hb
Horticultura Brasileira
Hortic. Bras.
0102-0536
1806-9991
Associação Brasileira de Horticultura
RESUMO
Chicória é um vegetal tradicionalmente consumido como salada crua ou cozida. É uma fonte de importantes compostos nutricionais e um dos procedimentos para sua industrialização é a secagem, que aumenta a vida útil, preserva seus nutrientes e reduz as perdas por microrganismos. Esta pesquisa avaliou a cinética de secagem de folhas de chicória em diferentes temperaturas e ajustou os dados experimentais de acordo com modelos matemáticos. O delineamento experimental foi inteiramente casualizado, em triplicata, onde cada unidade amostral era uma bandeja de alumínio perfurada, contendo cerca de 100 g de folhas frescas. As folhas de chicória foram secas em estufa, a 50, 60, 70 e 80°C. Os modelos matemáticos foram ajustados de acordo com os dados experimentais e, a partir deles, a análise de regressão não-linear foi realizada pelos métodos de Gauss-Newton e Quasi-Newton. Em todas as condições, os modelos matemáticos que melhor se ajustaram à cinética de secagem das folhas de chicória foram o Midilli, o Logarítmico e o Valcam. O modelo logarítmico, nessas condições de secagem, pode ser descrito com precisão como adequado para prever e simular a cinética de secagem das folhas de chicória, pois apresentou melhores resultados nos parâmetros estatísticos avaliados.
Endive is a leafy vegetable, rarely explored industrially. It contains important nutrients, mainly inulin, and is an important source of phytochemicals. Its leaves are traditionally eaten as raw and cooked salad in Mediterranean cuisine (Bayazid et al., 2020). Therefore, it becomes interesting to reduce its moisture content by drying method, which promotes an increase in shelf life, preserves its nutrients and prevents microbial growth. This processing can also enable the industrial use of the endive, especially in products that use its soluble form (Schneider et al., 2016; Santos et al., 2017).
The term equilibrium is sought in all areas of knowledge; however, there is a relative portion of variables that hinder the knowledge and standardization of this equilibrium condition for different types of products. To assess drying conditions, hygroscopic equilibrium is essential. Therefore, mathematical modeling has been used to identify and optimize industrial operations (Gasparin et al., 2017).
Mathematical modeling can be used as an aid tool to identify the equilibrium moisture content and the mathematical model that best describes the drying kinetics. The mathematical models contribute to the sizing of drying procedures, optimizing time, standardizing mechanized activities and reducing financial costs (Brooker et al., 1992; Berbert et al., 1995).
Therefore, the aim of this research was to (i) investigate the drying kinetics of endive leaves, (ii) obtain drying curves by fits of mathematical models, (iii) determine the best fit using statistical analysis.
MATERIAL AND METHODS
The endive leaves were purchased at a store from Rio Verde, Goias, Brazil and then, selected according to similar visual aspects and absence of physical injuries. The leaves were sanitized in chlorinated water for 15 min and dried on paper towels. Approximately 100 g of fresh leaves were uniformly distributed in a thin layer on the perforated rectangular aluminum trays (30x15x2 cm), and dried in an oven, using forced air circulation at 50, 60, 70 and 80°C, to determine the drying kinetics.
The temperature and relative humidity of the ambient air were monitored using a data logger, and the relative humidity inside the oven was obtained through the basic principles of psychometrics with the GRAPSI computer program.
To determine the drying curves and fit the models, the leaves were dried to a constant mass. The moisture content was determined in an oven at 105 ± 3°C, in three replicates, until constant mass was reached (Zenebon et al., 2008).
At the end of each drying process, the final equilibrium moisture content was determined, being 9.1; 7.4; 5.61 and 4.28% (d.b.), respectively, for the drying temperatures of 50, 60, 70 and 80°C.
The product’s moisture content ratios were determined by Equation 1.
RX=
X
*
-
X
e
*
X
i
*
-
X
e
*
(1)
where RX is the moisture ratio (non-dimensional); is the moisture content (% d.b.); is rhe initial moisture content (% d.b.); and, is the equilibrium moisture content (% d.b.).
The experimental data obtained from the drying of the endive leaves were used to adjust the mathematical models, with twelve empirical and non-empirical equations (Equations 2 to 13) commonly used to describe the drying processes of vegetable products (Box 1).
Box 1
Mathematical models (Equations. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13) applied to drying kinetics data. Rio Verde, IF Goiano, 2020.
t = Time (h); k, k0, k1 = Equation constants (h-1); a, b, c, n = Equation parameters; RX = Moisture ratio
The mathematical models were adjusted according to the experimental data, and, from these, non-linear regression analysis was carried out by the Gauss-Newton and Quasi-Newton methods.
