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ABSTRACT: In this study, an accurate computational 
algorithm in the context of immersed boundary methods 
is developed and used to analyze an incompressible flow 
around a pitching symmetric airfoil at Reynolds number 
(Re = 255). The boundary conditions are accurately 
implemented by an iterative procedure applied at each time 
step, and the pressure is also updated simultaneously. Flow 
phenomena, observed at different oscillation frequencies 
and amplitudes, are numerically modeled, and the physics 
behind the associated vortex dynamics is explained. It is 
shown that there are four flow regimes associated with 
four wake structures. These include three symmetric flow 
regimes, with adverse, favorable and no vortex effects, and 
an asymmetric flow regime. The phenomena associated 
with these flow regimes are discussed, and the critical 
or transitional values of the Strouhal (St) and normalized 
amplitude (AD) numbers are presented. It is shown that, at 
the fixed pitching amplitude, AD = 0.71, the transition from 
adverse (drag generation) to favorable (thrust generation) 
symmetric flow regime occurs at St = 0.23. Moreover, at this 
particular amplitude, transition from symmetric to asymmetric 
regime occurs at St = 0.48. It is also shown that, at St = 0.22, 
the wake is always deflected and the flow is asymmetric for 
large enough amplitudes AD > 2. The dipole vortices and lift 
generation are two characteristics of asymmetric vortex street. 
This numerical study also reveals that the initial phase angle 
has a dominant effect on the appearance of dipole vortices and 
vortex sheet deflection direction. Numerical results are in good 
agreement with the available experimental data.
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INTRODUCTION

Birds, insects and marine creatures use, and benefit from, 
the phenomena associated with flapping wings, tails and fins. 
Inspired by the nature, scientists and engineers have focused 
on the performance of oscillating wings and airfoils and have 
found that flapping mechanism is more efficient compared to 
the classical fixed wing designs at low Reynolds numbers (Re) 
(Davis 2007).

The flow field around a flapping airfoil is very complex 
due to the discontinuous production of vortices and transient 
interactions between them. Studies on pitching airfoils have 
shown that there are different flow regimes associated with 
different wake patterns. For example, Kármán vortex street 
(KVS) and reverse Kármán vortex street (RKVS) are two 
different flow patterns that result in drag enhancement and 
thrust generation, respectively. In addition, the vortices in the 
wake region of a pitching airfoil can be symmetric or deflected, 
and this also affects the momentum exchange between the 
airfoil body and the surrounding fluid (Ashraf 2010). It is, 
therefore, very important to understand the development of 
these flow regimes, the transition from one regime to another 
and to quantify the favorable and adverse effects associated 
with flapping airfoils. 

The transient flow field around flapping airfoils has been 
studied theoretically, experimentally and numerically for further 
understanding of the effects of parameters such as frequency, 
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amplitude and flapping mode on the lift/thrust generation and 
momentum loss.

On the theoretical side, Jones et al. (1998) have used the 
effective angle of attack to explain the thrust generation by a 
flapping airfoil. The role of the vortex dynamics on thrust and 
drag generation, or momentum surfeit or deficit in the wake 
region, is explained by von Kármán and Burgers (1934). Also, 
Weis-Fogh (1973) explains how insects fly using the unsteady 
lift generation mechanism. 

Many experimental studies have also been carried out. 
Anderson et al. (1998) have provided experimental results related 
to thrust generation through a combined pitching and plunging 
motion of a NACA0012 airfoil in a water tunnel. Based on this 
study, the optimum thrust is obtained at a Strouhal number (St) 
between 0.25 and 0.4. Taylor et al. (2003) have experimentally 
studied wing frequencies of 42 different birds, bats and insects 
and concluded that the Strouhal numbers associated with 
these natural flyers are between 0.19 and 0.41. These results 
are in agreement with the results reported by Anderson  
et al. (1998). Lentik et al. 2007 have experimentally studied the 
vortex dynamics of a flapping airfoil in a soap film tunnel at 
Re = 1,000 and reported that, at high amplitude oscillations, 
asymmetric wakes are generated when the frequency is increased.  
Godoy-Diana et al. (2008) have experimentally studied the vortex  
structure around a pitching airfoil and presented the results 
in the form of a parameter map for different wake types. Bohl 
and Koochesfahani (2009) have studied the wake patterns 
behind a sinusoidally pitching symmetric airfoil at various 
oscillation frequencies and concluded that the wake pattern 
can be controlled by adjusting the frequency, amplitude and 
the oscillation mode (shape of the oscillation wave form). 
They have also reported the transition point at which the KVS 
regime turns to the RKVS one. Zanotti et al. (2014) studied, 
both experimentally and numerically, a pitching airfoil in deep 
dynamic stall condition. They reported that, during upstroke 
motion, 3-D numerical models are in better agreement with 
the experiments as compared to 2-D models. 

