Acessibilidade / Reportar erro

Gingival inflammation, enamel defects, and tooth sensitivity in children with amelogenesis imperfecta: a case-control study

Abstract

Gingival conditions and tooth sensitivity of young patients with amelogenesis imperfecta lack in depth studies. This case-control study aimed to compare (1) the gingival inflammation, the presence of enamel defects, and tooth sensitivity in young patients with and without amelogenesis imperfecta and (2) to investigate if any difference exists between subtypes of amelogenesis imperfecta.

Methodology

We compared forty-two participants with amelogenesis imperfecta with forty-two controls matched for age, gender, and the number of examined sites. Based on interview, clinical examination, and intraoral photography, we collected data on periodontal conditions, enamel defects and the presence of tooth sensitivity. Comparison tests were performed to investigate if any difference existed between cases and controls; and among cases, between the different subtypes of amelogenesis imperfecta. We performed a post-hoc analysis for any significant difference observed.

Results

We observed more gingival inflammation, enamel defects and tooth sensitivity among cases (all p<0.05). Participants with hypocalcified amelogenesis imperfecta had more gingival inflammation, enamel defects, and tooth sensitivity than patients with the hypoplastic and hypomature subtypes (all p<0.05). After adjustment for dental plaque, gingival inflammation was associated with the presence of amelogenesis imperfecta (OR (95%CI) = 1.14 (1.05; 1.24). p<0.01).

Conclusion

Gingival inflammation, enamel defect and tooth sensitivity are more frequently observed among young patients with amelogenesis imperfecta, and more specifically among children with the hypocalcified subtype.

Amelogenesis imperfecta; Dental enamel; Dentin sensitivity; Gingivitis; Dental plaque

Introduction

Amelogenesis imperfecta (AI) is a rare genetic disease affecting enamel development and mineralization. It might be isolated or a symptom of a syndrome, and it can affect both primary and permanent teeth. Isolated AI results from mutations in specific genes (LAMB3, ENAM, AMBN, ITGB6, AMELX, KLK4, MMP20, WDR72, ODAPH, SLC24A4, FAM83H, DLX3, ARHGAP6, LAMA3, AMTN, ACPT, GPR68, RELT, SP6).11 - Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007;2:17. doi: 10.1186/1750-1172-2-17
https://doi.org/10.1186/1750-1172-2-17...

2 - Smith CE, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, et al. Amelogenesis imperfecta; genes, proteins, and Pathways. Front Physiol. 2017;8:435. doi: 10.3389/fphys.2017.00435
https://doi.org/10.3389/fphys.2017.00435...

3 - Kim J-W, Zhang H, Seymen F, Koruyucu M, Hu Y, Kang J, et al. Mutations in RELT cause autosomal recessive amelogenesis imperfecta. Clin Genet. 2019;95(3):375-83. doi: 10.1111/cge.13487
https://doi.org/10.1111/cge.13487...
-44 - Smith CE, Whitehouse LL, Poulter JA, Hewitt LW, Nadat F, Jackson BR, et al. A missense variant in specificity protein 6 (SP6) is associated with amelogenesis imperfecta. Hum Mol Genet. 2020;29(9):1417-25. doi: 10.1093/hmg/ddaa041
https://doi.org/10.1093/hmg/ddaa041...
AI presents three subtypes: hypoplastic (type I), hypocalcified (type II), and hypomature (type III).55 - Rao S, Witkop CJ Jr. Inherited defects in tooth structure. Birth Defects Orig Artic Ser. 1971;7(7):153-84. The prevalence of AI reaches 1/14 000 in the USA but to date, no existing epidemiologic study has been conducted in France.66 - Lau EC, Slavkin HC, Snead ML. Analysis of human enamel genes: insights into genetic disorders of enamel. Cleft Palate J. 1990;27(2):121-30. doi: 10.1597/1545-1569(1990)027<0121:aohegi>2.3.co;2
https://doi.org/10.1597/1545-1569(1990)0...

Clinical expression varies, affecting teeth color (from white to yellow brown), surface (smooth, rough, spotted), and hardness (from normal hardness to soft enamel). Some patients also experience sensitivity and pain. Finally, other oral anomalies can be observed, such as teeth agenesis, pulp calcifications, open bite, gingival overgrowth, and periodontal disease.77 - Poulsen S, Gjørup H, Haubek D, Haukali G, Hintze H, Løvschall H, et al. Amelogenesis imperfecta: a systematic literature review of associated dental and oro-facial abnormalities and their impact on patients. Acta Odontol Scand. 2008;66(4):193-9. doi: 10.1080/00016350802192071
https://doi.org/10.1080/0001635080219207...