The models were selected based on the magnitude of the coefficient of determination (R2), the chi-squared test (χ2), the mean relative error (P) and the estimated standard deviation (SE) (Equations. 14, 15and 16), at the 5% significance level and the 95% confidence interval (p<0.05), according to adaptations presented by Martins et al. (2018).
P =
100
n
∑
|Y-Ŷ|
Y
(14)
SE =
∑(Y-Ŷ
2
)
DF
(15)
χ
2
=
Σ
(Y-Ŷ)
2
DF
(16)
Where Y is the experimental value; Ŷ is the estimated value; n is the number of data sets; and, DF is the degree freedom.
In addition to the above parameters, Akaike’s information criterion (AIC) and Schwarz’s Bayesian information criterion (BIC) were used (Equations 17 and 18). The AIC is used to compare non-nested models or to compare three or more models. Lower AIC values reflect a better fit (Akaike, 1974).
AIC = -2ln(L) + 2k
(17)
Where k is the number of estimated parameters; and, L is the value of the likelihood.
BIC also considers the degree of parameterization of the model, and therefore, the smaller the BIC value, the better the model adjustment (Schwarz, 1978).
BIC = -2ln(L) + 2ln(N)k
(18)
where: k is the number of estimated parameters; L is the value of the likelihood; and, N is the number of recorded measurements.
RESULTS AND DISCUSSION
Figure 1 shows the moisture ratio of endive leaves (Cichorium intybus) during drying time at 50, 60, 70 and 80°C.
Figure 1
Moisture ratio of endive leaves during drying at 50, 60, 70 and 80°C. Rio Verde, IF Goiano, 2020.
As shown, the drying time of leaves decreases with increases of drying air temperature. In accordance to Gomes et al. (2017), this is due to the pressure difference of the air vapor saturated with the water inside the vegetable product, allowing the water to move from inside the leaves to the drying air in a shorter period. This fact directly influences the quality of the leaves, and a long drying can cause color deterioration, losses in nutritional composition and lead to the growth of molds (Babu et al., 2018). In addition, it is necessary to evaluate the bioactive compounds of the formed product at different drying temperatures, as since most of these compounds are known to be susceptible to degradation at elevated temperatures.
There was a faster loss of moisture content at the beginning of the drying process at all temperatures, due to the greater ease of water removal on the product surface. According to Babalis et al. (2006), after the evaporation of surface water, the velocity of drying air is minimized due to the water gradually moving to the outermost layers of the product, prevailing the process of liquid diffusion that will be influenced by the temperature of drying air. At higher temperatures, the moisture ratio of the final content was lower. According to Sagrin & Chong (2013), this occurred because more heat was supplied to the samples at higher temperatures, thus inducing more evaporation of leaf moisture.
The average times to complete the drying process were 6.5; 4; 2.33 and 2 hours, at temperatures of 50, 60, 70 and 80ºC, respectively. Similar drying times were observed in drying of salvia leaves (Radünz et al., 2010), Azadirachta indica (Vidal et al., 2016), Bauhinia forficata (Silva et al., 2017) and thin layer drying of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum) (Mbegbu et al., 2021).
The statistical parameters for each drying condition obtained using empirical and non-empirical equations are shown in Table 1.
According to the Chi-square test, all the adjusted models showed values within the 95% confidence interval. As this is an analysis that evaluates the difference in the model’s estimate, some authors evaluate the values of this parameter and recommend adjustments with lower values (Günhan et al., 2005; Oliveira et al., 2018). The Midilli and Valcam generally showed lower values for this parameter under all drying conditions.
All the adjustments of the models presented coefficients of determination above 98% (Table 1). Madamba et al. (1996) indicated magnitude values of coefficient of determination (R²) greater than 95% for fitting mathematical models to experimental data. However, these criteria cannot be used as decisive.
The recommended fit of mathematical drying models indicates that the average relative error (P) should be less than 10%, and this criterion is often used in the mathematical modeling of drying processes (Mohapatra & Rao, 2005; Vidal et al., 2016; Martins et al., 2018; Oliveira et al., 2018). Thus, for drying of endive leaves at 50ºC, the Thompson, Wang & Singh, and Two-terms exponential models aren’t recommended, while at temperatures of 60 and 80ºC only the models of Midilli, Logarithmic and Valcam are recommended to estimate the drying kinetic of this product. At temperature of 70ºC, only Midilli, Logarithmic, Two-term and Valcam models are recommended for drying kinetics adjustments.
Table 1
Statistical parameter values obtained in the drying of the endive leaves. Rio Verde, IF Goiano, 2020.
