Acessibilidade / Reportar erro

Body condition factor and diet the endemic ichthyofauna in streams of the Atlantic Forest inside and outside in an environmental protection area

Fator de condição corporal e dieta da ictiofauna endêmica em riachos da Mata Atlântica dentro e fora de uma área de proteção ambiental

ABSTRACT

This is paper we analyze the diet and body condition factor (Mi) of three endemic species inside and outside an environmental protection area, to compare the effectiveness of the protection area in providing a greater spectrum of food items and greater environmental well-being to ichthyofauna. The study area comprised streams of the Ribeira do Iguape River basin, Campos Gerais National Park (CGNP), Paraná state and its surroundings. Eleven streams were sampled inside and outside, using electric fishing. A Permutational Multivariate Analysis of Variance to investigate the composition of food items and a Permutational Analysis of Multivariate Dispersions was used to investigate the variability between food items. The Scaled Mass Index (Mi) of the body condition was used to determine the relative condition factor of each individual of each species. Regarding the diet, there were no significant differences between inside and outside in the composition and variability of food items, this similarity may be associated with existing environmental degradation inside. However, the Mi was significant, and only one species presented greater well-being inside, because inside streams receive greater allochthonous intake of riparian vegetation, but, when it comes to the two species that perform the link of the aquatic food web with the terrestrial, the opposite occurred. These results indicate that the studied fragment, under anthropic pressures, is currently unable to conserve its biodiversity. The inside has no Management Plan, the manager must elaborate and implement it as a first step so that the situation can be reverted and the conservation effectiveness ensured in this highly threatened area, characterized by being one of the most important remnants of the Atlantic Forest, having relevant ecosystem services from a rare humid forest of Araucaria.

KEYWORDS.
Freshwater endemism; conservation of species; mixed ombrophilous forest; national park; food variability

RESUMO

Neste trabalho, analisamos dieta e fator de condição corporal (Mi) de três espécies endêmicas dentro e fora de uma área de proteção ambiental, para comparar a efetividade da área protegida em subsidiar maior espectro de itens alimentares e maior bem-estar ambiental à ictiofauna. A área de estudo compreendeu riachos que fazem parte da bacia hidrográfica do Rio Ribeira de Iguape, interior e imediações do Parque Nacional dos Campos Gerais (PNCG), estado do Paraná. Foram amostrados 11 riachos dentro e fora, com auxílio de pesca elétrica. A Análise de Variância Multivarada Permutacional foi usada para investigar a composição dos itens alimentares e a Análise Permutacional de Dispersões Multivariadas para investigar a variabilidade entre os itens alimentares. O Índice de Massa Escalonado (Mi) de condição corporal foi usado para determinar o fator de condição relativo de cada indivíduo de cada espécie. Para a dieta analisada não houve diferenças significavas entre dentro e fora, na composição e na variabilidade de itens alimentares, esta similaridade pode estar associada a degradação ambiental existente dentro. Entretanto, o Mi foi significativo, sendo que somente uma espécie apresentou maior bem-estar dentro, porque os riachos de cabeceira de dentro recebem maior aporte alóctone de vegetação ripária, porém, quando se trata das duas espécies que realizam o elo da teia alimentar aquática com a terrestre ocorreu o contrário. Esses resultados indicam que o fragmento estudado, submetido a pressões antrópicas, apresenta-se incapaz de conservar essa biodiversidade. O interior não tem plano de manejo, o gestor deve elaborá-lo e implementá-lo como um primeiro passo para que a situação possa ser revertida e a efetividade da conservação assegurada nessa área altamente ameaçada, caracterizada por ser um dos remanescentes mais importantes da Mata Atlântica, possuindo relevantes serviços ecossistêmicos oriundos de uma rara floresta úmida de Araucária.

PALAVRAS-CHAVE.
Endemismo de água doce; conservação de espécies; floresta ombrófila mista; parque nacional; variabilidade alimentar

The Atlantic Forest Biome is considered as a biodiversity hotspot as it supports both high species richness of multiple taxa, high endemism rates, but it is simultaneously threating by anthropic actions (Myers et al., 2000Myers, n.; Mittermeier, r. a.; Mittermeier, c. g.; Fonseca, g. a. & Kent, j. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853-858.), being one of five priority areas for conservation in Brazil (Brazil, 2004Brazil. 2004. Decreto nº 5.092, de 21 de maio de 2004. Define regras para identificação de áreas prioritárias para a conservação. Brasília, Ministério do Meio Ambiente. Available at <Available at http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/decreto/d5092.htm >. Accessed on June 2021.
http://www.planalto.gov.br/ccivil_03/_at...
) and one of the 35 biodiversity hotspots for conservation prioritization (Myers et al., 2000Myers, n.; Mittermeier, r. a.; Mittermeier, c. g.; Fonseca, g. a. & Kent, j. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853-858.).The creation of areas for conversation is needed as without it occurs a disorderly exploitation of natural resources and human land appropriation (Pinto et al., 2006Pinto, L. P.; Bedê, L.; Paese, A.; Fonseca, M.; Paglia, A. & Lamas, I. 2006. Mata Atlântica Brasileira: os desafios para conservação da biodiversidade de um hotspot mundial. Biologia da conservação: essências. São Carlos, RiMa, p. 91-118.), which have led to changes in chemical, physical (Allan et al., 1997Allan, J. D.; Erickson, D. & Fay, J. 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology 37(1):149-161.) and biological properties of inland aquatic ecosystems (Englert et al., 2015Englert, D.; Zubrod, J. P.; Schulz, R. & Bundschuh, M. 2015. Variability in ecosystem structure and functioning in a low order stream: Implications of land use and season. Science of the total environment 538:341-349. ). Therefore, environmental protection areas in the Atlantic Forest are considered vital to prevent and mitigate pervasive anthropic impacts on biodiversity (Margules & Pressey, 2000Margules, C. R. & Pressey, R. L. 2000. Systematic conservation planning. Nature 405(6783):243-253. ).