Considering the complexity of the vortex dynamics around 
a flapping airfoil and the continuous progress in computational 
algorithms and computer software and hardware, numerical 
simulation is becoming more and more popular. Wang (2000) 
has numerically calculated the flow around a 2-D symmetric 
airfoil undergoing pure plunging motion by an incompressible 
Navier-Stokes solver at Re = 1,000 and reported that the flow 
separates from both the leading and trailing edges at this 

particular Re. Lewin and Haj-Hariri (2003), as well as Young and 
Lai (2007), have provided numerical results on wake structures 
and flow regimes around plunging airfoils. According to the 
latter study, aerodynamic forces are more strongly affected by 
the leading edge vortices while the wake structure is mainly 
controlled by trailing edge vortices. Schnipper et al. (2009) 
have provided information regarding the effects of the wake 
pattern on aerodynamic forces for a flapping airfoil. He et al. 
(2012) have studied transition and symmetry-breaking in the 
wake of a flapping airfoil by an immersed boundary method 
(IBM). They have presented results that show flow patterns from 
the KVS regime to the RKVS one. Yu et al. (2012) investigated the 
asymmetric wake vortex structure around an oscillating airfoil 
both numerically and experimentally. They reported that the 
deflected wake appears around St = 0.31 for pitching amplitude 
equal to 5°. They also reported that, as the St increases, the dipole 
mode of the vortex pair becomes more prevalent. Dipole vortex 
is necessary for the formation of asymmetric wake. Ren et al. 
(2013) reported that the direction of wake asymmetry changes at 
St = 0.37 for a fixed amplitude corresponding to α = 5°. Khalid 
et al. (2014) have numerically simulated the equivalence of 
pitching and plunging motions found in a flapping NACA0012 
airfoil. They have reported that wake deflection is observed, 
though not dominant, at low Strouhal numbers. Bai et al. (2014) 
used an immersed boundary method to simulate the turbulent 
flow around a horizontal axis turbine operating under free surface 
waves. The IBM which is implemented in this investigation 
uses a 3-D finite volume solver. Also, Wei and Zheng (2014) 
have implemented an IBM to study the wake downstream of 
a 2-D heaving airfoil. 

In this study, the physics behind the wake structure, the 
transition from one flow regime to another and the thrust/lift 
performance of a sinusoidally flapping symmetric airfoil over 
a wide range of Strouhal numbers and oscillation amplitudes 
is studied. Furthermore, the effect of the initial phase angle 
on the deflected vortex street, not sufficiently discussed in the 
relevant literature, is studied. To carry out this investigation, 
an accurate computer code based on the IBM is developed 
and used to simulate the flow. IBM is particularly well suited 
for moving boundary problems including the problem of flow 
around a flapping airfoil. 

The proposed solution method is a finite difference iterative 
algorithm, in which both pressure and forces at the Lagrangian 
(boundary) points are updated simultaneously. Therefore, 
boundary conditions are implemented by updating the body 
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force and pressure iteratively in an inner loop at each time step. 
Two test cases are used to validate the computational results. 

The present numerical study is carried out at a constant 
Reynolds number (Re = 255). The airfoil is also selected such that 
the experimental results reported by Godoy-Diana et al. (2008) 
are numerically modeled. Furthermore, detailed information 
regarding the vortex shedding, time-averaged velocity field, and 
aerodynamic coefficients at different oscillation frequencies 
and amplitudes is reported. The phenomenon of transition from 
drag-generating wake to thrust-generating wake is also discussed. 