Different kinds of AI exist: hypoplastic, hypomature, and hypocalcified AI. Hypoplastic AI consists of a lack of enamel in quantity, which leads to morphological anomalies detectable on X-rays. Patients feel no pain, but some thermal sensitivity can occur.88 - Wright JT, Robinson C, Kirkham J. Enamel protein in smooth hypoplastic amelogenesis imperfecta. Pediatr Dent. 1992;14(5):331-7. Hypomature AI corresponds to a defect of protein maturation within the enamel matrix, i.e., the presence of some proteins prevents a complete enamel mineralization. The enamel lacks translucency, appears opaque and is softer than normal. On X-rays, enamel appearance is less radiopaque.99 - Wright JT, Butler WT. Alteration of enamel proteins in hypomaturation amelogenesis imperfecta. J Dent Res. 1989;68(9):1328-30. doi: 10.1177/00220345890680090801
https://doi.org/10.1177/0022034589068009...
Finally, Hypocalcified AI is the most severe form of AI, where enamel mineralization is not achieved. Patients encounter pain while eating, brushing, or with thermal changes. The enamel can look brown or yellowish, with both enamel and dentin sharing the same radio-opacity on X-rays.1010 - Gjørup H, Haubek D, Hintze H, Haukali G, Løvschall H, Hertz JM, et al. Hypocalcified type of amelogenesis imperfecta in a large family: clinical, radiographic, and histological findings, associated dento-facial anomalies, and resulting treatment load. Acta Odontol Scand. 2009;67(4):240-7. doi: 10.1080/00016350902973685
https://doi.org/10.1080/0001635090297368...

Previous case reports have documented poor plaque control, accumulation of dental calculus, and gingival inflammation among patients with AI.77 - Poulsen S, Gjørup H, Haubek D, Haukali G, Hintze H, Løvschall H, et al. Amelogenesis imperfecta: a systematic literature review of associated dental and oro-facial abnormalities and their impact on patients. Acta Odontol Scand. 2008;66(4):193-9. doi: 10.1080/00016350802192071
https://doi.org/10.1080/0001635080219207...
,1111 - Lindunger A, Smedberg J-I. A retrospective study of the prosthodontic management of patients with amelogenesis imperfecta. Int J Prosthodont. 2005;18(3):189-94.

12 - Markovic D, Petrovic B, Peric T. Case series: clinical findings and oral rehabilitation of patients with amelogenesis imperfecta. Eur Arch Paediatr Dent. 2010;11(4):201-8. doi: 10.1007/BF03262745
https://doi.org/10.1007/BF03262745...
-1313 - Siegrist BE, Brecx MC, Gusberti FA, Joss A, Lang NP. In vivo early human dental plaque formation on different supporting substances: a scanning electron microscopic and bacteriological study. Clin Oral Implants Res. 1991;2(1):38-46. doi: 10.1034/j.1600-0501.1991.020105.x
https://doi.org/10.1034/j.1600-0501.1991...
Nevertheless, little is known about their periodontal conditions. We need more information on the sensitivity and periodontal status of AI patients compared to patients without it.

Furthermore, no study has compared the periodontal status associated with the different AI subtypes. However, we observed in our daily clinical practice that some patients with AI have more dental plaque, calculus, and gingival inflammation than others, and may not respond to the periodontal therapy the same way.

The present study aimed to compare the gingival inflammation between children with and without AI, also comparing enamel characteristics, tooth sensitivity, and dental plaque. Finally, we investigated if any difference existed between participants with hypomature, hypocalcified and hypoplastic AI.

Methodology

Study population

Between 2006 and 2016, we examined consecutive patients referred to the Reference Centre for Oral and Dental Rare Diseases, O-Rares, Rothschild Hospital, AP-HP (Paris, France), recording clinical and demographic data. The clinical examination was performed during the first visit, and 5 intra-oral photographs (1 front view, 2 lateral views with or without mirror and 2 occlusal views with a mirror) (Figure 1) and extra-oral photographs were taken. Evaluation included untreated restorative patients. All participants who were diagnosed with isolated and syndromic AI were included. Participants with syndromes that could affect the periodontal status such as epidermolysis bullosa were excluded. Based on dental examination, we categorized the participants into three groups: hypomature, hypocalcified, and hypoplastic AI according to criteria reported in the literature.1414 - Witkop CJ Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1988;17(9-10):547-53. doi: 10.1111/j.1600-0714.1988.tb01332.x
https://doi.org/10.1111/j.1600-0714.1988...
Two independent clinicians (CQ, MM) worked on diagnosis, calling for a third practitioner (SK) in case of disagreement. As manual dexterity, and consequently the quality of tooth brushing, may vary with age, we age-matched participants across the three groups. Since both plaque and gingival index values depend on the number of scored tooth surfaces, we also matched participants for the number of sites examined.

Figure 1
case example of clinical views and OPT of a 14 years old, male patient, with AI hypomature inflammation (PI=12%; MGI=0.19; MGI≥2 =0).

During the same period, controls without AI who started an orthodontic treatment were included and matched with cases for age, gender, and the number of sites examined.

For retrospective data in practice surveys, French legislation only requires ensuring the protection of personal data.1515 - Toulouse E, Masseguin C, Lafont B, McGurk G, Harbonn A, Roberts JA, et al. French legal approach to clinical research. Anaesth Crit Care Pain Med. 2018;37(6):607-14. doi: 10.1016/j.accpm.2018.10.013
https://doi.org/10.1016/j.accpm.2018.10....
The data file was then submitted and approved by the “Commission Nationale Informatique et Liberté” (CNIL # 2048817 03-30-2017).