Campos Gerais National Park (CGNP), IUCN’s category II (Pfaff et al., 2015Pfaff, A.; Robalino, J.; Sandoval, C. & Herrera, D. 2015. Protected area types, strategies and impacts in Brazil’s Amazon: public protected area strategies do not yield a consistent ranking of protected area types by impact. Philosophical Transactions of the Royal Society B: Biological Sciences 370(1681):20140273.), is one area of Atlantic Forest characterized by a vegetation categorizedas mixed ombrophilous forest and steppes by Veloso et al. (1991Veloso, H. P.; Rangel-Filho, A. L. R. & Lima, J. C. A.1991. Classificação da vegetação brasileira, adaptada a um sistema universal. Brasília, IBGE. 124p. Available from <Available from http://jbb.ibict.br//handle/1/397 >. Accessed on June 2021.
http://jbb.ibict.br//handle/1/397...
), predominantly of araucaria moist forest and southern fields, considered the largest natural remnant protected by law (Brazil, 2006Brazil. 2006. Decreto de 23 de março de 2006. Criação do Parque Nacional dos Campos Gerais. Brasília, Ministério do Meio Ambiente/Secretaria de Biodiversidade e Florestas (MMA/SBF) . Available at <Available at http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/dnn/Dnn10796.htm >. Accessed on June 2021.
http://www.planalto.gov.br/ccivil_03/_at...
), comprising the less fragmented portions of the regional native fields as well (Alves et al., 2019Alves, G. H. Z.; Santos, R. D. S.; Figueiredo, B. R.; Manetta, G. I.; Message, H. J.; Pazianoto, L. H. R.; Guimarães, G. B.; Benedito, E. & Couto, E. V. D. 2019. Misguided policy may jeopardize a diverse South Brazilian environmental protection area. Biota Neotropica 19(1):e20180574.).The surroundings and interior of the CGNP present singular hydrography and landrelief, as a result of the conjugation of a variety of geological, climatic, topographic factors (Melo et al., 2010Melo, M. S.; Moro, R. S. & Guimarães, G. B. 2010. Patrimônio natural dos Campos Gerais do Paraná. Ponta Grossa, Editora UEPG. 230p. ). The aquatic ecosystems of the region run through deep and mountainous areas, composing a unique scenic beauty and a valuable biodiversity heritage (Melo et al., 2010Melo, M. S.; Moro, R. S. & Guimarães, G. B. 2010. Patrimônio natural dos Campos Gerais do Paraná. Ponta Grossa, Editora UEPG. 230p. ). The streams of the CGNP region are in the Paraná River and Ribeira do Iguape River basins (Melo et al., 2010Melo, M. S.; Moro, R. S. & Guimarães, G. B. 2010. Patrimônio natural dos Campos Gerais do Paraná. Ponta Grossa, Editora UEPG. 230p. ). The variations in abiotic factors, such as water temperature, light and pH instreams of these region, provided different micro habitats and harbor a diversity of organisms, underlying the emergence of endemism areas. The streams constitute a large part of the drainage areas in the Neotropical region (Berkowitz et al., 2014Berkowitz, J. F.; Summers, E. A.; Noble, C. V.; White, J. R. & Delaune, R. D. 2014. Investigation of biogeochemical functional proxies in headwater streams across a range of channel and catchment alterations. Environmental Management 53(3):534-548. ) and despite their small size, they are constituted by a rich aquatic fauna with peculiar characteristics (Dudgeon et al., 2010Dudgeon, D.; Cheung, F. K. & Mantel, S. K. 2010. Foodweb structure in small streams: do we need different models for the tropics? Journal of the North American Benthological Society 29(2):395-412.) and that present a high level of vulnerability when it comes to habitat degradation (Alves et al., 2016Alves, G. H. Z.; Tófoli, R. M.; Ganassin, M. J. M. & Hahn, N. S. 2016. Diet of Poecilia reticulata Peters, 1959 in streams from Paraná River basin: influence of the urbanization. Acta Scientiarum, Biological Sciences 38(3):313-318.).

Endemism is directly related to the historical and ecological characteristics of each species, which are observed within the evolutionary process of the entire local biota (Carvalho, 2009Carvalho, C. J. B. D. 2009. Padrões de endemismos e a conservação da biodiversidade. Megadiversidade 5(1-2):77-86.). In freshwater streams, endemism is recurrent due to the existence of natural barriers, or even lack of connection between biomes, habitats reduction, changes in relief or the presence of reservoirs (Ricklefs, 2011Ricklefs, R. E. 2011. A Economia da Natureza. Rio de Janeiro, Guanabara Koogan. 807p.), which isolate the species in a given place, causing directional selection and originating an endemic species (Burlakova et al., 2011Burlakova, L. E.; Karatayev, A. Y.; Karatayev, V. A.; May, M. E.; Bennett, D. L. & Cook, M. J. 2011. Endemic species: contribution to community uniqueness, effect of habitat alteration, and conservation priorities. Biological Conservation 144(1):155-165.).

The food items ingested by fish (trophic ecology) may inform which resources available in the environment are being exploited (Abelha et al., 2008Abelha, M. C. F.; Agostinho, A. A. & Goulart, E. 2008. Plasticidade trófica em peixes de água doce. Acta Scientiarum, Biological Sciences 23:425-434. ) and its relation to fish weight-length relationships, a proxy for the growth type of fish (Le Cren, 1951Le Cren, E. D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). The Journal of Animal Ecology 20:201-219. ; Gomiero & Braga, 2006Gomiero, L. M. & Braga, F. M. D. S. 2006. Relação peso-comprimento e fator de condição de Bryconopalinus (Pisces, Characiformes) no Parque Estadual da Serra do Mar-Núcleo Santa Virgínia, Mata Atlântica, Estado de São Paulo, Brasil. Acta Scientiarum, Biological Sciences 28(2):135-141.). Protect areas have a greater diversity of fauna and flora (Margules & Pressey, 2000Margules, C. R. & Pressey, R. L. 2000. Systematic conservation planning. Nature 405(6783):243-253. ), and are usually limited by freshwater, which ends up being also conserved (Thieme et al., 2016Thieme, M. L.; Sindorf, N.; Higgins, J.; Abell, R.; Takats, J. A.; Naidoo, R. & Barnett, A. 2016. Freshwater conservation potential of protected areas in the Tennessee and Cumberland River Basins, USA. Aquatic Conservation: Marine and Freshwater Ecosystems 26:60-77.), in addition, ensuring the input of allochthonous resources into the aquatic system, especially in headwaters streams (Vannote et al., 1980Vannote, R. L.; Minshall, G. W.; Cummins, K. W.; Sedell, J. R. & Cushing, C. E. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130-137.), providing more food resources available to fauna.

In this context, we investigated the diet and body condition factor of endemic fish species from the Campos Gerais region, and we hypothesized that the diversity in fish diet and the degree of well-being in stream fish are related to the existence of areas for conversation. If so, then we would observe greater variability of food items in their diet and higher values of body condition factor in endemic fish species sampled in streams within than outside the protected areas. This information will be fundamental for identifying the effectiveness of this protected area of the Atlantic Forest. Furthermore, it will allow the taking of actions aimed at ensuring the maintenance of this area, its management and monitoring, as well as identifying the need to create new fragments for protection.

MATERIAL AND METHODS

Study area. The study area comprised streams that are part of the Ribeira do Iguape River basin, Campos Gerais National Park (CGNP) and its surroundings (Fig. 1), which covers part of the municipalities of Castro, Carambeí and Ponta Grossa, Paraná state (Melo et al., 2010Melo, M. S.; Moro, R. S. & Guimarães, G. B. 2010. Patrimônio natural dos Campos Gerais do Paraná. Ponta Grossa, Editora UEPG. 230p. ). The area of the studied basin is highly relevant for the preservation of remnants of the Atlantic Forest, its high levels of diversity and fish endemism explain the river dynamics promoted by the Ponta Grossa Arc, a geological structure that promotes headwater species retention events, which promote isolation between the drainages of the upper Paraná River, the Iguaçu River and the Ribeira de Iguape River (Frota et al., 2019Frota, A.; Oliveira, R.C. D.; Benedito, E. & Graça, W. J. D. 2019. Ichthyofauna of headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná, Brazil. Biota Neotropica 19(1):1-12.).

Fig. 1.
Study area with the location of sampling points (numbered black circles) in streams from the Ribeira de Iguape river basin. The gray area corresponds to the Campos Gerais National Park.

Sampling stretches were previously selected in the ArcGis Program, through the delimitation of the watersheds of first, second and third order streams. SRTM images with spatial resolution of 100m were used to generate the water network and later the drainage basins, corrected with procedures for filling depressions and sinks. The water network was identified using images and classified using Strahler (1953Strahler, A.1953. Gypsometrie analysis of erosional topography. Bulletin of the Geological Society of America 63:923-938. ) ordering assigning orders to its segments.