IMMERSED BOUNDARY METHOD
General View

In this section, some background information relevant to 
the commonly used IBMs is presented.

IBMs use a background uniform Cartesian grid, which does 
not generally conform to the boundary of the flow domain. 
Boundary conditions are then imposed by source terms in the 
governing equations discretized on the background Cartesian 
mesh. In moving boundary problems, the displacement of 
boundary nodes corresponds to the shift of source terms 
between fixed grid points. 

In IBMs, one has to distinguish between two different types of 
nodal points. Fixed Cartesian grid points are called the Eulerian 
points and the possibly moving boundary points are called the 
Lagrangian points. To numerically solve an incompressible flow 
around a moving object via IBM, it is assumed that the boundary 
imposes force on the fluid and the fluid imposes an equal and 
opposite force on the boundary. In classical Peskin’s method, the 
immersed boundary is represented by a set of elastic fibers whose 
locations are tracked by Lagrangian points (Peskin 2002). Figure 1 
shows the coordinates of Lagrangian and Eulerian points and 
the zone of influence for the force term at Lagrangian point K. 

The force terms on Lagrangian points, represented by F , 
are then related by the Hook’s law or a similar relation to the 
displacement of these points. These force terms are distributed on 
Eulerian grid points by a proper delta-type function. Therefore, 
boundary force at each Lagrangian point is distributed over a 
group of cells around that Lagrangian point. The forces exerted 
at the background grid points, f, are related to the boundary 
force as follows:

where:
x = (x, y) are the Cartesian coordinates of an Eulerian 

point; t is time; Γb is the boundary of the solid domain; s is 
the body-fitted coordinate along the boundary; δ is a smooth 
Dirac delta function; X = (X, Y) are the Cartesian coordinates 
of a Lagrangian point. 

k
Fk

Figure 1. (a) Lagrangian (X) and Eulerian (x) points; (b) zone 
of influence for the force term at Lagrangian point k (Lima e 
Silva et al. 2003).

The distributed forces on Eulerian points are used in the 
discrete governing equations as source terms. These equations are 
then solved to calculate fluid velocities at Eulerian grid points, 
represented by u. The velocities at boundary Lagrangian points, U, 
are calculated afterwards as follows: 

where:
Ωs is the solid domain and Ωf is the fluid domain.
Note that discrete governing equations are solved at all 

Eulerian grid points regardless of the positions of those points. 
In other words, non-physical velocities are assigned to the 
Eulerian grid points outside of the flow domain. These numerical 
results are some by-products of the IBM computations. 

The method just described is called the continuous 
forcing method and is often used to solve fluid-structure 
interaction problems with elastic boundary at low Reynolds 
numbers.

The direct forcing method, developed by Mohd-Yusof 
(1997) and further refined by Tseng and Ferziger (2003), 
Balaras (2004) and Mittal et al. (2008), is another approach in 
the family of immersed boundary techniques. This method is 
better suited for high Re flows. The force is implemented into 
the momentum equation directly by substituting the regularized 
no-slip condition near immersed boundary. 

(1)

(2)

(a) (b)
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Exact implementation of the boundary conditions as well 
as the satisfaction of conservation laws are two major concerns 
in all IBMs. To satisfy mass and momentum conservation near 
the boundary, the cut cell method (Chung 2006) has also been 
developed. In this method, finite volumes are defined so that 
immersed boundary coincides with boundary cell faces. This 
method and some later improvements, e.g. Ls-STAG (Cheny 
and Botella 2010), are rather more complex compared to the 
two previously mentioned methods. 

In this paper, an iterative-direct forcing IBM is employed. 
Variables at Lagrangian and Eulerian grid points are linked 
through a simple discrete delta function. Details of the proposed 
method are given in the next section. 