Temperature (ºC)
Model
SE (%)
χ²
P (%)
R² (%)
50
Page modified
0.00042
0.00010
9.65239
99.88680
Page
0.00042
0.00010
9.65242
99.88680
Midilli
0.00007
0.00002
2.12671
99.98098
Newton
0.00168
0.00041
6.42475
99.52973
Thompson
0.00088
0.00022
11.71069
99.76177
Henderson and Pabis
0.00089
0.00022
5.68852
99.75868
Two-term
0.00019
0.00005
6.44606
99.95226
Verna
0.00179
0.00046
6.42469
99.52973
Logarithmic
0.00084
0.00021
8.20583
99.77097
Wang and Singh
0.01726
0.00432
43.68686
99.31953
Two-term Exponential
0.00086
0.00022
12.49230
99.76681
Valcam
0.00019
0.00005
4.37606
99.94725
60
Page modified
0.00157
0.00047
17.50407
99.52739
Page
0.00157
0.00047
17.50362
99.52739
Midilli
0.00041
0.00014
8.16207
99.88822
Newton
0.00150
0.00043
17.56482
99.52738
Thompson
0.00157
0.00047
17.57557
99.52722
Henderson and Pabis
0.00149
0.00045
18.45762
99.55138
Two-term
0.00164
0.00055
18.45779
99.55138
Verna
0.00146
0.00046
19.37658
99.52738
Logarithmic
0.00080
0.00025
4.53503
99.77023
Wang and Singh
0.00568
0.00171
22.80828
98.28564
Two-term Exponential
0.00139
0.00042
19.36830
99.52738
Valcam
0.00043
0.00014
5.46965
99.88239
70
Page modified
0.00116
0.00032
10.04876
99.65315
Page
0.00116
0.00032
10.04881
99.65315
Midilli
0.00025
0.00008
2.98136
99.93051
Newton
0.00123
0.00033
11.89703
99.61603
Thompson
0.00128
0.00036
11.90049
99.61586
Henderson and Pabis
0.00128
0.00036
11.88703
99.61604
Two-term
0.00098
0.00030
8.28228
99.61604
Verna
0.00976
0.00282
32.98195
99.61603
Logarithmic
0.00050
0.00014
2.63217
99.82722
Wang and Singh
0.00341
0.00095
12.54784
98.61603
Two-term Exponential
0.00128
0.00036
11.89713
99.61603
Valcam
0.00025
0.00008
2.28777
99.92985
80
Page modified
0.00245
0.00074
26.87871
99.29912
Page
0.00245
0.00074
26.87878
99.29912
Midilli
0.00048
0.00016
9.07189
99.87539
Newton
0.00356
0.00103
39.87322
98.93866
Thompson
0.00371
0.00112
39.87827
98.93837
Henderson and Pabis
0.00359
0.00108
38.54671
98.97394
Two-term
0.00397
0.00132
38.54814
98.97394
Verna
0.02403
0.00760
93.70589
93.45119
Logarithmic
0.00061
0.00019
5.41558
99.83280
Wang and Singh
0.00239
0.00072
15.53913
99.31747
Two-term Exponential
0.00371
0.00112
39.87430
98.93866
Valcam
0.00042
0.00014
5.76498
99.89207
R² = Coefficient of determination, χ² = Chi-square, P = Mean relative error, SE = Estimated standard deviation
After analyzing all the mathematical parameters, the Midilli, Logarithmic and Valcam models showed the best fit for drying endive leaves under all conditions. The AIC and BIC parameters were used to define the best model among them (Table 2).
Table 2
Akaike information criterion (AIC) and Bayesian Schwarz information criterion (BIC) of the models with best adjustments of endive leaves drying kinetics at different temperatures. Rio Verde, IF Goiano, 2020.
T (ºC)
Midilli
Logarithmic
Valcam
AIC
BIC
AIC
BIC
AIC
BIC
50
138.20530
133.75340
95.35620
91.79471
119.80960
115.35770
60
73.56327
70.73852
66.18397
63.92417
72.88560
70.06085
70
94.35863
90.81838
85.53293
82.70073
94.20406
90.66380
80
71.47202
68.64727
69.64292
67.38312
73.33870
70.51396
The AIC and BIC parameters are currently used to indicate the best model among those with a good fit to the experimental data (Quequeto et al., 2019; Souza et al., 2019). Gomes et al. (2018) used these parameters to adjust mathematical models for the drying of crushed jambu dough, defining that the Logarithmic model was more suitable for most drying conditions.
As stated by Akaike (1974) and Schwarz (1978), lower values for these criteria indicate a better fit, therefore, the logarithmic model is the one that best represents the drying kinetics of endive leaves under all the conditions studied, and is therefore the model selected to estimate the drying curves of the product under the different conditions (Figure 2).
Figure 2
Estimated values from logarithmic model of drying kinetics of endive leaves. Rio Verde, IF Goiano, 2020.