Twenty-two streams were selected, 11 in the protected area of the Campos Gerais National Park (inside) and 11 in the unprotected area (outside), quarterly samplings were carried out from July 2016 to April 2017 (Fig. 1). The streams within the inside have land occupation of these streams is native forest, fish farming, rural properties and pasture fields (Almeida & Moro, 2007Almeida, C. G. & Moro, R. S. 2007. Análise da cobertura florestal no Parque Nacional dos Campos Gerais-PR como subsídio ao seu plano de manejo. Terra Plural 1:115-122. ). Land occupation outside is characterized by reforestation of Pinus sp., fish farming, pasture fields, forestry and rural properties (Almeida & Moro, 2007Almeida, C. G. & Moro, R. S. 2007. Análise da cobertura florestal no Parque Nacional dos Campos Gerais-PR como subsídio ao seu plano de manejo. Terra Plural 1:115-122. ).

Sampling sites. The abiotic variables of water temperature, dissolved oxygen concentration, pH and electrical conductivity were measured inside and outside the protected area, using an analog thermometer, portable digital oximeter and portable digital potentiometers, respectively.

Fish collections were carried out in 2016, from July 17 to 23 and October 10 to 15, and in 2017, from January 23 to 27 to 27 and April 14 to 29 using electric fishing (maximum power of 3.8 Kw, max. 2A) with three constant and consecutive efforts (Mazzoni & Lobón-Cerviá, 2000Mazzoni, R. & Lobón‐Cerviá, J. 2000. Longitudinal structure, density and production rates of a neotropical stream fish assemblage: The River Ubatiba in the Serra do Mar, southeast Brazil. Ecography 23(5):588-602.) in an 30m stretch. The stretch was closed with a locking net (mesh 2.5 mm) at both ends to avoid fish escape and electrodes were kept at a distance of 1-2 m. Fishes were anesthetized with hydrochloride benzocaine solution (Ethics Committee on the Use of Experimental Animals process of Universidade Estadual de Maringá, no 38981407/16) and fixed in 10% formaldehyde solution. Specimens were deposited in the Ichthyological Collection of the Núcleo de Pesquisa de Limnologia, Ictiologia e Aquicultura (Nupélia) of the Universidade Estadual de Maringá (UEM). Throughout the study, 15 and 23 species were sampled in the inside and outside areas, respectively, with Coptodon rendalli (Boulenger, 1897) being a recent invasive species (see Frota et al., 2019Frota, A.; Oliveira, R.C. D.; Benedito, E. & Graça, W. J. D. 2019. Ichthyofauna of headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná, Brazil. Biota Neotropica 19(1):1-12.). Among the sampled species, the endemic that occurred both inside and outside were selected: Deuterodon iguape Eigenmann, 1907, Geophagus iporangensis Haseman, 1911 and Isbrueckerichthys duseni (Miranda Ribeiro, 1907), they stand out among the most frequent for the study area (Lima et al., 2003Lima, F. C. T.; Malabarba, L. R.; Buckup, P. A.; Silva, J. F. P.; Vari, R. P.; Harold, A.; Benine, R.; Oyakawa, O. T.; Pavanelli, C. S.; Menezes, N. A.; Lucena, C. A. S.; Malabarba, M. C. S. L.; Lucena, Z. M. S.; Reis, R. E.; Langeani, F.; Cassati, L.; Bertaco, V. A.; Moreira, C. & Lucinda, P. H. F. 2003. Genera Incertae sedis in Characidae. In: Reis, R. E.; Kullander, S. O. & Ferraris, C. J. eds. Checklist of the Freshwater Fishes of South and Central America. Porto Alegre, EDIPUCRS, p.106-168.). From each sampled individual, standard length (Ls) and total weight (Wt) were obtained. The standard length was measured with a digital caliper (Absolite Mitutoyo) with an accuracy of 0.1 mm, while the total weight was obtained with an electronic scale, with an accuracy of 0.1g.

The individuals had their stomachs dissected and their contents were analyzed with a stereoscope microscope. The diet of each species was evaluated and the food items were identified up to the lowest possible taxonomic level. The volumetric frequency methods (%V) (Hyslop, 1980Hyslop, E. J. 1980. Stomach contents analysis - a review of methods and their application. Journal of Fish Biology 17(4):411-429.) were used, recording the volume of each food item, obtaining the percentage in relation to the total volume of stomach contents. The volume of each item was obtained in mm3 through a millimeter plate and later transformed into ml (Hellawell & Abel, 1971Hellawell, J. M. & Abel, R. 1971. A rapid volumetric method for the analysis of the food of fishes. Journal of Fish Biology 3(1):29-37.).

Statistical analyses. The composition of food items of the specimens was investigatedin the inside and outside. For this purpose, the permutational multivariate analysis of variance (PERMANOVA) (Anderson et al., 2008Anderson, M.; Gorley, R. N. & Clarke, R. K. 2008. Permanova+ for primer: Guide to software and statisticl methods: Primer-E Limited. Plymouth, United Kingdom.) was used, applied on the matrix of food items data analyzed per stomach, with volume values of the food items. The variability between food items inside and outside was evaluated by the permutational analysis of multivariate dispersions (PERMDISP) (Anderson et al., 2006Anderson, M. J.; Ellingsen, K. E. & Mcardle, B. H. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683-693. ). Thus, the beta diversity of the compositions of the food items was evaluated for the inside and outside, from the mean distance of each sample to the centroid in a multidimensional space.

Bray-Curtis dissimilarity was used in the permutation analyses as a distance measure with data transformed into square root, obtained with 999 random permutations, and the analyses were conducted in the software R (R Core Team, 2019R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.) using the beta disper function in vegan package (Oksanen et al., 2020Oksanen, J.; Blanchet, F. G.; Friendly, M.; Kindt R.; Legendre, P.; McGlinn, D.; O’Hara, R. B.; Simpson, G. L.; Solymos, P.; Stevens, M. H. H. & Wagner, H. 2020. Vegan: Community Ecology Package. R package version 2.5-7. ). This function is one of the ways for calculating PERMDISP (Anderson et al., 2006Anderson, M. J.; Ellingsen, K. E. & Mcardle, B. H. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683-693. ). Variance tests were performed in the software Statistica 7.0 program (Statsoft, 2005Statsoft. 2005. Statsoft, Inc STATISTICA - Data Analysis Software System - Version 7.1.).

The weight-length relationship was estimated using the expression Wt= a*Lsb, where Wt= total weight, Ls= standard length, a = intercept and b = angular coefficient (Le Cren, 1951Le Cren, E. D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). The Journal of Animal Ecology 20:201-219. ). The value obtained from the growth coefficient (b) was used to identify the growth type of the species. For this, the values obtained were submitted to the Student's T Test (p< 0.05); b = 3 the growth was considered isometric; b > 3 positive allometric growth and b < 3 negative allometric growth (Benedito -Cecilio & Agostinho, 1997Benedito-Cecílio E. & Agostinho A. A. 1997. Estrutura das populações de peixes do reservatório de Segredo. In: Agostinho, A. A. & Gomes, L. C. eds. Reservatório de Segredo: bases ecológicas para o manejo. Maringá, EDUEM, p. 113-135. ; Tah et al., 2012Tah, L.; Gouli, G. B. & Costa, K. S. 2012. Length-weight relationships for 36 freshwater fish species from two tropical reservoirs: Ayamé I and Buyo, Côte d’Ivoire. Revista de Biologia Tropical 60(4):1847-1856. ). This t was used in order to verify whether the angular coefficient of each species was significantly different from the isometric value of 3.