The Proposed Computational Algorithm
Formulation and Force Term Calculations

In the formulation presented here, which has been proposed 
by Wang et al. (2008), a first-order time discretization similar to 
Uhlmann’s method (Uhlmann 2005) is used to implement the 
Lagrangian force terms. The governing equations for incompressible 
flow in the entire computational domain (Ωf + Ωg) are:

It is important to note that u is an intermediate velocity 
vector at Eulerian points that satisfies the momentum equation 
without considering the effects of the boundary conditions. 
The superscript n indicates the last time step, and Δt is the 
time step. To calculate nodal velocity values that satisfy both 
the boundary conditions and governing equations, the effect 
of the force term should be added as follows:

where:
u is the velocity vector on the Eulerian points; P is the 

pressure; ρ is the fluid density; ν is the kinematic viscosity, 
defined as ν = μ / ρ , where μ is the fluid dynamic viscosity; V 

and V2 are the regular centered difference approximations for the 
gradient and Laplace operators, respectively. The source term f 
in Eq. 3 is a fraction of the relevant external boundary force F 
that acts at Eulerian grid point. The force term F is imposed at 
the Lagrangian point to enforce the desired velocity UΓ at the 
immersed boundary. This is done to assure that the velocities 
at Lagrangian points satisfy the no-slip boundary condition. 

An estimate of the velocity can be obtained by the following 
equation:

Rewriting Eq. 7 at a Lagrangian point, it results in:

where:
Un+1 is the velocity at the Lagrangian point at time level  

n + 1; U is an intermediate Lagrangian point velocity calculated 
as follows: 

The velocity term Un+1 in Eq. 8 can now be replaced by 
the known velocity at the boundary (UΓ  ). This results in the 
following expression: 

Force terms at Eulerian points can now be calculated using 
the discrete delta function:

where:
N is the number of Lagrangian points; ΔSk is the distance 

between kth and (k – 1)th Lagrangian points. 

Numerical Scheme
A finite difference method on a staggered grid is used in this 

study. The immersed boundary is discretized by N Lagrangian 
markers, Xk = (Xk, Yk), where the marker spacing is equal to 
ΔS = Γb / N. The following discrete Dirac delta function is used to 
transfer the information between Lagrangian and Eulerian points: 

(3)

(7)

(8)

(9)

(10)

(11)

(12)

(4)

(5)

(6)

ˆ 

b
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where:
x and y are Cartesian coordinates at Eulerian point.
The hat function, dh, which is equivalent to the quadratic 

interpolation scheme (Peskin 2002), is defined as follows:

where:
(u, û, u*)are Eulerian points.
Equation 22, with error tolerance ε = 0.001, is checked in each 

inner loop to impose the velocity boundary condition exactly. At the 
end of inner loop, the velocity and pressure are updated as follows:

where:
h is the grid size and r is a variable like (x - Xk) or (y - Yk) 

in Eq. 12.
To solve the Navier-Stokes equations, the fractional step 

method proposed by Kim and Moin (1985) is implemented. The 
non-linear convection term is treated by second-order Adams-
Bashforth method, and Crank-Nicolson method is used for the 
discretization of the diffusion terms. All the space derivatives are 
approximated by the second-order central difference method. 
The time advancement and calculation of flow field at time 
level n + 1 is carried out through the following steps. The first u 
(intermediate velocity at Eulerian points) is calculated by Eq. 14.

Then, an inner loop is used to update pressure and impose 
velocity boundary condition in an iterative procedure. The 
following equations are used at the mth inner loop iteration: 

Vector quantities, u, u* and u* , are the intermediate velocities 
between the time levels n and n + 1. 

The computational algorithm can now be summarized as follows:
1.	 Obtain the intermediate velocity at grid points, u (x), 

by solving Eq. 14. 
Start the inner loop:
2.	 Obtain the intermediate velocity at grid points, û (x), 

by solving Eq. 15.
3.	 Calculate the intermediate velocities at Lagrangian 

points, U (Xk) , using Eq. 16.
4.	 Obtain the force terms at Lagrangian points, Fn,m (Xk), 

by Eq. 17.
5.	 Distribute the Lagrangian forces among the Eulerian 

points using Eq. 18. 
6.	 Correct the intermediate velocities and obtain u* (x) 

by Eq. 19.
7.	 Obtain u by Eq. 20.
8.	 Update pressure by solving Poisson equation — Eq. 21.
9.	 Check Eq. 22 for convergence; if the convergence is 

achieved, then go to step 10; otherwise, go to step 2. 
End of inner loop:
10.	Update pressure and velocity by Eqs. 23 and 24.
11.	Go to the next time step.