Figure 2 shows a good fit between the data estimated by the model and the experimental data. The Logarithmic model was also recommended to estimate the drying of coriander both under the action of direct and diffuse radiation, as well as drying in an oven (Sousa et al., 2018). The Logarithmic model was the best fit for the drying curves of the palm fruit (Santos et al., 2016), foamed mango pulp (Silva Filho et al., 2016), crushed jambu mass (Gomes et al., 2018), and slices of acuri (Santos et al., 2019).
Table 3 presents the values of the coefficients of the Logarithmic model used in the adjustment of the equations.
Table 3
Estimated values of logarithmic model coefficients to predict the drying curve of endive leaves. Rio Verde, IF Goiano, 2020.
Coefficient
50ºC
60ºC
70ºC
80ºC
a
0.95499
1.03069
1.05149
1.2733
k
0.52995
0.63899
0.93750
0.98224
c
0.00944
-0.05740
-0.06973
-0.14409
It can be seen that the coefficients (a) and (k) increase with increasing temperature, while the coefficient (c) shows the opposite behavior. According to Corrêa et al. (2010) this behavior of the k coefficient, which is a drying constant, is expected, as higher temperatures lead to a higher drying rate. The trend of coefficients (a) and (c) has not been described in the literature, as these coefficients are empirical and have no theoretical relationship to the fit of the equation to experimental data.
The conditions influence the drying behavior, because with the increase in temperature, there was a decrease in the drying time necessary to reduce the moisture content of the endive leaves.
The mathematical models of Midilli, Logarithmic and Valcam were the ones that best fitted the drying curves for all conditions. From the parameters AIC and BIC, it was determined that the best among them was the Logarithmic model, which was used to estimate the drying kinetics of the endive leaves.
ACKNOWLEDGMENTS
To Instituto Federal Goiano, Post-Harvest of vegetable products and Phytochemistry laboratories.
REFERENCES
AKAIKE, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control19: 716-723.
AKAIKE
H
1974
A new look at the statistical model identification
IEEE Transactions on Automatic Control
19
716
723
BABALIS, SJ; PAPANICOLAOU, E; KYRIAKIS, N; BELESSIOTIS, VG. 2006. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering75: 205-214.
BABALIS
SJ
PAPANICOLAOU
E
KYRIAKIS
N
BELESSIOTIS
VG
2006
Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica)
Journal of Food Engineering
75
205
214
BABU, AK; KUMARESAN, G; RAJ, VAA; VELRAJ, R. 2018. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews 90: 536-556.
BABU
AK
KUMARESAN
G
RAJ
VAA
VELRAJ
R
2018
Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models
Renewable and Sustainable Energy Reviews
90
536
556
BAYAZID, AB; PARK, SH; KIM, JG; LIM, BO. 2020. Green chicory leaf extract exerts anti-inflammatory effects through suppressing LPS-induced MAPK/NF-κB activation and hepatoprotective activity in vitro. Food and Agricultural Immunology 31: 513-532.
BAYAZID
AB
PARK
SH
KIM
JG
LIM
BO
2020
Green chicory leaf extract exerts anti-inflammatory effects through suppressing LPS-induced MAPK/NF-κB activation and hepatoprotective activity in vitro
Food and Agricultural Immunology
31
513
532
BERBERT, PA; QUEIROZ, DM; SILVA, JS; PINHEIRO FILHO, JB. 1995. Simulation of coffee drying in a fixed bed with periodic airflow reversal. Journal of Agricultural Engineering Research60: 167-173.
BERBERT
PA
QUEIROZ
DM
SILVA
JS
PINHEIRO
JB
FILHO
1995
Simulation of coffee drying in a fixed bed with periodic airflow reversal
Journal of Agricultural Engineering Research
60
167
173
BROOKER, DB; BAKER-ARKEMA, FW; HALL, CW. 1992. Drying and storage of grains and oilseeds. Springer, US: Springer-Verlag. 450p.
BROOKER
DB
BAKER-ARKEMA
FW
HALL
CW
1992
Drying and storage of grains and oilseeds
Springer, US
Springer-Verlag
450p.
CORRÊA, PC; OLIVEIRA, GHH; BOTELHO, FM; GONELI, ALD; CARVALHO, FM. 2010. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres 57: 595-601.
CORRÊA
PC
OLIVEIRA
GHH
BOTELHO
FM
GONELI
ALD
CARVALHO
FM
2010
Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem
Revista Ceres
57
595
601
GASPARIN, PP; CHRIST, D; COELHO, SRM. 2017. Secagem de folhas Mentha piperita em leito fixo utilizando diferentes temperaturas e velocidades de ar. Revista Ciência Agronômica 48: 242-250.