Enamel characteristics

Based on clinical examination and intraoral photography, we recorded and qualitatively evaluated the presence of enamel defects.

Periodontal conditions

Based exclusively on intra-oral photographs, we evaluated 3 values in buccal and 3 values in lingual/palatal (mesial, centre and distal) for the plaque index and the gingival index. After anonymizing the patients, we projected the intra-oral views on a full screen for evaluation. We modified the O’Leary plaque index (PI) to calculate the participants’ oral hygiene.1616 - O’Leary TJ, Drake RB, Naylor JE. The plaque control record. J Periodontol. 1972;43(1):38. doi: 10.1902/jop.1972.43.1.38.
https://doi.org/10.1902/jop.1972.43.1.38...
From the photograph, we calculated the percentage of site with visible plaque, without plaque disclosing. Gingival inflammation was assessed using the Modified Gingival Index (MGI),1717 - Lobene RR, Weatherford T, Ross NM, Lamm RA, Menaker L. A modified gingival index for use in clinical trials. Clin Prev Dent. 1986;8(1):3-6. adapted from Löe’s (1976) Gingival Index (GI)1818 - Löe H. The gingival index, the plaque index and the retention index systems. J Periodontol. 1967;38(6):610-6. doi: 10.1902/jop.1967.38.6.610
https://doi.org/10.1902/jop.1967.38.6.61...
. A previous study concluded that the MGI correlated significantly with the GI.1919 - Lobene RR, Mankodi SM, Ciancio SG, Lamm RA, Charles CH, Ross NM. Correlations among gingival indices: a methodology study. J Periodontol. 1989;60(3):159-62. doi: 10.1902/jop.1989.60.3.159
https://doi.org/10.1902/jop.1989.60.3.15...
MGI is more conducive with photographic examination since it requires no probing to assess the degree of inflammation. By analogy with the GI, scores 1 and 2, both of which describe mild gingivitis, were merged to obtain MGI’s four-class index: 0: absence of inflammation; 1: mild inflammation or slight changes in color and texture; 2: moderate, bright surface inflammation, erythema, oedema and/or hypertrophy of marginal or papillary gingiva; 3: severe inflammation, erythema, oedema and/or marginal gingival hypertrophy of the unit or spontaneous bleeding, papillary, congestion or ulceration. We also calculated the percentage of sites with moderate or severe inflammation (MGI≥2).

We randomly selected fifteen participants for the calibration procedure. The periodontal examiner (CQ) was calibrated to a standard examiner (SK), and kappa coefficients for inter-examiner reproducibility for PI (PI=0 versus PI=1) and GI (GI<0 versus GI≥0, and GI<2 versus GI≥2) were 0.66 (95%CI: 0.61-0.72), 0.70 (0.65-0.75), and 0.87 (0.80-0.93), respectively. Using the same pictures, plaque and gingival inflammation assessments were repeated one week later and the kappa coefficients for intra-examiner reproducibility were 0.74 (0.69-0.79), 0.75 (0.71-0.80), and 0.72 (0.62-0.81), respectively.

Definition of other covariates

We registered gender and age at first visit and assessed tooth sensitivity with the question “Do you feel pain when you eat, drink or brush your teeth?” (yes or no).

Statistical analyses

Based on data from a previous study on the longevity of dental restorations in young patients with and without amelogenesis imperfecta,2020 - Lundgren GP, Dahllöf G. Outcome of restorative treatment in young patients with amelogenesis imperfecta: a cross-sectional, retrospective study. J Dent. 2014;42(11):1382-9. doi: 10.1016/j.jdent.2014.07.017
https://doi.org/10.1016/j.jdent.2014.07....
the mean percentage of sites with gingival inflammation was 26.9±24.6 in the amelogenesis imperfecta group and 12.8±14.8 in the control group. With 33 participants in each group, we considered possible to detect a mean difference of at least 14% with a standard deviation of 20% between the two groups. This estimate was based on a two-tailed test of matched pairs conducted at the 5% level of significance with a statistical power of 80%.

We compared included and excluded participants using Wilcoxon and Fisher’s exact tests.

First, we compared controls and cases using McNemar’s test and pairwise t-test. Then, we used Friedman and Cochran’s Q tests to determine differences between the three clinical subtypes. We performed a post-hoc analysis for any significant difference observed.

We used Wilcoxon tests to compare the mean plaque index between participants with and without tooth sensitivity, and participants with and without enamel defect. We plotted and quantified the linear correlation between mean plaque index and mean gingival inflammation by using the Pearson correlation coefficient. Finally, we ran a multivariate model to determine whether mean gingival inflammation was associated with the presence of amelogenesis imperfecta after adjustment for mean plaque index.

We considered statistically significant a p value less than 0.05. We performed all statistical analyses using R software (version 2.14.0, the R Core Development team, 2010).

Results

Among the 124 eligible young patients with AI, we excluded 64 because of missing data or syndrome affecting the periodontal status, and 18 during matching. Thus, the study included 42 participants with hypomature (n=14), hypocalcified (n=14), and hypoplastic (n=14) AI as cases and, consequently, 42 matched controls (Figure 2-3).