To determine the relative condition factor of each individual of each species, the Scaled Mass Index of the body condition, proposed by Peig & Green (2009Peig, J. & Green, A. J. 2009.New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118(12):1883-1891.) was used, which is computed from the equation: Ḿi = Mi(L0/Li)bsma, where Mi and Li are the body mass and body length of individual i, respectively; L0 is an arbitrary value of Ls, such as the arithmetic mean for the population; bsma is the exponent estimated by the regression of M and L; and Ḿi is the predicted body mass for an individual i when the linear body measurement is standardized to L0. Then, the bsma was estimated by dividing the value of b by the r coefficient of Pearson’s correlation (LaBarbera, 1989LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics 20(1):97-117.). For L0, the arithmetic mean of the standard length of the population was calculated.

The significant difference of each species Ḿi, inside and outside, was verified through the analysis of variance (ANOVA One-Way), in Statistica® 7.0 program (Statsoft, 2005Statsoft. 2005. Statsoft, Inc STATISTICA - Data Analysis Software System - Version 7.1.).

RESULTS

Limnological characteristics. The limnological characteristics of the streams located inside and outside had similar mean values (Tab. I).

Tab. I.
Limnological characteristics the streams localized inside and outside the environmental protection area - Campos Gerais National Park, state of Paraná, Brazil. [T°C, water temperature (°C); DO, dissolved oxygen (%); pH, hydrogen potential; Cond.,water electrical conductivity (μS/cm-1); Mean±SD, mean values and Standard Deviation].

Diet. For the 89 analyzed stomachs, it was found that there were no significant differences between those sampled inside and outside for the three species, regarding both composition and the variability of food items (Tab. II), and the values of the mean distances to the centroid were similar between inside and outside for food items (Tab. III) (I. duseni MDC-inside=0.20 and MDC-outside=0.26; D. iguape MDC-inside=0.49 and MDC-outside=0.52; G. iporangensis MDC-inside=0.46 and MDC-outside=0.42) (Fig. 2).

Tab. II.
Average distances to the centroid obtained from Permdisp/Permanova with permutational analyses applied in the diet of species Isbrueckerichthys duseni (Miranda Ribeiro, 1907), Deuterodon iguape Eigenmann, 1907 and Geophagus iporangensis Haseman, 1911 between inside and outside of the environmental protection area - Campos Gerais National Park, state of Paraná, Brazil.

Tab. III.
Volumetric percentage (%) of the food items of Isbrueckerichthys duseni (Miranda Ribeiro, 1907), Deuterodon iguape Eigenmann, 1907 and Geophagus iporangensis Haseman, 1911 inside and outside the environmental protection area - Campos Gerais National Park, state of Paraná, Brazil. In parentheses the number of analyzed stomachs.

Fig. 2.
Variability of food items of each species inside and outside of the Campos Gerais National Park, Paraná State, Brazil.

Body condition factor. A total of 497 individuals were measured and weighed. The weight-length relationship was significant for I. duseni in the inside and outside as positive allometric, with difference to the isometric standard value of 3, evaluated using the t-test (Tab. IV).

Tab. IV.
Values of the weight-length relationship obtained for each species inside and outside the environmental protection area - Campos Gerais National Park, state of Paraná, Brazil. Number of individuals (N); mean values and Standard Deviation (SD) of standard length (Ls); total weight (Wt); coefficient b; Test t value (t); significance of the Test t (p-value), Pearson coefficient and exponent bsma (value of b by the coefficient r of Pearson’s correlation).

According to the ANOVA one-way, the Mi values differed between the inside and outside for the three species (ANOVA p<0,05) (Fig. 3). The mean total weight and standard length values were lower for I. duseni outside and for D. iguape inside (Tab. IV).

Fig. 3.
Values of the body condition factor of the species inside and outside the environmental protection area - Campos Gerais National Park, Paraná state, Brazil.

DISCUSSION

The hypothesis proposed in this study was partially corroborated, because the variability of food items between the inside and outside did not differ. However, there was a significant difference in the body condition factor for the analyzed specimens, and only I. duseni presented higher body condition in the inside.

The diet of endemic species was similar between the inside and outside. This may be associated with environmental degradation in the inside, characterized by land use for forestry, fish farming, pasture fields and agriculture (Almeida & Moro, 2007Almeida, C. G. & Moro, R. S. 2007. Análise da cobertura florestal no Parque Nacional dos Campos Gerais-PR como subsídio ao seu plano de manejo. Terra Plural 1:115-122. ), which is one of the main causes of environmental homogenization (Gossner et al., 2016Gossner, M. M.; Lewinsohn, T. M.; Kahl, T.; Grassein, F.; Boch, S.; Prati, D.; Birkhofer, K.; Renner, S. C.; Sikorski, J.; Wubet, T.; Arndt, H.; Baumgartner, V.; Blaser, S.; Blüthgen, N.; Börschig, C.; Buscot, F.; Diekötter, T.; Jorge, L. R.; Jung, K.; Keyel, A. C.; Klein, A. M; Klemmer, S.; Krauss, J.; Lange, M.; Müller, Jörg.; Overmann, J.; Pašalić, E.; Penone, C.; Perović, D. J.; Purschke, O.; Schall, P.; Socher, S. A.; Sonnemann, I.; Tschapka, M.; Tscharntke, T.; Türke, M.; Venter, P. C.; Weiner, C. N.; Werner, M.; Wolters, V.; Wurst, S.; Westphal, C.; Fischer, M.; Weisser, W. W. & Allan, E. 2016. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540(7632):266-269.). In aquatic ecosystems, biotic homogenization acts primarily by changing the physical, chemical and biological conditions of water, causing the loss of sensitive species and increasing tolerant species (e.g.Lougheed et al., 2008Lougheed, V. L.; McIntosh, M. D.; Parker, C. A. & Stevenson, R. J. 2008. Wetland degradation leads to homogenization of the biota at local and landscape scales. Freshwater Biology 53(12):2402-2413.). Besides, the fragmentation of the local landscape that occurs in the CGNP (Almeida & Moro, 2007Almeida, C. G. & Moro, R. S. 2007. Análise da cobertura florestal no Parque Nacional dos Campos Gerais-PR como subsídio ao seu plano de manejo. Terra Plural 1:115-122. ), directly influences local taxonomic diversity (alpha) (Ferreira et al., 2019Ferreira, I. J. M.; Bragion, G. D. R.; Ferreira, J. H. D.; Benedito, E. & Couto, E. V. D. 2019. Landscape pattern changes over 25 years across a hotspot zone in southern Brazil. Southern Forests: A Journal of Forest Science 81(2):175-184.), evidenced by the increase in similarity in the composition and variability of food items between the inside and outside. These impacts reduce the effectiveness of the environmental protection area, hence the resources available in the protected area did not provide a wider spectrum of food items for the analyzed endemic species, the first species to be affected by the simplification of freshwater ecosystems (Burlakova et al., 2011Burlakova, L. E.; Karatayev, A. Y.; Karatayev, V. A.; May, M. E.; Bennett, D. L. & Cook, M. J. 2011. Endemic species: contribution to community uniqueness, effect of habitat alteration, and conservation priorities. Biological Conservation 144(1):155-165.).