VALIDATION STUDIES

Two test cases are used to validate the proposed numerical 
method. The first test case is a laminar flow around a fixed 
circular cylinder which is steady at Re = 40 and unsteady at 

(13)

(21)

(22)

(23)

(24)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

˜

˜ ˆ

˜

˜
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Re = 100. The calculated drag coefficients at various Reynolds 
numbers are compared to the values reported by Park et al. 
(1998) and Lima e Silva et al. (2003), shown in Table 1. 

The second test case is a laminar flow around an inline 
(back and forth in the x direction) oscillating a circular 
cylinder in a stagnant fluid as described by Dütsch et al. 
(1998). The periodic oscillation is given by the harmonic 
function, x = –Asin (2πfet) , in which A denotes the oscillation 
amplitude of the cylinder and fe is the frequency of the 
oscillation. Keulegan-Carpenter and Reynolds numbers 
are defined as KC = Um/fed and Re = Umd/ν, where, Um is 
the maximum velocity of cylinder during oscillation, d 
is the cylinder diameter and ν is the kinematic viscosity. 
The computation is performed at KC = 5 and Re = 100 at 
which the experimental and numerical results by Dütsch 
et al. (1998) are available. Figure 4 shows the velocity 
profiles along the transverse (ya) axis at xa = –0.6d for two 
different phase positions compared to the experimental 
results of Dütsch et al. (1998). Velocity profiles (ua) agree 
relatively well with the experimental results. 

Also, pressure and vorticity isolines have been compared 
with the numerical study of Guilmineau and Queutey (2002) 
in Figs. 5 and 6. Good agreement is evident. 

Park et al.
(1998)

Lima e Silva 
et al. (2003)

Present 
method

Re

2.782.812.7910
2.012.042.0220
1.511.541.5240
1.351.401.3780
1.331.391.35100

Table 1. Comparison between the drag coefficients 
computed by the present method and two reported results.

Also, the distributions of the pressure coefficient, 
CP = (P – P∞)/(1/2ρU∞), along the surface of circular cylinder at 
Re = 40 and Re = 100, are investigated. Here, U∞ is the far-field 
free stream pressure which is assumed zero and is the free 
stream velocity. Figure 2 shows that the computational results 
in this study agree well with the results of Park et al. (1998). In 
the case of unsteady flow (at Re = 100), pressure coefficients 
are averaged in time. 

A comparison between the streamlines near the cylinder 
is shown in Fig. 3. In some of the conventional direct forcing 
methods, e.g. the method proposed by Su et al. (2007), the 
streamlines cross the boundary. This indicates that the boundary 
condition is not fully satisfied. In the present method, iterative-
direct forcing is employed, and the boundary conditions are fully 
satisfied by updating the pressure and body force simultaneously 
in an iterative procedure.  

Figure 2. Comparison of distribution of the pressure coefficient 
Cp along the cylinder surface for flow past a stationary circular 
cylinder at Re = 40 and 100.

20
-1.5

-1

-0.5

0

0.5

1

1.5

60 100
θ [degrees]

C
P

140 180

Park et al. (1998)
Present method

Re = 40

Re = 100

Figure 3. Streamline around a circular cylinder. (a) Present 
numerical method at Re = 40; (b) Conventional method (like 
Su et al. 2007) at Re = 40; (c) Present numerical method 
at Re = 100; (d) Conventional method (like Su et al. 2007) at 
Re = 100.