Figure 2
Flowchart of the study sample selection

Figure 3
A: Clinical view of a 9 years old, male patient, with hypocalcified AI. Enamel is of normal thickness but is hypocalcified and soft. The patient presents plaque on every visible surface, associated with a severe gingival inflammation (PI=78%; MGI=1.67; MGI≥2=44%). B: same patient with higher magnification. C: Clinical view of a 9 years old, female patient, with hypomature AI. Enamel is of normal thickness, but it is mottled and softer than normal. The patient does not present visible plaque nor gingival inflammation (PI=3%; MGI=0.12; MGI≥2=0%). D: Clinical view of a 5 years old, female patient, with hypoplastic AI. The enamel is thin and pitted. The patient presents a small amount of plaque some in mesial and distal surfaces and a mild gingival inflammation (PI=7%; MGI=0.18; MGI≥2=0%)

We found no significant difference between included and excluded cases for the AI subtypes (p=0.05). However, excluded patients were more likely to have hypoplastic AI (66.7% versus 33.3%), whereas few excluded patients presented the hypocalcified form (11.1% versus 33.3%). Mean MGI was lower among excluded patients (0.2±0.6 versus 0.5±0.5. p<0.01). The percentage of sites with moderate and severe inflammation was also lower among excluded subjects (6.7±23.5 versus 11.9±16.7. p<0.01). We observed no significant difference between included and excluded subjects for enamel characteristics, tooth sensitivity, and enamel defect (Supplemental table 1).

Supplemental table 1
Characteristics of included (n=42) and excluded (n=18) cases

Due to matching, no significant difference existed for age, gender, and the number of examined sites between cases and controls, (Table 1) and between the three clinical subtypes of amelogenesis imperfecta (Table 2).

Table 1
Characteristics of included patients
Table 2
Characteristics of included patients by subtype of AI

Periodontal conditions

Regarding periodontal status, mean plaque index was 11.4 (Range: 0.8 - 38.4) among controls and 29.1 (0 - 93.7) among cases (p<0.01). Mean gingival index and the percentage of sites with moderate and severe gingival inflammation were higher among cases (respectively 0.5 (0 - 1.7) vs 0.1 (0 - 0.4) and 11.9 (0 - 65.3) vs 0.5 (0 - 5.6), all p<0.01) (Table 1). Cases with the hypocalcified subtype, when compare with the two other clinical subtypes of AI, showed worse periodontal conditions. We found no significant difference between patients with hypomature and hypoplastic AI for all three periodontal parameters (Tables 2-3)

Tooth sensitivity and enamel defects

Only two controls showed both tooth sensitivity and enamel defects, whereas 63.6% of cases had tooth sensitivity and 73.8% had enamel defects (all p<0.05) (Table 1). All participants with the hypocalcified subtype had enamel defects, with 92.3% of them reporting tooth sensitivity. Tooth sensitivity was also prevalent among children with the hypomature subtype, whereas enamel defect was more prevalent among participants with the hypoplastic subtype (Table 2). Participants with the hypocalcified subtype had more enamel defects than participants with the hypomature form (Table 3). Participants with the hypocalcified subtype reported more tooth sensitivity than participants with the hypoplastic form (Table 3).

Table 3
Post-hoc pairwise comparisons: dental plaque and gingival inflammation (p values)

Plaque index, enamel defect, and tooth sensitivity

Plaque index showed to be higher among participants with enamel defects and those who reported tooth sensitivity (Figure 4).

Figure 4
Plaque index and presence of enamel defect or tooth sensitivity

Plaque index, gingival inflammation, and presence of AI

We observed a linear correlation between mean plaque index and mean gingival inflammation among all 84 participants (r=0.89) (Figure 5A), and among cases only (r=0.88) (Figure 5B).

Figure 5
Linear correlation between mean plaque index and mean gingival inflammation among all participants (A) and among cases (B)

After adjustment for plaque index, mean gingival inflammation was associated with the presence of AI (OR (95%CI) = 1.14 (1.05; 1.24), p<0.01) (Data not shown).

Discussion

This case control study reveals that participants with AI had more tooth sensitivity and gingival inflammation than controls without AI. Among participants with AI, the hypocalcified subtype showed higher mean gingival inflammation, and more enamel defects and tooth sensitivity. The proportion of sites with moderate and severe gingival inflammation was higher among cases than controls; and more specifically among young patients with the hypocalcified subtype. We found no significant difference for periodontal conditions between participants with hypomature and hypoplastic AI. After adjustment for mean plaque index, we observed an independent association between mean gingival inflammation and the presence of AI.