The standard length of the analyzed specimens, with low thresholds, characterize the individuals as fish of streams (Castro, 1999Castro, R. M. C. 1999. Evolução da ictiofauna de riachos sul-americanos: padrões gerais e possíveis processos causais. In: Caramaschi, E. P.; Mazzoni, R. & Peres-Neto, P. R. eds. Ecologia de Peixes de Riachos. Série Oecologia Brasiliensis. Rio de Janeiro, PPGE-UFRJ, p. 139-155. ), since they do not exceed 20 cm in length, corresponding to small-sized fish (Vazzoler, 1996Vazzoler, A. E. E. M. 1996. Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá, EDUEM. 169p.), typical of low-order streams, with low predominance of introduced species. This characteristic of ichthyofauna still indicates that ecosystem restoration measures can be implemented, especially regarding the landscape.

This fact is corroborated by the analysis of the structure in length of the species, allowing inferences about the previous environmental conditions, which are reproduced in their current growth ( Benedito-Cecilio & Agostinho, 1997Benedito-Cecílio E. & Agostinho A. A. 1997. Estrutura das populações de peixes do reservatório de Segredo. In: Agostinho, A. A. & Gomes, L. C. eds. Reservatório de Segredo: bases ecológicas para o manejo. Maringá, EDUEM, p. 113-135. ). Thus, the presence of individuals in varying lengths of size, for both species mainly in outside, indicates that there are coexisting age groups, in space and time (Cionek et al., 2012Cionek, V. M.; Sacramento, P. A.; Zanatta, N.; Ota, R. P.; Corbetta, D. F. & Benedito, E. 2012. Fishes from first order streams of lower Paranapanema and Ivaí Rivers, upper Paraná River basin, Paraná, Brazil. Check List 8(6):1158-1162.), suggesting that these streams have potential and favorable conditions for their development. The reduced dimensions of the body of the individuals favor their movement in streams, besides the ease of using substrates as shelter (Castro & Menezes, 1998Castro, R. M. C. & Menezes, N. A. 1998. Estudo diagnóstico da diversidade de peixes do Estado de São Paulo. Biodiversidade do Estado de São Paulo, Brasil: Síntese do conhecimento ao final do século XX 6:1-13.), since the streams of the Ribeira de Iguape River basin, surroundings of Campos Gerais National Park (outside), have numerous allochthonous substrates, forming micro-habitats (Oyakawa et al., 2006Oyakawa, O. T.; Akama, A.; Mautari, K. C. & Nolasco, J. C. 2006. Peixes de Riachos da Mata Atlântica: nas unidades de conservação do Vale do Rio Ribeira de Iguape no Estado de São Paulo. São Paulo, Editora Neotropica. 201p. ), resulting in the survival success of the species.

In fish, weight-length relationship parameters may vary according to the season, being affected by eating habits, sex and gonadal maturation (Bagenal & Tesch, 1978Bagenal, T. B. & Tesch, A. T. 1978. Conditions and growth patterns in fresh water habitats.In: Fresh Water Habitats. Oxford, Blackwell Scientific Publications, p. 75-89. ). In this scenario, the analysis of coefficient b provides information on fish growth, through the weight-length relationship (Le Cren, 1951Le Cren, E. D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). The Journal of Animal Ecology 20:201-219. ). Geophagus iporangensis and D. iguape, growth was characterized as isometric, indicating that weight is directly proportional to the standard length of the individual (Ferreira et al., 2017Ferreira, F. S.; Duarte, G. S. D. V.; Severo-Neto, F.; Froehlich, O. & Súarez, Y. R. 2017. Survey of fish species from plateau streams of the Miranda River Basin in the Upper Paraguay River Region, Brazil. Biota Neotropica 17(3):e20170344.), and for I. duseni the positive allometric growth found indicates that the population acquires greater biomass in relation to length, both in inside and in outside. This difference between the growth types may be associated with the different population size thresholds or with the differences in the feeding of these individuals.

The analysis of the body condition factor indicated that I. duseni presents higher Mi in the inside. This may be associated with the fact that the CGPN headwater streams receive greater allochthonous intake of riparian vegetation, having a higher availability of organic matter, and as this species has a detritivore diet it is possible to infer that this directly influences the greater well-being in the environment, due to the availability of better quality resources from native vegetation inside the National Park.

The body condition factor is an index that reflects the recent nutritional conditions and/or expenses of reserves in cyclical activities, and it is possible to relate it to environmental conditions and behavioral aspects of the species (Gomiero et al., 2010Gomiero, L. M.; Villares Junior, G. A. & Braga, F. M. D. S. 2010. Relação peso-comprimento e fator de condição de Oligosarcus hepsetus (Cuvier, 1829) no Parque Estadual da Serra do Mar-Núcleo Santa Virgínia, Mata Atlântica, estado de São Paulo, Brasil. Biota Neotropica 10(1):101-105.). This index is used in the study of fish biology, mainly to evaluate feeding and reproduction processes (Lima-Junior et al., 2002Lima-Junior, S. E.; Cardone, I. B. & Goitein, R. 2002. Determinação de um método para cálculo do Fator de Condição Alométrico de peixes. Acta Scientiarum, Biological Sciences 24:397-400.). Variations in the body condition of individuals may be influenced by intrinsic factors of the species (i.e. organic reserves, reproductive stage, individual size), and by extrinsic factors (i.e. availability of food resources, water temperature, photoperiod) (Gurgel et al., 1997Gurgel, H. C. B.; Barbieri, G. & Verani, J. R. 1997. Análise do fator de condição de Metynnis cf. roosevelti Eigenmann, 1915 (Characidae, Myleinae) da lagoa Redonda, Município de Nísia Floresta, Rio Grande do Norte, Brasil. Anais do VIII Seminário Regional de Ecologia 8(1):367-376.).