2

(a)

(b)

(c)

(d)
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THE FLAPPING AIRFOIL MODEL

The computational domain and the flapping airfoil are shown 
in Fig. 7. The chord of the airfoil C is 23 mm and the diameter 
of the leading edge semi-circle D is 5 mm. These dimensions 

-1.5
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5
ua

y a

-1.5
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5
ua

y a

Dütsch et al. (1998)
Present method

U

U

θ A

C = 23 mm

25C
15C

15C

5C

6C

18C

d

ba

c

D
 =

 5
 m

m
Figure 4. The x velocity component in the transverse (ya) 
direction at xa = –0.6d for two different phase positions 
(φ = 2∏ft). (a) φ = 180°; (b) φ = 210°.

Figure 5. Vorticity isolines for two different phase positions 
(φ = 2∏ft). (a) Guilmineau and Queutey 2002, at φ = 0°; 
(b) Present method, at φ = 0°; (c) Guilmineau and Queutey 
2002, at φ = 95°; (d) Present method, at φ = 95°.

Figure 6. Pressure isolines for two different phase positions 
(φ = 2∏ft). (a) Guilmineau and Queutey 2002, at φ = 0°; 
(b) Present method, at φ = 0°; (c) Guilmineau and Queutey 
2002, at φ = 95°; (d) Present method, at φ = 95°.

U: far field velocity. 

Figure 7. Computational domain in this study.

(a)

(a)

(b)

(b)

(d)

(d)

(c)

(c)

(a)

(b)

(25)

are chosen to simulate the experimental study carried out by 
Godoy-Diana et al. (2008).

Three non-dimensional parameters, i.e. Reynolds number, 
Re = U∞D/v, normalized amplitude, AD = A/D, and the Strouhal 
number, St = fD/U∞, are important in this study, where f is the 
oscillation frequency. The oscillatory motion of the airfoil is 
described by the following equation: 
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In Eq. 25, θ0 is the initial angle of attack and θA is the 
maximum angle of attack associated with the amplitude AD, 
as shown in Fig. 7. A 1,200 x 720 uniform grid is used as 
the background Cartesian mesh, and the Δt depends on the 
oscillation frequency. The time step is chosen so that each 
cycle of the oscillation corresponds to 2,000 time steps. For 
example, when the Strouhal number is St = 0.22, the time step 
is Δt = 1.14 x 10-4 s. Relevant flow parameters are taken from 
the experiment of Godoy-Diana et al. (2008), i.e. Re = 255, 
U∞ = 0.1 m/s, and ρ = 1 kg/m3. The viscosity is tuned in each 
numerical test so that Re = 255 is kept fixed in all cases.  

A grid refinement study was carried out at AD = 0.71 and 
St = 0.22. The results are shown in Table 2 for 4 grid sizes. 
In Table 2, C is the chord of the airfoil and CD is the drag 
coefficient computed as follows:

Grid size Grid resolution CD

0.0625C 400 x 240 0.781
0.0416C 600 x 360 0.762

0.03125C 800 x 480 0.752
0.025C 1,000 x 600 0.748

0.02083C 1,200 x 720 0.745
0.0166C 1,500 x 900 0.745

Table 2. Grid refinement study for drag coefficient.

h

L∞

L ∞
L 2

y direction velocity
component

x direction velocity
component

h2

h2

h

h10-1

10-2

10-3

10-3 10-2

10-2

10-1

10-1

100

10-4

10-5

10-3

Figure 8. Grid convergence study. (a) L2 norm; (b) X norm.

SIMULATION RESULTS

Before presenting the computational results, it is appropriate 
to briefly discuss some phenomena associated with flapping 
airfoils. As explained next, these phenomena are simulated and 
observed in this numerical study and have also been reported 
by Yu et al. (2012) and Ren et al. (2013). 

An airfoil flapping in a fluid generates two main vortices 
near the leading edge. Defining the positive vortex as a counter 
clockwise vortex, as shown in Fig. 9, a negative vortex is 
generated at the upper surface of the foil and a positive vortex 
is generated at its lower surface. The strengths of these leading 
edge vortices and their subsequent positions behind the foil 
depend on the flapping amplitude and frequency for a given 
Re. When these vortices shed away from the airfoil, they alter 
the flow pattern in the wake region. Three different scenarios 
regarding the orientation of the vortex pair in the wake region 
are shown in Fig. 9. For low values of oscillation frequency/
amplitude, the upper (negative) and lower (positive) vortices keep 
their initial relative positions with respect to the symmetry line 
of the airfoil. In this mode of flapping motion, the momentum of 
the flow in the wake region is reduced due to the adverse 
effect of vortex system on the main flow (Fig. 9a). At higher 

In Eq. 26, (F (Xk))x terms are the x-components of the forces 
at Lagrangian points.