A previous retrospective study compared oral health conditions and the longevity of dental restorations between patients with AI and controls. Patients with AI had more sites with bleeding on probing than controls. The study made no distinction between the different subtypes of AI.2020 - Lundgren GP, Dahllöf G. Outcome of restorative treatment in young patients with amelogenesis imperfecta: a cross-sectional, retrospective study. J Dent. 2014;42(11):1382-9. doi: 10.1016/j.jdent.2014.07.017
https://doi.org/10.1016/j.jdent.2014.07....
Another retrospective study compared the oral health status between participants with hypocalcified (n=5) and hypoplastic AI (n=10). The authors observed higher values for plaque and bleeding indexes, and for the percentage of sites with probing depth more than 3mm, among participants with hypocalcified AI.1111 - Lindunger A, Smedberg J-I. A retrospective study of the prosthodontic management of patients with amelogenesis imperfecta. Int J Prosthodont. 2005;18(3):189-94. A cross-sectional study found similar results, with worse periodontal conditions among participants with hypocalcified AI than among those with the hypoplastic subtype.1212 - Markovic D, Petrovic B, Peric T. Case series: clinical findings and oral rehabilitation of patients with amelogenesis imperfecta. Eur Arch Paediatr Dent. 2010;11(4):201-8. doi: 10.1007/BF03262745
https://doi.org/10.1007/BF03262745...
Neither of these two studies included participants with hypomature AI. To our knowledge, only one study compared periodontal status among the three subtypes of AI. In this case series, gingival index was higher among participants with hypocalcified AI. But the study included only 12 participants, including two with hypocalcified AI, and two with the hypomature subtype.1313 - Siegrist BE, Brecx MC, Gusberti FA, Joss A, Lang NP. In vivo early human dental plaque formation on different supporting substances: a scanning electron microscopic and bacteriological study. Clin Oral Implants Res. 1991;2(1):38-46. doi: 10.1034/j.1600-0501.1991.020105.x
https://doi.org/10.1034/j.1600-0501.1991...
In the present study, we confirm that patients with hypocalcified AI present the worst periodontal conditions.

Enamel acts as a physical barrier because of the hardness and the highly mineralized nature of this tissue. Among patients with hypocalcified AI, the enamel shows normal thickness, but mineralization is defective. Consequently, the tissue does not play its protective role, resulting in tooth sensitivity.2121 - Toupenay S, Fournier BP, Manière M-C, Ifi-Naulin C, Berdal A, de La Dure-Molla M. Amelogenesis imperfecta: therapeutic strategy from primary to permanent dentition across case reports. BMC Oral Health. 2018;18(1):108. doi: 10.1186/s12903-018-0554-y
https://doi.org/10.1186/s12903-018-0554-...
From a biological standpoint, enamel defects observed among patients with hypocalcified AI become local risk factors for bacterial adhesion and plaque colonization.2222 - Quirynen M. The clinical meaning of the surface roughness and the surface free energy of intra-oral hard substrata on the microbiology of the supra- and subgingival plaque: results of in vitro and in vivo experiments. J Dent. 1994;22 Suppl 1:S13-6. doi: 10.1016/0300-5712(94)90165-1.
https://doi.org/10.1016/0300-5712(94)901...
,2323 - Wang C, Zhao Y, Zheng S, Xue J, Zhou J, Tang Y, et al. Effect of enamel morphology on nanoscale adhesion forces of streptococcal bacteria : an AFM study. Scanning. 2015;37(5):313-21. doi: 10.1002/sca.21218.
https://doi.org/10.1002/sca.21218...
In the present study, we observed a significant association between the presence of dental plaque and tooth sensitivity (Figure 4). From a behavioural standpoint, we hypothesized that, among patients with hypocalcified AI, tooth sensitivity due to enamel defects results in poor plaque control and, consequently, in gingival inflammation.

The study has several limitations. First, due to the very young age of several participants, we chose to assess plaque index and gingival inflammation by using intra-oral photographs and not clinically. Photography and image analyses are frequently used in periodontology to evaluate plaque index and/or gingival inflammation, by different techniques.2424 - Smith RN, Brook AH, Elcock C. The quantification of dental plaque using an image analysis system: reliability and validation. J Clin Periodontol. 2001;28(12):1158-62. doi: 10.1034/j.1600-051x.2001.281211.x
https://doi.org/10.1034/j.1600-051x.2001...

25 - Gazi MI. Photographic assessment of the antiplaque properties of sanguinarine and chlorhexidine. J Clin Periodontol. 1988;15(2):106-9. doi: 10.1111/j.1600-051x.1988.tb01002.x
https://doi.org/10.1111/j.1600-051x.1988...

26 - Leroy R, Jara A, Martens L, Declerck D. Oral hygiene and gingival health in Flemish pre-school children. Community Dent Health. 2011;28(1):75-81.

27 - Obregón-Rodríguez N, Fernández-Riveiro P, Piñeiro-Lamas M, Smyth-Chamosa E, Montes-Martínez A, Suárez-Cunqueiro MM. Prevalence and caries-related risk factors in schoolchildren of 12- and 15-year-old: a cross-sectional study. BMC Oral Health. 2019;19(1):120. doi: 10.1186/s12903-019-0806-5
https://doi.org/10.1186/s12903-019-0806-...

28 - Smith RN, Lath DL, Rawlinson A, Karmo M, Brook AH. Gingival inflammation assessment by image analysis: measurement and validation. Int J Dent Hyg. 2008;6(2):137-42. doi: 10.1111/j.1601-5037.2008.00294.x
https://doi.org/10.1111/j.1601-5037.2008...