However, for the other two species, G. iporangensis and D. iguape the Mi was lower in the inside, indicating that this is a reflection of biotic and abiotic alterations of the area, since the inside suffers anthropic influences, such as the presence of rural property and forestry (e.g.Almeida & Moro, 2007Almeida, C. G. & Moro, R. S. 2007. Análise da cobertura florestal no Parque Nacional dos Campos Gerais-PR como subsídio ao seu plano de manejo. Terra Plural 1:115-122. ; Dalazoana & Moro, 2011Dalazoana, K. & Moro, R. S. 2011. Riqueza específica em áreas de campo nativo impactadas por visitação turística e pastejo no Parque Nacional dos Campos Gerais, PR. Floresta 41(2):387-396.). Thus, changes in pristine landscapes, caused by anthropization, can modify the natural morphology of aquatic channels (Medeiros et al., 2008Medeiros, E. S. F.; Silva, M. J. & Ramos, R. T. C. 2008. Application of catchment-and local-scale variables for aquatic habitat characterization and assessment in the Brazilian semi-arid region. Neotropical Biology and Conservation 3(1):13-20. ), water properties (Ometo et al., 2000Ometo, J. P. H.; Martinelli, L. A.; Ballester, M. V.; Gessner, A.; Krusche, A. V.; Victoria, R. L. & Williams, M. 2000. Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba River basin, south‐east Brazil. Freshwater Biology 44(2):327-337.), substrate type (Beltrão et al., 2009Beltrão, G. D. B. M.; Medeiros, E. S. F. & Ramos, R. T. D. C. 2009. Effects of riparian vegetation on the structure of the marginal aquatic habitat and the associated fish assemblage in a tropical Brazilian reservoir. Biota Neotropica 9(4):37-43. ), and the characteristics of the riparian zone (Allan, 2004Allan, J. D. 2004. Landscapes and Riverscapes: the influence of land use on stream ecosystems. Annual Review Ecology Evolution Systems 35:257-284. ). All these changes result in variations in the flow of energy between the terrestrial and aquatic environment, influencing the food items present inside the streams (Jonsson & Stenroth, 2016Jonsson, M. & Stenroth, K. 2016. True autochthony and allochthony in aquatic-terrestrial resource fluxes along a landuse gradient. Freshwater Science 35(3):882-894.). The invertivorous and omnivorous feeding habits of G. iporangensis and D. iguape, respectively, highlight this effect of the landscape on the structure of the food chains of the analyzed streams (Oyakawa et al., 2006Oyakawa, O. T.; Akama, A.; Mautari, K. C. & Nolasco, J. C. 2006. Peixes de Riachos da Mata Atlântica: nas unidades de conservação do Vale do Rio Ribeira de Iguape no Estado de São Paulo. São Paulo, Editora Neotropica. 201p. ). Invertivore species, when feeding on invertebrates, promote the connection between terrestrial and aquatic environment (Figueiredo et al., 2019Figueiredo, B. R.; Calvo, C.; López-Rodríguez, A.; Mormul, R. P.; Teixeira-de- Mello, F.; Benedito, E. & Meerhoff, M. 2019. Short-term interactive effects of experimental heat waves and turbidity pulses on the foraging success of a subtropical invertivorous fish. Water 11(10):2109.), as well as omnivorous species that, when using carbon from animal and plant sources, transfer energy from different lower levels of the chain to higher trophic consumers (Brandão-Gonçalves et al., 2010Brandão-Gonçalves, L.; Oliveira, S. A. D. & Lima-Junior, S. E. 2010. Diet of fish fauna from Franco stream, Mato Grosso do Sul, Brazil. Biota Neotropica 10(2):21-30.).

Another factor that is capable of altering well-being is the presence of the invasive species Coptodon rendalli (tilapia), probably introduced by the fishery production that occurs in the inside (Frota et al., 2019Frota, A.; Oliveira, R.C. D.; Benedito, E. & Graça, W. J. D. 2019. Ichthyofauna of headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná, Brazil. Biota Neotropica 19(1):1-12.). Invasive individuals such as tilapia are able to alter the entire local structure, because of competition for space and food (Ruaro et al., 2020Ruaro, R.; Tramonte, R. P.; Buosi, P. R.; Manetta, G. I. & Benedito, E. 2020. Trends in Studies of Nonnative Populations: Invasions in the Upper Paraná River Floodplain. Wetlands 40:113-124. ), modification of the substrate, increase in eutrophication and changes in limnological parameters (Córdova-Tapia et al., 2015Córdova-Tapia, F.; Contreras, M. & Zambrano, L. 2015. Trophic niche overlap between native and non-native fishes. Hydrobiologia 746(1):291-301.). This invasion directly affects native species, causing them to have to allocate the energy obtained from the food consumed for survival, even for isometric growth. Thus, the lower condition factor recorded for these species in the inside may reflect on their energy expenditure, which may be caused by factors extrinsic to the aquatic environment (e.g.Klontz, 1995Klontz, G.W. 1995. Care of fish in biological research. Journal of Animal Science 73(11):3485-3492. ). In view of this, it is explicit that although the location of the headwater streams are in the Ponta Grossa Arc and at high altitudes that assist in the development of endemic fauna, the Campos Gerais National Park is not effectively fulfilling its role as a National Park (i.e. protecting the integrity of endemic species, since the areas inside and outside the park have suffered constant threats about its exuberant biota (Alves et al., 2018Alves, G. H. Z.; Tófoli, R. M.; Message, H. J.; Lima-Júnior, D. P. & Hoeinghaus, D. J. 2018. New decree promotes fish invasion in Amazon and Pantanal. Biodiversity and Conservation 27(9):2449-2450.)), and thus anthropic actions lead to exacerbated environmental homogenization. The results presented here show that this fragment, due to the different anthropic pressures to which it is subjected, is insufficient to protect the biodiversity of the Biome. Expanding this protected area or even allowing the protection of more fragments can reduce the impacts on the regional biota, especially regarding the aquatic organisms.

Moreover, the lack of a management plan for the Campos Gerais National Park increases the loss of effectiveness in the protection of biodiversity. This plan, once written and implemented, will be an important tool for the conservation of one of the most important remnants of the Atlantic Forest, that possesses a rare Araucaria moist forest with relevant ecosystem services. It is worth noting that the frequent threat that this ecosystem has been suffering (Alves et al., 2018Alves, G. H. Z.; Tófoli, R. M.; Message, H. J.; Lima-Júnior, D. P. & Hoeinghaus, D. J. 2018. New decree promotes fish invasion in Amazon and Pantanal. Biodiversity and Conservation 27(9):2449-2450.; Frota et al., 2019Frota, A.; Oliveira, R.C. D.; Benedito, E. & Graça, W. J. D. 2019. Ichthyofauna of headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná, Brazil. Biota Neotropica 19(1):1-12.) requires that more studies occur in the area, in order to support managers and governmental agencies, especially regarding the aquatic biota, considering that this is the first study conducted in the area.

Acknowledgements

The authors thank the finacial support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Código de Financiamento 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná (FA) and Fundação Grupo Boticário de Proteção à Natureza; the logistical support of Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Universidade Estadual de Ponta Grossa (UEPG), Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia) and for the infrastructure of Universidade Estadual de Maringá (UEM). DMC was supported by grant #2021/07916-7, São Paulo Research Foundation (FAPESP). The authors also thank the collegues from the Laboratório de Ecologia Energética for the field survey, and the colleagues from the Laboratório de Ictiologia Trófica for the help in stomach analyses.

