., 2017; Li et al., 2021). Moreover, 
phenomics allows to obtain phenotypic 
data through the crop cycle in a 
nondestructive way and to evaluate 
all the plants of the experimental 
plot (Fritsche-Neto & Borém, 2016). 
Studies show the efficiency of the use of 
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ABSTRACT

Sweet corn (Zea mays subsp. saccharata) is mainly intended 
for industrial processing. Optimizing time and costs during plant 
breeding is fundamental. An alternative is the use of high-throughput 
phenotyping (HTP) indirect associated with agronomic traits and 
chlorophyll contents. This study aimed to (i) verify whether HTP 
by digital images is useful for screening sweet corn genotypes 
and (ii) investigate the correlations between the traits evaluated by 
conventional methods and those obtained from images. Ten traits 
were evaluated in seven S3 populations of sweet corn and in two 
commercial hybrids, three traits by classical phenotyping and the 
others by HTP based on RGB (red, green, blue) and multispectral 
imaging analysis. The data were submitted to the analyses of variance 
and Scott-Knott test. In addition, a phenotypic correlation graph was 
plotted. The hybrids were more productive than the S3 populations, 
showing an efficient evaluation. The traits extracted using HTP and 
classical phenotyping showed a high degree of association. HTP was 
efficient in identifying sweet corn genotypes with higher and lower 
yield. The vegetative canopy area (VCA), normalized difference 
vegetation index (NDVI), and visible atmospherically resistant index 
(VARI) indices were strongly associated with grain yield.
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RESUMO

Fenotipagem de alto rendimento por análise de imagens RGB 
e multiespectral de genótipos em milho doce

O milho doce (Zea mays subsp. saccharata) destina-se 
principalmente ao processamento industrial. Otimizar tempo e custos 
durante o melhoramento de plantas é fundamental. Uma alternativa é o 
uso de fenotipagem de alto rendimento (HTP) indiretamente associada 
a caracteres agronômicos e teores de clorofila. Este trabalho teve 
como objetivo (i) verificar se a HTP por imagens digitais é útil para 
a seleção de genótipos de milho doce e (ii) investigar as correlações 
entre as características avaliadas por métodos convencionais e obtidas 
por imagens. Dez características foram avaliadas em sete populações 
S3 de milho doce e em dois híbridos comerciais, três características 
por fenotipagem clássica e as demais por HTP baseado em análises de 
imagens RGB (red, green, blue) e imagem multiespectral. Os dados 
foram submetidos à análise de variância e teste de Scott-Knott. Em 
adição, foi obtido um gráfico de correlação fenotípica. Os híbridos 
foram mais produtivos que as populações S3, demonstrando uma 
avaliação eficiente. As características extraídas por HTP e pela 
fenotipagem clássica apresentaram alto grau de associação. A HTP 
foi eficiente na identificação de genótipos de milho doce com maior 
e menor produtividade. Os índices VCA (vegetative canopy area), 
NDVI (normalized difference vegetation index) e VARI (visible 
atmospherically resistant index) estiveram fortemente associados à 
produtividade de grãos.

Palavras-chave: Zea mays, dados fenotípicos, infravermelho, 
melhoramento de plantas.
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phenomics through digital images in the 
genetic improvement of plants (Zhang 
et al., 2017; Fernandez-Gallego et al., 
2018; Makanza et al., 2018b; Maciel et 
al., 2019; Wiegmann et al., 2019; Yang 
et al., 2020; Li et al., 2021).

The use of HTP by digital image, 
especially in the field, is still incipient 
(Furbank & Tester, 2011). In addition, 
most of the studies on phenomics relate 
to the main crops, such as soybean, 
yellow corn, and wheat (Zhang et al., 
2017; Fernandez-Gallego et al., 2018; 
Makanza et al., 2018a). There is a lack 
of studies on phenomics applied to sweet 
corn, especially on monitor yield. In 
this context, several studies showed that 
higher levels of chlorophyll are strongly 
associated with higher yields in yellow 
corn due to the higher photosynthetic 
rate. The traditional method used has 
been based on the chlorophyll meter 
(SPAD), capable of obtaining indirect 
values for chlorophyll content in the 
leaves (Yang et al., 2012; Xiong et al., 
2015). However, breeding programs 
have many individuals to analyze, 
making it impossible to use SPAD 
because it represents a high demand 
for time during field readings (Maciel 
et al., 2019).