All results presented in this paper are obtained using the 
1,200 x 720 grid. Figure 8 shows the grid convergence study. 
The results for the finest grid are considered accurate, and the 
L2 and L∞ norms of the error obtained on the coarser grids are 
calculated and shown in Fig. 8. The results demonstrate the 
second-order accuracy of the method. The norms L2 and L∞  
are defined as follows:

where:
n is the number of grid points; ϕ is the velocity component.

(28)

(27)

(26)
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+

+

+

–

–

–

frequencies/amplitudes, the vortex pair rolls into the wake 
region in an aligned situation shown in Fig. 9b. At still higher 
frequency/amplitude, the leading edge vortices cross the 
symmetry line behind the foil. In other words, the negative 
vortex appears below the symmetry line and the positive one 
appears above that line in this case (Fig. 9c). The flow symmetry 
breaks down at more intensified flapping, and a diverted jet of 
energized flow is observed. 

The vortex pair shown in Fig. 9a, results in momentum loss, 
and the flow pattern is known as the Kármán (or Benard-von 
Kármán) vortex street. These vortices are clearly drag generating 
vortices. In contrast, the vortex pair shown in Fig. 9c enhances the 
wake flow momentum, and the pattern is known as the reverse 
Kármán vortex street. The RKVS is, therefore, a thrust-generating 
vortex street. When the two vortices are aligned, as shown in 
Fig. 9b, they have no favorable or adverse effect on the main flow, 
shown by the thick black arrow. 

The asymmetric or deflected jet flow regime is a thrust 
and lift-producing regime and is here called the asymmetric 
reverse Kármán vortex street regime (ARKVS) for the sake of 
briefness. In other words, in addition to the thrust production, 
side force is also generated due to the asymmetric nature of the 
flow in the ARKVS regime.

If the flapping airfoil is used as a propulsive device, it is 
obviously necessary to realize how and when the flow regime 

Figure 9. (a) Kármán vortex street (drag-generating 
vortex); (b) Aligned vortex; (c) Reverse Kármán vortex street 
(thrust-generating vortex). The black arrow shows the main 
flow direction and the gray one shows the flow direction 
generated by vortices.

changes. For a specified Re, a performance map can be developed 
for both analysis and design purposes. 

In this paper, two groups of numerical studies are carried 
out and reported to quantitatively investigate the phenomena 
just described. First, the St is fixed, and the effects of oscillation 
amplitude are considered. Then, the oscillation amplitude is 
fixed, and the effects of the frequency variation or St are studied. 
Finally, a map which shows the effects of the variation of both 
frequency and amplitude is presented. 

Flapping at Fixed Frequency (St = 0.22) 
Vortex structures and calculated average fluid velocities 

at grid points are shown in Fig. 10 for St = 0.22, as well as 
AD = 0.36; 0.71; 1.07; 1.77 and 2.14. The calculated velocities 
are average values in an oscillation cycle, and the contour of the 
velocity field is also shown in each case for further clarification. 

As Fig. 10 shows two main leading edge vortices formed and 
shed away from the airfoil as a result of the flapping motion. It is 
clearly seen that boundary layer separation from the top and bottom 
sides of the flapping airfoil alters the pattern of the vortex street. At 
AD = 0.36, momentum loss in the wake region is observed in the 
corresponding velocity-time averaged contour diagram. This is a 
drag generating KVS flow regime. By increasing the amplitude, 
negative and positive vortices are positioned along the symmetry 
line behind the airfoil at AD = 0.71. In this aligned vortex regime, 
some loss in fluid momentum exists due to viscous effects. However, 
the vortex system does not play a significant role in momentum 
transfer downstream. Based on the numerical results, transition 
from the KVS to RKVS regime occurs at AD ~ 0.72. Further 
increase in the flapping amplitude, represented by AD = 1.07 and 
AD = 1.77, results in the intensification of the symmetric jet flow 
and the propulsive force. This intensification of the momentum 
transfer is clearly seen in the corresponding velocity-time averaged 
contour diagrams. At a higher flapping amplitude, i.e. AD = 2.14, 
the symmetry in the flow field breaks down, and the asymmetric 
flow regime is observed. This corresponds to the ARKVS regime 
in which reactive side forces are generated.  