REFERENCES

  • Abelha, M. C. F.; Agostinho, A. A. & Goulart, E. 2008. Plasticidade trófica em peixes de água doce. Acta Scientiarum, Biological Sciences 23:425-434.
  • Allan, J. D. 2004. Landscapes and Riverscapes: the influence of land use on stream ecosystems. Annual Review Ecology Evolution Systems 35:257-284.
  • Allan, J. D.; Erickson, D. & Fay, J. 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology 37(1):149-161.
  • Almeida, C. G. & Moro, R. S. 2007. Análise da cobertura florestal no Parque Nacional dos Campos Gerais-PR como subsídio ao seu plano de manejo. Terra Plural 1:115-122.
  • Alves, G. H. Z.; Santos, R. D. S.; Figueiredo, B. R.; Manetta, G. I.; Message, H. J.; Pazianoto, L. H. R.; Guimarães, G. B.; Benedito, E. & Couto, E. V. D. 2019. Misguided policy may jeopardize a diverse South Brazilian environmental protection area. Biota Neotropica 19(1):e20180574.
  • Alves, G. H. Z.; Tófoli, R. M.; Ganassin, M. J. M. & Hahn, N. S. 2016. Diet of Poecilia reticulata Peters, 1959 in streams from Paraná River basin: influence of the urbanization. Acta Scientiarum, Biological Sciences 38(3):313-318.
  • Alves, G. H. Z.; Tófoli, R. M.; Message, H. J.; Lima-Júnior, D. P. & Hoeinghaus, D. J. 2018. New decree promotes fish invasion in Amazon and Pantanal. Biodiversity and Conservation 27(9):2449-2450.
  • Anderson, M. J.; Ellingsen, K. E. & Mcardle, B. H. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683-693.
  • Anderson, M.; Gorley, R. N. & Clarke, R. K. 2008. Permanova+ for primer: Guide to software and statisticl methods: Primer-E Limited. Plymouth, United Kingdom.
  • Bagenal, T. B. & Tesch, A. T. 1978. Conditions and growth patterns in fresh water habitats.In: Fresh Water Habitats. Oxford, Blackwell Scientific Publications, p. 75-89.
  • Beltrão, G. D. B. M.; Medeiros, E. S. F. & Ramos, R. T. D. C. 2009. Effects of riparian vegetation on the structure of the marginal aquatic habitat and the associated fish assemblage in a tropical Brazilian reservoir. Biota Neotropica 9(4):37-43.
  • Benedito-Cecílio E. & Agostinho A. A. 1997. Estrutura das populações de peixes do reservatório de Segredo. In: Agostinho, A. A. & Gomes, L. C. eds. Reservatório de Segredo: bases ecológicas para o manejo. Maringá, EDUEM, p. 113-135.
  • Berkowitz, J. F.; Summers, E. A.; Noble, C. V.; White, J. R. & Delaune, R. D. 2014. Investigation of biogeochemical functional proxies in headwater streams across a range of channel and catchment alterations. Environmental Management 53(3):534-548.
  • Brandão-Gonçalves, L.; Oliveira, S. A. D. & Lima-Junior, S. E. 2010. Diet of fish fauna from Franco stream, Mato Grosso do Sul, Brazil. Biota Neotropica 10(2):21-30.
  • Brazil. 2004. Decreto nº 5.092, de 21 de maio de 2004. Define regras para identificação de áreas prioritárias para a conservação. Brasília, Ministério do Meio Ambiente. Available at <Available at http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/decreto/d5092.htm >. Accessed on June 2021.
    » http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/decreto/d5092.htm
  • Brazil. 2006. Decreto de 23 de março de 2006. Criação do Parque Nacional dos Campos Gerais. Brasília, Ministério do Meio Ambiente/Secretaria de Biodiversidade e Florestas (MMA/SBF) . Available at <Available at http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/dnn/Dnn10796.htm >. Accessed on June 2021.
    » http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/dnn/Dnn10796.htm
  • Burlakova, L. E.; Karatayev, A. Y.; Karatayev, V. A.; May, M. E.; Bennett, D. L. & Cook, M. J. 2011. Endemic species: contribution to community uniqueness, effect of habitat alteration, and conservation priorities. Biological Conservation 144(1):155-165.
  • Carvalho, C. J. B. D. 2009. Padrões de endemismos e a conservação da biodiversidade. Megadiversidade 5(1-2):77-86.
  • Castro, R. M. C. 1999. Evolução da ictiofauna de riachos sul-americanos: padrões gerais e possíveis processos causais. In: Caramaschi, E. P.; Mazzoni, R. & Peres-Neto, P. R. eds. Ecologia de Peixes de Riachos. Série Oecologia Brasiliensis. Rio de Janeiro, PPGE-UFRJ, p. 139-155.
  • Castro, R. M. C. & Menezes, N. A. 1998. Estudo diagnóstico da diversidade de peixes do Estado de São Paulo. Biodiversidade do Estado de São Paulo, Brasil: Síntese do conhecimento ao final do século XX 6:1-13.
  • Cionek, V. M.; Sacramento, P. A.; Zanatta, N.; Ota, R. P.; Corbetta, D. F. & Benedito, E. 2012. Fishes from first order streams of lower Paranapanema and Ivaí Rivers, upper Paraná River basin, Paraná, Brazil. Check List 8(6):1158-1162.
  • Córdova-Tapia, F.; Contreras, M. & Zambrano, L. 2015. Trophic niche overlap between native and non-native fishes. Hydrobiologia 746(1):291-301.
  • Dalazoana, K. & Moro, R. S. 2011. Riqueza específica em áreas de campo nativo impactadas por visitação turística e pastejo no Parque Nacional dos Campos Gerais, PR. Floresta 41(2):387-396.
  • Dudgeon, D.; Cheung, F. K. & Mantel, S. K. 2010. Foodweb structure in small streams: do we need different models for the tropics? Journal of the North American Benthological Society 29(2):395-412.
  • Englert, D.; Zubrod, J. P.; Schulz, R. & Bundschuh, M. 2015. Variability in ecosystem structure and functioning in a low order stream: Implications of land use and season. Science of the total environment 538:341-349.
  • Ferreira, F. S.; Duarte, G. S. D. V.; Severo-Neto, F.; Froehlich, O. & Súarez, Y. R. 2017. Survey of fish species from plateau streams of the Miranda River Basin in the Upper Paraguay River Region, Brazil. Biota Neotropica 17(3):e20170344.
  • Ferreira, I. J. M.; Bragion, G. D. R.; Ferreira, J. H. D.; Benedito, E. & Couto, E. V. D. 2019. Landscape pattern changes over 25 years across a hotspot zone in southern Brazil. Southern Forests: A Journal of Forest Science 81(2):175-184.
  • Figueiredo, B. R.; Calvo, C.; López-Rodríguez, A.; Mormul, R. P.; Teixeira-de- Mello, F.; Benedito, E. & Meerhoff, M. 2019. Short-term interactive effects of experimental heat waves and turbidity pulses on the foraging success of a subtropical invertivorous fish. Water 11(10):2109.
  • Frota, A.; Oliveira, R.C. D.; Benedito, E. & Graça, W. J. D. 2019. Ichthyofauna of headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná, Brazil. Biota Neotropica 19(1):1-12.
  • Gomiero, L. M. & Braga, F. M. D. S. 2006. Relação peso-comprimento e fator de condição de Bryconopalinus (Pisces, Characiformes) no Parque Estadual da Serra do Mar-Núcleo Santa Virgínia, Mata Atlântica, Estado de São Paulo, Brasil. Acta Scientiarum, Biological Sciences 28(2):135-141.
  • Gomiero, L. M.; Villares Junior, G. A. & Braga, F. M. D. S. 2010. Relação peso-comprimento e fator de condição de Oligosarcus hepsetus (Cuvier, 1829) no Parque Estadual da Serra do Mar-Núcleo Santa Virgínia, Mata Atlântica, estado de São Paulo, Brasil. Biota Neotropica 10(1):101-105.