GASPARIN
PP
CHRIST
D
COELHO
SRM
2017
Secagem de folhas Mentha piperita em leito fixo utilizando diferentes temperaturas e velocidades de ar
Revista Ciência Agronômica
48
242
250
GOMES, FP; RESENDE, O; SOUSA, EP; OLIVEIRA, DE; ARAÚJO NETO, FRD. 2018. Cinética de secagem da massa triturada de ‘jambu’: Difusividade efetiva e energia de ativação. Revista Brasileira de Engenharia Agrícola e Ambiental22: 499-505.
GOMES
FP
RESENDE
O
SOUSA
EP
OLIVEIRA
DE
ARAÚJO
FRD
NETO
2018
Cinética de secagem da massa triturada de ‘jambu’: Difusividade efetiva e energia de ativação
Revista Brasileira de Engenharia Agrícola e Ambiental
22
499
505
GOMES, NHF; SILVA NETO, HCD; ALVES, JJL; RODOVALHO, RS; SOUSA, CM. 2017. Cinética de secagem de folhas de Cymbopogon citratus. Engevista19: 328-338.
GOMES
NHF
SILVA
HCD
NETO
ALVES
JJL
RODOVALHO
RS
SOUSA
CM
2017
Cinética de secagem de folhas de Cymbopogon citratus
Engevista
19
328
338
GÜNHAN, T; DEMIR, V; HANCIOGLU, E; HEPBASLI, A. 2005. Mathematical modelling of drying of bay leaves. Energy Conversion and Management 46:1667-1679.
GÜNHAN
T
DEMIR
V
HANCIOGLU
E
HEPBASLI
A
2005
Mathematical modelling of drying of bay leaves
Energy Conversion and Management
46
1667
1679
MADAMBA, PS; DRISCOLL, RH; BUCKLE, KA. 1996. The thin-layer drying characteristics of garlic slices. Journal of food engineering 29: 75-97.
MADAMBA
PS
DRISCOLL
RH
BUCKLE
KA
1996
The thin-layer drying characteristics of garlic slices
Journal of food engineering
29
75
97
MARTINS, EA; GONELI, AL; GONÇALVES, AA; HARTMANN FILHO, CP; SIQUEIRA, VC; OBA, GC. 2018. Drying kinetics of blackberry leaves. Revista Brasileira de Engenharia Agrícola e Ambiental22: 570-576.
MARTINS
EA
GONELI
AL
GONÇALVES
AA
HARTMANN
CP
FILHO
SIQUEIRA
VC
OBA
GC
2018
Drying kinetics of blackberry leaves
Revista Brasileira de Engenharia Agrícola e Ambiental
22
570
576
MBEGBU, NN; NWAJINKA, CO; AMAEFULE, DO. 2021. Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon7: e05945.
MBEGBU
NN
NWAJINKA
CO
AMAEFULE
DO
2021
Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum)
Heliyon
7
e05945
MOHAPATRA, D; RAO, PS. 2005. A thin layer drying model of parboiled wheat. Journal of Food Engineering 66: 513-518.
MOHAPATRA
D
RAO
PS
2005
A thin layer drying model of parboiled wheat
Journal of Food Engineering
66
513
518
OLIVEIRA, PMD; OLIVEIRA, DE; RESENDE, O; SILVA, DV. 2018. Study of the drying of mesocarp of baru (Dipteryx alata Vogel) fruits. Revista Brasileira de Engenharia Agrícola e Ambiental 22: 872-877.
OLIVEIRA
PMD
OLIVEIRA
DE
RESENDE
O
SILVA
DV
2018
Study of the drying of mesocarp of baru (Dipteryx alata Vogel) fruits
Revista Brasileira de Engenharia Agrícola e Ambiental
22
872
877
QUEQUETO, WD; RESENDE, O; SILVA, PC; SILVA, FAZ; SILVA, LDM. 2019. Drying kinetics of noni seeds. Journal of Agricultural Science 11: 250-258.
QUEQUETO
WD
RESENDE
O
SILVA
PC
SILVA
FAZ
SILVA
LDM
2019
Drying kinetics of noni seeds
Journal of Agricultural Science
11
250
258
RADÜNZ, LL; MOSSI, AJ; ZAKRZEVSKI, CA; AMARAL, ASD; GRASSMANN, L. 2010. Análise da cinética de secagem de folhas de sálvia. Revista Brasileira de Engenharia Agrícola e Ambiental 14: 979-986.
RADÜNZ
LL
MOSSI
AJ
ZAKRZEVSKI
CA
AMARAL
ASD
GRASSMANN
L
2010
Análise da cinética de secagem de folhas de sálvia
Revista Brasileira de Engenharia Agrícola e Ambiental
14
979
986
SAGRIN, MS; CHONG, GH. 2013. Effects of drying temperature on the chemical and physical properties of Musa acuminata Colla (AAA Group) leaves. Industrial Crops and Products45: 430-434.
SAGRIN
MS
CHONG
GH.