Thus, this study aimed both to 
(i) verify whether high-throughput 
phenotyping by RGB (red, green, blue) 
and multispectral imaging analysis 
is useful for screening sweet corn 
genotypes and (ii) investigate the 
correlations among the traits evaluated 
by conventional methods with those 
obtained from images.

MATERIAL AND METHODS

Experimental setup
The experiment was conducted 

under sprinkler irrigation at the Plant 
Experimental Station, in Monte Carmelo, 
MG, Brazil (18°42’43.”S, 47°29’55’’W, 
at 873 m altitude) from March 03 to June 
20, 2018. The experiment was carried 
out using a randomized block design, 
with nine treatments and three replicates 
(27 plots). The sweet corn plants studied 
consisted of two commercial hybrids 
from the companies Seminis (hybrid 
A) and Syngenta (hybrid B), and seven 
populations of the S3 generation (L6P2, 

L6P15, L7P3, L8P7, L8P10, L8P12, 
and L8P18) from the Germplasm Bank 
of the Sweet Corn Breeding Program, 
Campus Monte Carmelo. All seeds of 
the S3 generation used in this study 
were obtained from three successive, 
controlled self-pollination of ears 
collected from street markets, which 
were initiated in 2016.

Sowing was performed in styrofoam 
trays, which were then packed in the 
greenhouse for later transplantation, in 
order to guarantee the establishment of 
the desired population of 50 thousand 
plants per hectare in the field. The 
seedlings were transplanted to the field 
when they have reached the V2 stage, the 
vegetative stage of sweet corn plants in 
which two fully expanded leaves were 
observed (Pereira Filho & Teixeira, 
2016). The transplant depth to the field 
was 4 cm, with spaces between rows 
and between plants being 0.7 and 0.3 m, 
respectively. The dimension of each plot 
consisted of two 5.4-m long rows, with 
a 0.7-m aisle separating the plots and a 
useful area of 7.56 m2, and 32 plants per 
plot. Weeds were controlled throughout 
the crop cycle by means of manual 
weeding. Finally, crop management with 
fertilizers and pesticides was carried out 
using previously recommended methods 
for sweet corn (Pereira Filho & Teixeira, 
2016).

Image capture
Aerial images of the sweet corn 

plants at the V7 stage, the vegetative 
stage of sweet corn plants in which seven 
fully expanded leaves are observed 
(Pereira Filho & Teixeira, 2016),  were 
captured using an unmanned aerial 
vehicle (UAV), the Phantom 4® model, 
equipped with two optical sensors: an 
RGB camera (DJI Phantom 4 Pro®) 
and a multispectral camera (MAPIR 
Survey 3®).

The RGB camera had a 20-megapixel 
resolution and included a 5350-mAh 
battery, a CMOS sensor, and a 9-mm 
fixed focal length lens. The collected 
images measured 4864 × 3648 pixels, 
with longitudinal and lateral overlaps 
of 80 and 75%, respectively, resulting 
in a spatial resolution of 0.004 m pixel-1. 
The multispectral camera (with a 12,000 
mAh battery) had a 12-megapixel 

resolution to capture red (R), green 
(G), and near-infrared (IR) bands. The 
spatial resolution was the same as the 
RGB camera.

Flight plan was previously set to 
autopilot mode with the DroneDeploy® 
application. The UAV was configured 
to cover the experimental area at 3 m s-1 
fast and 20 m high. To minimize shadow 
effects, the images were captured at 
noon, the period of more uniform solar 
radiation on the earth’s surface. After 
the flight, the raw images were stored in 
the camera memory and later transferred 
to a computer in JPEG format for 
processing.