29 - Lees CH. Assessment of gingival change using color photography. Community Dent Oral Epidemiol. 1974;2(5):225-30. doi: 10.1111/j.1600-0528.1974.tb01657.x
https://doi.org/10.1111/j.1600-0528.1974...

30 - Arnbjerg D, Poulsen S, Heidmann J. Evaluation of a photographic method for diagnosis of gingivitis and caries. Scand J Dent Res. 1992;100(4):207-10. doi: 10.1111/j.1600-0722.1992.tb01743.x
https://doi.org/10.1111/j.1600-0722.1992...
-3131 - Denissen H, Kuijkens A, Dozić A. A photographic method to measure the colour characteristics of healthy gingiva. Int J Dent Hyg. 2007;5(1):22-6. doi: 10.1111/j.1601-5037.2007.00216.x
https://doi.org/10.1111/j.1601-5037.2007...
The quantitative evaluation of dental plaque requires the use of plaque disclosure; color photographs of the disclosed plaques are sensitive and reliable.2525 - Gazi MI. Photographic assessment of the antiplaque properties of sanguinarine and chlorhexidine. J Clin Periodontol. 1988;15(2):106-9. doi: 10.1111/j.1600-051x.1988.tb01002.x
https://doi.org/10.1111/j.1600-051x.1988...
Dental plaque can be evaluated by using a quantitative index, or by assessing the covering area surface. In the present study, we conducted the evaluation of dental plaque on all visible tooth surfaces with a “yes or no” index to limit the risk of error due to the absence of discoloration. The use of this type of index is more reliable than quantitative indexes when using classical cameras. The present study observed a mean plaque index among controls of 12.3%, while previous studies conducted among young European patients have described a plaque index of roughly 30%.2626 - Leroy R, Jara A, Martens L, Declerck D. Oral hygiene and gingival health in Flemish pre-school children. Community Dent Health. 2011;28(1):75-81.,2727 - Obregón-Rodríguez N, Fernández-Riveiro P, Piñeiro-Lamas M, Smyth-Chamosa E, Montes-Martínez A, Suárez-Cunqueiro MM. Prevalence and caries-related risk factors in schoolchildren of 12- and 15-year-old: a cross-sectional study. BMC Oral Health. 2019;19(1):120. doi: 10.1186/s12903-019-0806-5
https://doi.org/10.1186/s12903-019-0806-...
The lower mean plaque index observed in the present study may be due to the dichotomic assessment of dental plaque. Evaluation by image analysis allows for reproducible comparison of changes in gingival color and/or volume. These techniques can be used to diagnose gingivitis, but also to monitor the evolution of these variables over time.2828 - Smith RN, Lath DL, Rawlinson A, Karmo M, Brook AH. Gingival inflammation assessment by image analysis: measurement and validation. Int J Dent Hyg. 2008;6(2):137-42. doi: 10.1111/j.1601-5037.2008.00294.x
https://doi.org/10.1111/j.1601-5037.2008...
Although the color of healthy gingiva may vary between people, the use of digital gingival color measurement is simple, reliable and reproducible.2929 - Lees CH. Assessment of gingival change using color photography. Community Dent Oral Epidemiol. 1974;2(5):225-30. doi: 10.1111/j.1600-0528.1974.tb01657.x
https://doi.org/10.1111/j.1600-0528.1974...

30 - Arnbjerg D, Poulsen S, Heidmann J. Evaluation of a photographic method for diagnosis of gingivitis and caries. Scand J Dent Res. 1992;100(4):207-10. doi: 10.1111/j.1600-0722.1992.tb01743.x
https://doi.org/10.1111/j.1600-0722.1992...
-3131 - Denissen H, Kuijkens A, Dozić A. A photographic method to measure the colour characteristics of healthy gingiva. Int J Dent Hyg. 2007;5(1):22-6. doi: 10.1111/j.1601-5037.2007.00216.x
https://doi.org/10.1111/j.1601-5037.2007...
Moreover, dichotomous diagnosis based on redness is more reproducible than swelling.3030 - Arnbjerg D, Poulsen S, Heidmann J. Evaluation of a photographic method for diagnosis of gingivitis and caries. Scand J Dent Res. 1992;100(4):207-10. doi: 10.1111/j.1600-0722.1992.tb01743.x
https://doi.org/10.1111/j.1600-0722.1992...

Secondly, no information regarding social classes, occupations, and education levels of parents as a proxy measure for socioeconomic status featured in the analysis. Socioeconomic status may impact oral hygiene habits and the frequency of dental visits, which impact periodontal conditions. Thirdly, no genetic data was available for these patients. Thus, we cannot discuss the measures with the genotypes. Finally, because of the low prevalence of AI, the study included only 42 cases.

Conclusion

Patients with AI present more gingival inflammation and tooth sensitivity than patients without AI. Among patients with AI, oral conditions were worse in the hypocalcified subtype than in hypomature or hypoplastic AI. Most of the sample were children, and thus these conclusions might need confirmation with adults.