2013
Effects of drying temperature on the chemical and physical properties of Musa acuminata Colla (AAA Group) leaves
Industrial Crops and Products
45
430
434
SANTOS, AE; MARTINS, GMV; CANUTO, MFS; VIEIRA, EDS; ALMEIDA, RD. 2016. Modelagem matemática para a descrição da cinética de secagem do fruto da palma, Opuntia fícus-indica. Revista Verde de Agroecologia e Desenvolvimento Sustentável11: 1-6.
SANTOS
AE
MARTINS
GMV
CANUTO
MFS
VIEIRA
EDS
ALMEIDA
RD
2016
Modelagem matemática para a descrição da cinética de secagem do fruto da palma, Opuntia fícus-indica
Revista Verde de Agroecologia e Desenvolvimento Sustentável
11
1
6
SANTOS, DC; LEITE, DDF; LISBÔA, JF; SANTOS, FS; LIMA, TLB; FIGUEIREDO, RMF; COSTA, TN. 2019. Modelagem e propriedades termodinâmicas da secagem de fatias de acuri. Brazilian Journal of Food Technology22: e2018031.
SANTOS
DC
LEITE
DDF
LISBÔA
JF
SANTOS
FS
LIMA
TLB
FIGUEIREDO
RMF
COSTA
TN
2019
Modelagem e propriedades termodinâmicas da secagem de fatias de acuri
Brazilian Journal of Food Technology
22
e2018031
SANTOS, PAD; LEITE, ND; MARTINS, LDSA; LODETE, AR; MOTTA, RG. 2017. Bebida fermentada a base de soja com sabor de ameixa e suplementada com inulina em substituição ao iogurte tradicional. Veterinária e Zootecnia24: 724-733.
SANTOS
PAD
LEITE
ND
MARTINS
LDSA
LODETE
AR
MOTTA
RG
2017
Bebida fermentada a base de soja com sabor de ameixa e suplementada com inulina em substituição ao iogurte tradicional
Veterinária e Zootecnia
24
724
733
SCHNEIDER, L; MANENTE, BJA; CARDOSO, EV; SILVA, EC; SANTOS, EF; NOVELLO, D. 2016. Adição de inulina em pão de mel: caracterização físico-química e aceitação sensorial entre crianças. Saúde42: 205-214.
SCHNEIDER
L
MANENTE
BJA
CARDOSO
EV
SILVA
EC
SANTOS
EF
NOVELLO
D
2016
Adição de inulina em pão de mel: caracterização físico-química e aceitação sensorial entre crianças
Saúde
42
205
214
SCHWARZ, G. Estimating the dimension of a model. 1978. Annals of statistics6: 461-464.
SCHWARZ
G
Estimating the dimension of a model
1978
Annals of statistics
6
461
464
SILVA FILHO, ED; FIGUEIRÊDO, MF; QUEIROZ, AJM; GUIMARÃES, MKA. 2016. Cinética de secagem em camada de espuma da polpa da manga cv. Haden. Comunicata Scientiae7: 354-361.
SILVA
ED
FILHO
FIGUEIRÊDO
MF
QUEIROZ
AJM
GUIMARÃES
MKA
2016
Cinética de secagem em camada de espuma da polpa da manga cv. Haden
Comunicata Scientiae
7
354
361
SILVA, FP; SIQUEIRA, VC; MARTINS, EA; MIRANDA, F; MELO, RM. 2017. Thermodynamic properties and drying kinetics of Bauhinia forficata Link leaves. Revista Brasileira de Engenharia Agrícola e Ambiental21: 61-67.
SILVA
FP
SIQUEIRA
VC
MARTINS
EA
MIRANDA
F
MELO
RM
2017
Thermodynamic properties and drying kinetics of Bauhinia forficata Link leaves
Revista Brasileira de Engenharia Agrícola e Ambiental
21
61
67
SOUSA, KSM; SILVA, TBS; LESSA, TBS; BARBOSA, KS; SILVA, VP; MACHADO, NS. 2018. Estudo da cinética de secagem do coentro sob ação da radiação direta e difusa. Nucleus15: 423-432.
SOUSA
KSM
SILVA
TBS
LESSA
TBS
BARBOSA
KS
SILVA
VP
MACHADO
NS
2018
Estudo da cinética de secagem do coentro sob ação da radiação direta e difusa
Nucleus
15
423
432
SOUZA, DG; RESENDE, O; MOURA, LC; FERREIRA JUNIOR, WN; ANDRADE, JWS. 2019. Drying kinetics of the sliced pulp of biofortified sweet potato (Ipomoea batatas L.). Engenharia Agrícola39: 176-181.
SOUZA
DG
RESENDE
O
MOURA
LC
FERREIRA
WN
JUNIOR
ANDRADE
JWS
2019
Drying kinetics of the sliced pulp of biofortified sweet potato (Ipomoea batatas L.)