Image processing
The images stored in the computer 

were loaded into Pix4D software. 
Then, two orthophotos were generated 
to represent the set of raw images 
and georeferenced to represent the 
whole experimental area. The resulting 
orthophotos consisted both of an RGB 
orthophoto with red (band 1), green 
(band 2), and blue (band 3) channels 
and a multispectral orthophoto with 
red (band 1), green (band 2), and 
near-infrared (band 3) channels. 
The georeferencing was performed 
according to the coordinate system 
EPSG: 32723 – WSG 84/UTM zone 
23S.

Besides providing the RGB images 
with radiometric correction, Pix4D 
software performed the geometric 
calibration of the cameras by self-
calibration using SFM (Structure from 
Motion).

Moreover, a radiometric calibration 
of the Mapir RGN sensor was performed. 
A calibration target was placed on 
the ground, and after the flight, the 
radiometric calibration of the camera 
was performed, so that the images 
were in accordance with a known and, 
therefore, comparable radiometric 
reference. In practice, the solution was 
in the calibration plates of the sensor. 
The camera’s software, Mapir Camera 
Control, was used in the radiometric 
calibration.

Data extraction
The traits extracted from the RGB 

orthophotos were the vegetative canopy 
area (VCA), the visible atmospherically 
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resistant index (VARI), and the mean 
reflectance values of the R, G, and 
B channels. The mean values of the 
near-infrared reflectance (NIR) and the 
normalized difference vegetation index 
(NDVI) were extracted from the IR 
orthophotos.

First, using QGIS 3.4.12 software, 
each plot was delimited and manually 
cut out in both types of orthophotos, 
resulting in 30 images per orthophoto 
(each image represented a single 
experimental plot; see Figure 1). Next, 
all images were segmented into two 
groups, using the k-means clustering 
algorithm (MacQueen, 1967) with 
channels “a” and “b” of the scale Lab. 
Python language was used to segment 
the images.

From the segmented RGB images, 
the VCA was calculated by using the 
numbers of green pixels in each plot, 
which were later quantified as area (m²) 
by multiplying the number of green 
pixels by the pixel size (1.96 × 10-5 
m2). Still regarding the same images, 
the mean reflectance values of the R, G, 
and B channels were calculated per plot, 
considering that each pixel can assume 
a value between 0 to 255 per channel. 
The VARI was calculated according to 
Equation (1), as described by Gitelson 
et al. (2002).

    (1)
where R, G, and B are the mean 
reflectance values of the red, green, 
and blue channels, respectively.

The NIR and NDVI traits were 
extracted from the previously segmented 
IR images. The IR channel reflectance 
was estimated from the pixel-level value 
referring to the near-IR channel. The 
NDVI calculation was performed with 
the near-IR and R channels according 
to Equation (2), as described by Rouse 
et al. (1974):

   (2)
where R and NIR are the mean 
reflectance values of the red and near-
infrared channels, respectively.

The soil plant analysis development 
(SPAD) index, ear yield (EY), and 
grain yield (GY) were evaluated using 
conventional methods. In each plot row 

and from the seventh plant, the five 
consecutive plants were evaluated to 
determine the SPAD index, totaling ten 
plants per plot. The SPAD index, which 
measures the chlorophyll content, was 
estimated using a Minolta SPAD-502 
portable chlorophyll meter to the last 
two expanded leaves at the V7 stage six 
times per plant. The same plants also 
provided the EY and GY, which were 
evaluated after manually harvesting 
and weighing the ears and grains on 
a harvest scale. Owing to the different 
dates of female bloom between the 
genotypes, the harvesting of the ears 
was staggered when they reached the 
harvest point (R4 stage). To determine 
the ear harvest point, grain maturity 
was monitored until it reached a pasty 
texture. The EY was estimated from 
the weight of the ears from ten plants 
per plot to kilograms per hectare. 
Subsequently, the grains of the same 
ears were cut close to the cob with a 
knife to obtain the GY, which was also 
extrapolated to kilograms per hectare.