  • Gossner, M. M.; Lewinsohn, T. M.; Kahl, T.; Grassein, F.; Boch, S.; Prati, D.; Birkhofer, K.; Renner, S. C.; Sikorski, J.; Wubet, T.; Arndt, H.; Baumgartner, V.; Blaser, S.; Blüthgen, N.; Börschig, C.; Buscot, F.; Diekötter, T.; Jorge, L. R.; Jung, K.; Keyel, A. C.; Klein, A. M; Klemmer, S.; Krauss, J.; Lange, M.; Müller, Jörg.; Overmann, J.; Pašalić, E.; Penone, C.; Perović, D. J.; Purschke, O.; Schall, P.; Socher, S. A.; Sonnemann, I.; Tschapka, M.; Tscharntke, T.; Türke, M.; Venter, P. C.; Weiner, C. N.; Werner, M.; Wolters, V.; Wurst, S.; Westphal, C.; Fischer, M.; Weisser, W. W. & Allan, E. 2016. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540(7632):266-269.
  • Gurgel, H. C. B.; Barbieri, G. & Verani, J. R. 1997. Análise do fator de condição de Metynnis cf. roosevelti Eigenmann, 1915 (Characidae, Myleinae) da lagoa Redonda, Município de Nísia Floresta, Rio Grande do Norte, Brasil. Anais do VIII Seminário Regional de Ecologia 8(1):367-376.
  • Hellawell, J. M. & Abel, R. 1971. A rapid volumetric method for the analysis of the food of fishes. Journal of Fish Biology 3(1):29-37.
  • Hyslop, E. J. 1980. Stomach contents analysis - a review of methods and their application. Journal of Fish Biology 17(4):411-429.
  • Jonsson, M. & Stenroth, K. 2016. True autochthony and allochthony in aquatic-terrestrial resource fluxes along a landuse gradient. Freshwater Science 35(3):882-894.
  • Klontz, G.W. 1995. Care of fish in biological research. Journal of Animal Science 73(11):3485-3492.
  • LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics 20(1):97-117.
  • Le Cren, E. D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). The Journal of Animal Ecology 20:201-219.
  • Lima, F. C. T.; Malabarba, L. R.; Buckup, P. A.; Silva, J. F. P.; Vari, R. P.; Harold, A.; Benine, R.; Oyakawa, O. T.; Pavanelli, C. S.; Menezes, N. A.; Lucena, C. A. S.; Malabarba, M. C. S. L.; Lucena, Z. M. S.; Reis, R. E.; Langeani, F.; Cassati, L.; Bertaco, V. A.; Moreira, C. & Lucinda, P. H. F. 2003. Genera Incertae sedis in Characidae. In: Reis, R. E.; Kullander, S. O. & Ferraris, C. J. eds. Checklist of the Freshwater Fishes of South and Central America. Porto Alegre, EDIPUCRS, p.106-168.
  • Lima-Junior, S. E.; Cardone, I. B. & Goitein, R. 2002. Determinação de um método para cálculo do Fator de Condição Alométrico de peixes. Acta Scientiarum, Biological Sciences 24:397-400.
  • Lougheed, V. L.; McIntosh, M. D.; Parker, C. A. & Stevenson, R. J. 2008. Wetland degradation leads to homogenization of the biota at local and landscape scales. Freshwater Biology 53(12):2402-2413.
  • Margules, C. R. & Pressey, R. L. 2000. Systematic conservation planning. Nature 405(6783):243-253.
  • Myers, n.; Mittermeier, r. a.; Mittermeier, c. g.; Fonseca, g. a. & Kent, j. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853-858.
  • Mazzoni, R. & Lobón‐Cerviá, J. 2000. Longitudinal structure, density and production rates of a neotropical stream fish assemblage: The River Ubatiba in the Serra do Mar, southeast Brazil. Ecography 23(5):588-602.
  • Medeiros, E. S. F.; Silva, M. J. & Ramos, R. T. C. 2008. Application of catchment-and local-scale variables for aquatic habitat characterization and assessment in the Brazilian semi-arid region. Neotropical Biology and Conservation 3(1):13-20.
  • Melo, M. S.; Moro, R. S. & Guimarães, G. B. 2010. Patrimônio natural dos Campos Gerais do Paraná. Ponta Grossa, Editora UEPG. 230p.
  • Oksanen, J.; Blanchet, F. G.; Friendly, M.; Kindt R.; Legendre, P.; McGlinn, D.; O’Hara, R. B.; Simpson, G. L.; Solymos, P.; Stevens, M. H. H. & Wagner, H. 2020. Vegan: Community Ecology Package. R package version 2.5-7.
  • Ometo, J. P. H.; Martinelli, L. A.; Ballester, M. V.; Gessner, A.; Krusche, A. V.; Victoria, R. L. & Williams, M. 2000. Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba River basin, south‐east Brazil. Freshwater Biology 44(2):327-337.
  • Oyakawa, O. T.; Akama, A.; Mautari, K. C. & Nolasco, J. C. 2006. Peixes de Riachos da Mata Atlântica: nas unidades de conservação do Vale do Rio Ribeira de Iguape no Estado de São Paulo. São Paulo, Editora Neotropica. 201p.
  • Peig, J. & Green, A. J. 2009.New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118(12):1883-1891.
  • Pfaff, A.; Robalino, J.; Sandoval, C. & Herrera, D. 2015. Protected area types, strategies and impacts in Brazil’s Amazon: public protected area strategies do not yield a consistent ranking of protected area types by impact. Philosophical Transactions of the Royal Society B: Biological Sciences 370(1681):20140273.
  • Pinto, L. P.; Bedê, L.; Paese, A.; Fonseca, M.; Paglia, A. & Lamas, I. 2006. Mata Atlântica Brasileira: os desafios para conservação da biodiversidade de um hotspot mundial. Biologia da conservação: essências. São Carlos, RiMa, p. 91-118.
  • R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Ricklefs, R. E. 2011. A Economia da Natureza. Rio de Janeiro, Guanabara Koogan. 807p.
  • Ruaro, R.; Tramonte, R. P.; Buosi, P. R.; Manetta, G. I. & Benedito, E. 2020. Trends in Studies of Nonnative Populations: Invasions in the Upper Paraná River Floodplain. Wetlands 40:113-124.
  • Statsoft. 2005. Statsoft, Inc STATISTICA - Data Analysis Software System - Version 7.1.
  • Strahler, A.1953. Gypsometrie analysis of erosional topography. Bulletin of the Geological Society of America 63:923-938.
  • Tah, L.; Gouli, G. B. & Costa, K. S. 2012. Length-weight relationships for 36 freshwater fish species from two tropical reservoirs: Ayamé I and Buyo, Côte d’Ivoire. Revista de Biologia Tropical 60(4):1847-1856.
  • Thieme, M. L.; Sindorf, N.; Higgins, J.; Abell, R.; Takats, J. A.; Naidoo, R. & Barnett, A. 2016. Freshwater conservation potential of protected areas in the Tennessee and Cumberland River Basins, USA. Aquatic Conservation: Marine and Freshwater Ecosystems 26:60-77.
  • Vannote, R. L.; Minshall, G. W.; Cummins, K. W.; Sedell, J. R. & Cushing, C. E. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130-137.
  • Vazzoler, A. E. E. M. 1996. Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá, EDUEM. 169p.
  • Veloso, H. P.; Rangel-Filho, A. L. R. & Lima, J. C. A.1991. Classificação da vegetação brasileira, adaptada a um sistema universal. Brasília, IBGE. 124p. Available from <Available from http://jbb.ibict.br//handle/1/397 >. Accessed on June 2021.
    » http://jbb.ibict.br//handle/1/397

Publication Dates

  • Publication in this collection
    15 May 2023
  • Date of issue
    2023

History

  • Received
    22 Sept 2022
  • Accepted
    30 Dec 2022
Museu de Ciências Naturais Museu de Ciências Naturais, Secretária do Meio Ambiente e Infraestrutura, Rua Dr. Salvador França, 1427, Jardim Botânico, 90690-000 - Porto Alegre - RS - Brasil, Tel.: + 55 51- 3320-2039 - Porto Alegre - RS - Brazil
E-mail: iheringia-zoo@fzb.rs.gov.br