Engenharia Agrícola
39
176
181
VIDAL, VM; RESENDE, O; BESSA, JFV; MORAIS, WA; SILVA, LA; VIRGOLINO, ZZ. 2016. Ajuste de los modelos y la difusividad efectiva en el secado de las hojas de Azadirachta indica A. Juss. Revista Cubana de Plantas Medicinales 21: 1-12.
VIDAL
VM
RESENDE
O
BESSA
JFV
MORAIS
WA
SILVA
LA
VIRGOLINO
ZZ
2016
Ajuste de los modelos y la difusividad efectiva en el secado de las hojas de Azadirachta indica A
Juss. Revista Cubana de Plantas Medicinales
21
1
12
ZENEBON, O; PASCUET, NS; TIGLEA, P. 2008. Métodos físico-químicos para análise de alimentos. São Paulo (BR): Instituto Adolfo Lutz. 1020p.
ZENEBON
O
PASCUET
NS
TIGLEA
P
2008
Métodos físico-químicos para análise de alimentos
São Paulo (BR)
Instituto Adolfo Lutz
1020p.
Autoria
Iaquine Maria C Bezerra
Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano), Rio Verde-GO, Brasil; iaquinec@gmail.com; celso.belisario@ifgoiano.edu.br; osvaldo.resende@ifgoiano.edu.br; juliana.rv@hotmail.comInstituto Federal de Educação, Ciência e Tecnologia GoianoBrazilRio Verde, GO, BrazilInstituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano), Rio Verde-GO, Brasil; iaquinec@gmail.com; celso.belisario@ifgoiano.edu.br; osvaldo.resende@ifgoiano.edu.br; juliana.rv@hotmail.com
Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano), Rio Verde-GO, Brasil; iaquinec@gmail.com; celso.belisario@ifgoiano.edu.br; osvaldo.resende@ifgoiano.edu.br; juliana.rv@hotmail.comInstituto Federal de Educação, Ciência e Tecnologia GoianoBrazilRio Verde, GO, BrazilInstituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano), Rio Verde-GO, Brasil; iaquinec@gmail.com; celso.belisario@ifgoiano.edu.br; osvaldo.resende@ifgoiano.edu.br; juliana.rv@hotmail.com
Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano), Rio Verde-GO, Brasil; iaquinec@gmail.com; celso.belisario@ifgoiano.edu.br; osvaldo.resende@ifgoiano.edu.br; juliana.rv@hotmail.comInstituto Federal de Educação, Ciência e Tecnologia GoianoBrazilRio Verde, GO, BrazilInstituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano), Rio Verde-GO, Brasil; iaquinec@gmail.com; celso.belisario@ifgoiano.edu.br; osvaldo.resende@ifgoiano.edu.br; juliana.rv@hotmail.com
Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano), Rio Verde-GO, Brasil; iaquinec@gmail.com; celso.belisario@ifgoiano.edu.br; osvaldo.resende@ifgoiano.edu.br; juliana.rv@hotmail.comInstituto Federal de Educação, Ciência e Tecnologia GoianoBrazilRio Verde, GO, BrazilInstituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano), Rio Verde-GO, Brasil; iaquinec@gmail.com; celso.belisario@ifgoiano.edu.br; osvaldo.resende@ifgoiano.edu.br; juliana.rv@hotmail.com
Universidade Estadual Paulista(Unesp), São José do Rio Preto-SP, Brasil, maisadiascavalcante@hotmail.comUniversidade Estadual PaulistaBrazilSão José do Rio Preto, SP, BrazilUniversidade Estadual Paulista(Unesp), São José do Rio Preto-SP, Brasil, maisadiascavalcante@hotmail.com
Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano), Rio Verde-GO, Brasil; iaquinec@gmail.com; celso.belisario@ifgoiano.edu.br; osvaldo.resende@ifgoiano.edu.br; juliana.rv@hotmail.comInstituto Federal de Educação, Ciência e Tecnologia GoianoBrazilRio Verde, GO, BrazilInstituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano), Rio Verde-GO, Brasil; iaquinec@gmail.com; celso.belisario@ifgoiano.edu.br; osvaldo.resende@ifgoiano.edu.br; juliana.rv@hotmail.com
Universidade Estadual Paulista(Unesp), São José do Rio Preto-SP, Brasil, maisadiascavalcante@hotmail.comUniversidade Estadual PaulistaBrazilSão José do Rio Preto, SP, BrazilUniversidade Estadual Paulista(Unesp), São José do Rio Preto-SP, Brasil, maisadiascavalcante@hotmail.com
Table 2
Akaike information criterion (AIC) and Bayesian Schwarz information criterion (BIC) of the models with best adjustments of endive leaves drying kinetics at different temperatures. Rio Verde, IF Goiano, 2020.