Acknowledgement

The authors wish to thank Professors Phillipe Bouchard, Tord Lungren, Ariane Berdal, and Doctor Marie Helene Cottet for their advises during the writing of this paper. The study received no external funding, apart from the support of the authors’ institution.

References

  • 1
    - Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007;2:17. doi: 10.1186/1750-1172-2-17
    » https://doi.org/10.1186/1750-1172-2-17
  • 2
    - Smith CE, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, et al. Amelogenesis imperfecta; genes, proteins, and Pathways. Front Physiol. 2017;8:435. doi: 10.3389/fphys.2017.00435
    » https://doi.org/10.3389/fphys.2017.00435
  • 3
    - Kim J-W, Zhang H, Seymen F, Koruyucu M, Hu Y, Kang J, et al. Mutations in RELT cause autosomal recessive amelogenesis imperfecta. Clin Genet. 2019;95(3):375-83. doi: 10.1111/cge.13487
    » https://doi.org/10.1111/cge.13487
  • 4
    - Smith CE, Whitehouse LL, Poulter JA, Hewitt LW, Nadat F, Jackson BR, et al. A missense variant in specificity protein 6 (SP6) is associated with amelogenesis imperfecta. Hum Mol Genet. 2020;29(9):1417-25. doi: 10.1093/hmg/ddaa041
    » https://doi.org/10.1093/hmg/ddaa041
  • 5
    - Rao S, Witkop CJ Jr. Inherited defects in tooth structure. Birth Defects Orig Artic Ser. 1971;7(7):153-84.
  • 6
    - Lau EC, Slavkin HC, Snead ML. Analysis of human enamel genes: insights into genetic disorders of enamel. Cleft Palate J. 1990;27(2):121-30. doi: 10.1597/1545-1569(1990)027<0121:aohegi>2.3.co;2
    » https://doi.org/10.1597/1545-1569(1990)027<0121:aohegi>2.3.co;2
  • 7
    - Poulsen S, Gjørup H, Haubek D, Haukali G, Hintze H, Løvschall H, et al. Amelogenesis imperfecta: a systematic literature review of associated dental and oro-facial abnormalities and their impact on patients. Acta Odontol Scand. 2008;66(4):193-9. doi: 10.1080/00016350802192071
    » https://doi.org/10.1080/00016350802192071
  • 8
    - Wright JT, Robinson C, Kirkham J. Enamel protein in smooth hypoplastic amelogenesis imperfecta. Pediatr Dent. 1992;14(5):331-7.
  • 9
    - Wright JT, Butler WT. Alteration of enamel proteins in hypomaturation amelogenesis imperfecta. J Dent Res. 1989;68(9):1328-30. doi: 10.1177/00220345890680090801
    » https://doi.org/10.1177/00220345890680090801
  • 10
    - Gjørup H, Haubek D, Hintze H, Haukali G, Løvschall H, Hertz JM, et al. Hypocalcified type of amelogenesis imperfecta in a large family: clinical, radiographic, and histological findings, associated dento-facial anomalies, and resulting treatment load. Acta Odontol Scand. 2009;67(4):240-7. doi: 10.1080/00016350902973685
    » https://doi.org/10.1080/00016350902973685
  • 11
    - Lindunger A, Smedberg J-I. A retrospective study of the prosthodontic management of patients with amelogenesis imperfecta. Int J Prosthodont. 2005;18(3):189-94.
  • 12
    - Markovic D, Petrovic B, Peric T. Case series: clinical findings and oral rehabilitation of patients with amelogenesis imperfecta. Eur Arch Paediatr Dent. 2010;11(4):201-8. doi: 10.1007/BF03262745
    » https://doi.org/10.1007/BF03262745
  • 13
    - Siegrist BE, Brecx MC, Gusberti FA, Joss A, Lang NP. In vivo early human dental plaque formation on different supporting substances: a scanning electron microscopic and bacteriological study. Clin Oral Implants Res. 1991;2(1):38-46. doi: 10.1034/j.1600-0501.1991.020105.x
    » https://doi.org/10.1034/j.1600-0501.1991.020105.x
  • 14
    - Witkop CJ Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1988;17(9-10):547-53. doi: 10.1111/j.1600-0714.1988.tb01332.x
    » https://doi.org/10.1111/j.1600-0714.1988.tb01332.x
  • 15
    - Toulouse E, Masseguin C, Lafont B, McGurk G, Harbonn A, Roberts JA, et al. French legal approach to clinical research. Anaesth Crit Care Pain Med. 2018;37(6):607-14. doi: 10.1016/j.accpm.2018.10.013
    » https://doi.org/10.1016/j.accpm.2018.10.013
  • 16
    - O’Leary TJ, Drake RB, Naylor JE. The plaque control record. J Periodontol. 1972;43(1):38. doi: 10.1902/jop.1972.43.1.38.
    » https://doi.org/10.1902/jop.1972.43.1.38
  • 17