Statistical analysis
The data provided the assumptions 

(homogeneity of variances, normality 
of residuals, and additivity of block 
designs) of the analysis of variance 
(ANOVA) at 0.01 level of significance. 
Then, the data were fed into ANOVA, 
and the mean values were grouped 
using the Scott-Knott test. In addition, 
the correlations between traits and 
genotypic coefficient of determination 
of traits with significant difference by 
ANOVA were estimated. All the analyses 
were performed with R software (R 
Development Core Team, version 3.6.1) 
using the ExpDes (R package version 
1.1.2) and ggplot2 (Package ggplott2 
version 3.3.0) packages to test the mean 
values, estimate the parameters and plot 
the graphs.

RESULTS AND DISCUSSION

The genotypes evaluated through 
digital aerial images differed in R, 
VCA, VARI, and NDVI, but not in 
G, B, and NIR (Figure 2). There were 
also differences in the conventionally 
evaluated traits, that is, the SPAD index, 
EY, and GY. The results of this study 
were similar to those of previous studies, 

indicating that RGB imaging was an 
useful tool for acquiring phenotypic 
data and screening sweet corn genotypes 
(Makanza et al., 2018b).

The hybrids showed higher yields 
(EY and GY) than the S3 populations. 
GY of the hybrid A was 25% higher 
than that of the hybrid B. These results 
were possibly due to the greater number 
of loci in heterozygosity, related to 
heterosis (hybrid vigor), of these hybrids 
when compared to the S3 populations, 
which show more loci in homozygosity, 
which relates to inbreeding depression 
(Borém et al., 2017).

In general, the hybrids showed 
higher values of vegetative indices 
(VARI and NDVI) and VCA than that 
of the S3 populations. The NDVI was 
the only index that differed among the 
S3 populations. The genotypes L6P15 
and L8P18 showed the lowest NDVI 
values. Comparing the highest yielding 
genotype (hybrid A) with one of the 
poorest yielding genotype (L8P18), it 
was possible to see variation in VCA, 
VARI, and NDVI indices, which were 
highlighted by color composition in the 
image (Figure 3). The high number of 
dark green and blue pixels meant high 
VARI and NDVI indices, respectively.

VARI and NDVI indices indicate 
many plant physiological parameters, 
such as leaf chlorophyll content and 
leaf nitrogen concentration (Cairns 
et al., 2012; Vergara-Díaz et al., 
2016). High VCA values imply great 
photosynthetically active area (Blancon 
et al., 2019). Moreover, this trait 
provides the crop with an additional 
benefit related to weed control. As 
this study evaluated (V7 stage), higher 
VCA at the beginning of the crop cycle 
promoted faster closure of leaf canopy 
between the crop rows, leading to less 
infestation of weeds. All these factors 
are determinants for a higher EY and 
GY (Pereira Filho & Teixeira, 2016).

Plants in good physiological 
condition have high NDVI values, that 
is, they display high reflectance values 
in the G and NIR channels and low 
values predominantly in the R channel 
(Huang et al., 2012). This pattern was 
observed in this study, in which the R 
channel presented the lowest values 

MF Silva et al.
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for hybrids A and B (88.63 and 99.96, 
respectively). Excluding hybrids, the 
analysis of populations suggests a 
positive correlation between GY and R 
(Figure 2).

Most of the traits showed a high 
correlation with each other (SPAD, 
VARI, NDVI, VCA, EY, GY), even 
traits from different methodologies of 
evaluation (classical phenotyping and 
high-throughput phenotyping; Figure 
4). By contrast, the same traits were 
negatively correlated with the mean 
reflectance values of the R channel. 
Mostly the genotypic coefficient of 
determination values was high, varying 
between 0.71 and 0.93, indicative of 
greater selection efficiency (Figure 4). In 

this study, R, VCA, VARI, NDVI (traits 
from high-throughput phenotyping) 
showed high genotypic coefficient of 
determination (close to 0.8).

Among the three channels of image 
(R, G and B) evaluated, the R channel 
was the only one to show variability 
regarding genotypes. Moreover, it 
showed high correlations (close to -0.8) 
with traits related to plant development 
(VCA) and yields (EY and GY). These 
results suggest that, from RGB images, 
the R channel is the most useful among 
the other channels of RGB image for 
selecting superior genotypes of sweet 
corn.