imageBox 1
Mathematical models (Equations. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13) applied to drying kinetics data. Rio Verde, IF Goiano, 2020.
open_in_new
t = Time (h); k, k0, k1 = Equation constants (h-1); a, b, c, n = Equation parameters; RX = Moisture ratio
imageFigure 1
Moisture ratio of endive leaves during drying at 50, 60, 70 and 80°C. Rio Verde, IF Goiano, 2020.
open_in_new
imageFigure 2
Estimated values from logarithmic model of drying kinetics of endive leaves. Rio Verde, IF Goiano, 2020.
open_in_new
table_chartTable 1
Statistical parameter values obtained in the drying of the endive leaves. Rio Verde, IF Goiano, 2020.
Temperature (ºC)
Model
SE (%)
χ²
P (%)
R² (%)
50
Page modified
0.00042
0.00010
9.65239
99.88680
Page
0.00042
0.00010
9.65242
99.88680
Midilli
0.00007
0.00002
2.12671
99.98098
Newton
0.00168
0.00041
6.42475
99.52973
Thompson
0.00088
0.00022
11.71069
99.76177
Henderson and Pabis
0.00089
0.00022
5.68852
99.75868
Two-term
0.00019
0.00005
6.44606
99.95226
Verna
0.00179
0.00046
6.42469
99.52973
Logarithmic
0.00084
0.00021
8.20583
99.77097
Wang and Singh
0.01726
0.00432
43.68686
99.31953
Two-term Exponential
0.00086
0.00022
12.49230
99.76681
Valcam
0.00019
0.00005
4.37606
99.94725
60
Page modified
0.00157
0.00047
17.50407
99.52739
Page
0.00157
0.00047
17.50362
99.52739
Midilli
0.00041
0.00014
8.16207
99.88822
Newton
0.00150
0.00043
17.56482
99.52738
Thompson
0.00157
0.00047
17.57557
99.52722
Henderson and Pabis
0.00149
0.00045
18.45762
99.55138
Two-term
0.00164
0.00055
18.45779
99.55138
Verna
0.00146
0.00046
19.37658
99.52738
Logarithmic
0.00080
0.00025
4.53503
99.77023
Wang and Singh
0.00568
0.00171
22.80828
98.28564
Two-term Exponential
0.00139
0.00042
19.36830
99.52738
Valcam
0.00043
0.00014
5.46965
99.88239
70
Page modified
0.00116
0.00032
10.04876
99.65315
Page
0.00116
0.00032
10.04881
99.65315
Midilli
0.00025
0.00008
2.98136
99.93051
Newton
0.00123
0.00033
11.89703
99.61603
Thompson
0.00128
0.00036
11.90049
99.61586
Henderson and Pabis
0.00128
0.00036
11.88703
99.61604
Two-term
0.00098
0.00030
8.28228
99.61604
Verna
0.00976
0.00282
32.98195
99.61603
Logarithmic
0.00050
0.00014
2.63217
99.82722
Wang and Singh
0.00341
0.00095
12.54784
98.61603
Two-term Exponential
0.00128
0.00036
11.89713
99.61603
Valcam
0.00025
0.00008
2.28777
99.92985
80
Page modified
0.00245
0.00074
26.87871
99.29912
Page
0.00245
0.00074
26.87878
99.29912
Midilli
0.00048
0.00016
9.07189
99.87539
Newton
0.00356
0.00103
39.87322
98.93866
Thompson
0.00371
0.00112
39.87827
98.93837
Henderson and Pabis
0.00359
0.00108
38.54671
98.97394
Two-term
0.00397
0.00132
38.54814
98.97394
Verna
0.02403
0.00760
93.70589
93.45119
Logarithmic
0.00061
0.00019
5.41558
99.83280
Wang and Singh
0.00239
0.00072
15.53913
99.31747
Two-term Exponential
0.00371
0.00112
39.87430
98.93866
Valcam
0.00042
0.00014
5.76498
99.89207
table_chartTable 2
Akaike information criterion (AIC) and Bayesian Schwarz information criterion (BIC) of the models with best adjustments of endive leaves drying kinetics at different temperatures. Rio Verde, IF Goiano, 2020.
T (ºC)
Midilli
Logarithmic
Valcam
AIC
BIC
AIC
BIC
AIC
BIC
50
138.20530
133.75340
95.35620
91.79471
119.80960
115.35770
60
73.56327
70.73852
66.18397
63.92417
72.88560
70.06085
70
94.35863
90.81838
85.53293
82.70073
94.20406
90.66380
80
71.47202
68.64727
69.64292
67.38312
73.33870
70.51396
table_chartTable 3
Estimated values of logarithmic model coefficients to predict the drying curve of endive leaves. Rio Verde, IF Goiano, 2020.