    - Lobene RR, Weatherford T, Ross NM, Lamm RA, Menaker L. A modified gingival index for use in clinical trials. Clin Prev Dent. 1986;8(1):3-6.
  • 18
    - Löe H. The gingival index, the plaque index and the retention index systems. J Periodontol. 1967;38(6):610-6. doi: 10.1902/jop.1967.38.6.610
    » https://doi.org/10.1902/jop.1967.38.6.610
  • 19
    - Lobene RR, Mankodi SM, Ciancio SG, Lamm RA, Charles CH, Ross NM. Correlations among gingival indices: a methodology study. J Periodontol. 1989;60(3):159-62. doi: 10.1902/jop.1989.60.3.159
    » https://doi.org/10.1902/jop.1989.60.3.159
  • 20
    - Lundgren GP, Dahllöf G. Outcome of restorative treatment in young patients with amelogenesis imperfecta: a cross-sectional, retrospective study. J Dent. 2014;42(11):1382-9. doi: 10.1016/j.jdent.2014.07.017
    » https://doi.org/10.1016/j.jdent.2014.07.017
  • 21
    - Toupenay S, Fournier BP, Manière M-C, Ifi-Naulin C, Berdal A, de La Dure-Molla M. Amelogenesis imperfecta: therapeutic strategy from primary to permanent dentition across case reports. BMC Oral Health. 2018;18(1):108. doi: 10.1186/s12903-018-0554-y
    » https://doi.org/10.1186/s12903-018-0554-y
  • 22
    - Quirynen M. The clinical meaning of the surface roughness and the surface free energy of intra-oral hard substrata on the microbiology of the supra- and subgingival plaque: results of in vitro and in vivo experiments. J Dent. 1994;22 Suppl 1:S13-6. doi: 10.1016/0300-5712(94)90165-1.
    » https://doi.org/10.1016/0300-5712(94)90165-1
  • 23
    - Wang C, Zhao Y, Zheng S, Xue J, Zhou J, Tang Y, et al. Effect of enamel morphology on nanoscale adhesion forces of streptococcal bacteria : an AFM study. Scanning. 2015;37(5):313-21. doi: 10.1002/sca.21218.
    » https://doi.org/10.1002/sca.21218
  • 24
    - Smith RN, Brook AH, Elcock C. The quantification of dental plaque using an image analysis system: reliability and validation. J Clin Periodontol. 2001;28(12):1158-62. doi: 10.1034/j.1600-051x.2001.281211.x
    » https://doi.org/10.1034/j.1600-051x.2001.281211.x
  • 25
    - Gazi MI. Photographic assessment of the antiplaque properties of sanguinarine and chlorhexidine. J Clin Periodontol. 1988;15(2):106-9. doi: 10.1111/j.1600-051x.1988.tb01002.x
    » https://doi.org/10.1111/j.1600-051x.1988.tb01002.x
  • 26
    - Leroy R, Jara A, Martens L, Declerck D. Oral hygiene and gingival health in Flemish pre-school children. Community Dent Health. 2011;28(1):75-81.
  • 27
    - Obregón-Rodríguez N, Fernández-Riveiro P, Piñeiro-Lamas M, Smyth-Chamosa E, Montes-Martínez A, Suárez-Cunqueiro MM. Prevalence and caries-related risk factors in schoolchildren of 12- and 15-year-old: a cross-sectional study. BMC Oral Health. 2019;19(1):120. doi: 10.1186/s12903-019-0806-5
    » https://doi.org/10.1186/s12903-019-0806-5
  • 28
    - Smith RN, Lath DL, Rawlinson A, Karmo M, Brook AH. Gingival inflammation assessment by image analysis: measurement and validation. Int J Dent Hyg. 2008;6(2):137-42. doi: 10.1111/j.1601-5037.2008.00294.x
    » https://doi.org/10.1111/j.1601-5037.2008.00294.x
  • 29
    - Lees CH. Assessment of gingival change using color photography. Community Dent Oral Epidemiol. 1974;2(5):225-30. doi: 10.1111/j.1600-0528.1974.tb01657.x
    » https://doi.org/10.1111/j.1600-0528.1974.tb01657.x
  • 30
    - Arnbjerg D, Poulsen S, Heidmann J. Evaluation of a photographic method for diagnosis of gingivitis and caries. Scand J Dent Res. 1992;100(4):207-10. doi: 10.1111/j.1600-0722.1992.tb01743.x
    » https://doi.org/10.1111/j.1600-0722.1992.tb01743.x
  • 31
    - Denissen H, Kuijkens A, Dozić A. A photographic method to measure the colour characteristics of healthy gingiva. Int J Dent Hyg. 2007;5(1):22-6. doi: 10.1111/j.1601-5037.2007.00216.x
    » https://doi.org/10.1111/j.1601-5037.2007.00216.x

Publication Dates

  • Publication in this collection
    28 Sept 2020
  • Date of issue
    2020

History

  • Received
    29 Mar 2020
  • Reviewed
    11 July 2020
  • Accepted
    15 July 2020
Faculdade De Odontologia De Bauru - USP Serviço de Biblioteca e Documentação FOB-USP, Al. Dr. Octávio Pinheiro Brisolla 9-75, 17012-901 Bauru SP Brasil, Tel.: +55 14 32358373 - Bauru - SP - Brazil
E-mail: jaos@usp.br