The correlations among traits are 
important, as they help to know if it 

is possible to use traits extracted from 
RGB and multispectral imaging to better 
understand or even replace some traits 
from classical phenotyping. Such traits 
can work as secondary to those that are 
important to sweet corn breeding with 
low heritability or difficult to measure 
(indirect selection) (Crain et al., 2017). 
In addition to having a high correlation 
with important traits, the secondary 
traits must have high heritability or high 
genotypic coefficient of determination 
(Cruz et al., 2012).

The results showed that VARI and 
NDVI indices can be used in indirect 
selection for the SPAD index, as the 
correlation among these traits and the 
genotypic coefficient of determination 
was close to 0.8. The SPAD index 
measures the chlorophyll content of the 
leaf and, therefore, it relates to starch 
production and grain yield (Yang et al., 
2012; Xiong et al., 2015). However, 
SPAD is a difficult or unviable index 
to be measured in sweet corn breeding 
programs, because it requires a time-
consuming evaluation. Then, the VARI 
and NDVI indices by means of high-
throughput phenotyping can replace 
the SPAD index and benefit sweet corn 
breeding programs (Miller et al., 2017; 
Makanza et al., 2018a; Maciel et al., 
2019).

These same indices (VARI and 
NDVI) and other traits from images 
(R and VCA) were highly correlated to 
EY and GY. Therefore, these traits can 
also be used in early selection or pre-
selection for predicting the EY and GY, 
thus reducing costs and time in broad 
breeding programs (Gracia-Romero 
et al., 2018; Makanza et al., 2018b; 
Hinojosa et al., 2019).

Because of the high costs of 
new sensors, this study could only 
estimate a few indices. However, 
sensors that capture more bands of 
the electromagnetic spectrum, such 
as thermal and fluorescence cameras, 
help extract several other indices [i.e. 
Soil Adjusted Vegetation Index (SAVI) 
and Green Normalized Difference 
Vegetation Index (GNDVI)] and relevant 
information (i.e. leaf temperature, leaf 
chlorophyll fluorescense and diseases) 
(Araus et al., 2012).

Figure 1. Experimental setup. A. Aerial image mosaic of the experiment with plots of sweet 
corn hybrids, captured with an unmanned aerial vehicle platform; B. the experimental setup 
with single plot details; and C. plot image segmentation by the k-means clustering algorithm. 
Monte Carmelo, UFU, 2021.

High-throughput phenotyping by RGB and multispectral imaging analysis of genotypes in sweet corn
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The traits obtained from images 
in field depend on the cultivation 
management used during the crop cycle 
and on the phenological stage at the time 
of image capture (Vergara-Díaz et al., 
2016; Fernandez-Gallego et al., 2018; 
Gracia-Romero et al., 2018). Therefore, 
in order to recommend a broad use of 
traits from high-throughput phenotyping 

in sweet corn breeding, further studies 
under different conditions are essential.

Therefore, the high-throughput 
phenotyping based on digital image 
analysis was efficient in identifying 
sweet corn genotypes with higher and 
lower yield among populations and 
between hybrids and populations. The 
VCA, NDVI, and VARI indices were 

strongly associated with grain yield, 
allowing the efficient and quickly 
selection of more productive genotypes 
in an indirect and non-destructible way. 
The hybrids were more productive 
than S3 populations, showing that the 
proposal of this research is an efficient 
tool to help the selection of superior 
genotypes on breeding programs.

Figure 2. Mean values of nine genotypes of sweet corn. *Means followed by the same letter and color belong to the same group according 
to Scott-Knott test at 0.05 of significance.; R, G, B, and NIR = mean reflectance values in the red, green, blue, and near-infrared bands, 
respectively; VCA = vegetative canopy area (m²); VARI = visible atmospherically resistant index; NDVI = normalized difference vegetation 
index; SPAD = soil plant analysis development index; EY = ear yield (kg ha-1); GY = grain yield (kg ha-1). Monte Carmelo, UFU, 2021.

MF Silva et al.
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