The physics behind the asymmetric flow regime is not 
understood quite well, but the phenomenon may possibly be 
attributed to the intensive interactions between leading and 
trailing edge vortices (Yu et al. 2012). It is known that in the 
ARKVS regime a strong dipole vortex is formed on one side 
of the symmetry line, and a weaker single vortex is shed on 
the other side. Dipole vortex is made up of two vortices with 
different signs that are shed in each pitching cycle. In this vortex 

(a)

(b)

(c)
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structure, corresponding to AD = 2.14, the jet-like flow is bent 
towards the side of the strong dipole vortex as shown in Fig. 10.

The schematics in Fig. 11 help to better understand why the 
KVS flow regime changes to the RKVS regime. At low oscillation 
amplitudes, the induced momentum generated by airfoil pitching 
motion is not strong enough to push the vortex generated at 
one side of the foil to move to the other side. By increasing 
the oscillation amplitude, the push becomes strong enough to 
switch the positions of negative and positive vortices and to 
convert the KVS regime to the thrust-producing RKVS regime. 
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Figure 10. (a) Vortex shedding and (b) Time-averaged velocity at St = 0.22 and AD = 0.36; 0.71; 1.07; 1.77 and 2.14.

To further investigate and quantify the intensified jet flow 
behind the foil, time averaged horizontal velocities along a-b 
and c-d lines, shown in Fig. 7, are calculated and shown in 
Figs. 12 and 13, respectively. It is seen that the velocity behind 
the airfoil at AD = 0.36 is decreased due to the drag generating 
KVS regime. At AD = 0.71, no net momentum is transferred to 
the main flow by the aligned vortex system. However, viscous 
effects reduce the velocity behind the airfoil slightly. At AD = 1.07 
and 1.77, velocity and momentum behind the airfoil increase 
due to the thrust-generating RKVS regime. Figure 9 makes it 

(a) (b)
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clear that there is a jet-like flow at the middle of c-d line. This 
corresponds to the transition from KVS to RKVS. 

Simulation results also provide detailed information regarding 
the transition from symmetric RKVS to ARKVS flow regime. 
By considering the results shown in Fig. 14, it is concluded that 
the transition occurs at normalized amplitude very close to 
AD = 2 for this particular flapping airfoil.

At AD = 2, the dipole vortex is not recognizable but the 
deflection of the vortex sheet has just been initiated. At higher 
AD values, the jet deflection and dipole vortex structure are 
clearly seen.

The calculated transient lift coefficients corresponding to 
AD = 0.71; 1.77 and 2.14 are shown in Fig. 15. Here, the lift 
coefficient is calculated as follows:
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Figure 11. (a) The induced momentum pushes the 
negative vortex at the upper surface downwards; (b) The 
induced momentum pushes the positive vortex at the lower 
surface upwards.

u: velocity behind the airfoil; x: distance behind the airfoil.

Figure 12. Time averaged horizontal velocity along a-b line, 
shown in Fig. 7, at St = 0.22 and 4 different amplitudes. A 
non-dimensional coordinate along a-b line is employed.
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Figure 13. Time averaged horizontal velocity along c-d line, 
shown in Fig. 7, at St = 0.22 and 4 different amplitudes. A 
non-dimensional coordinate along c-d line is employed.

Figure 14. Asymmetric KVS at  (a) AD = 2, (b) 2.04 and (c) 2.08.

(a)

(b)

(c)

(29)

where:
(F (Xk))y values are the y-components of the force at boundary 

(Lagrangian) points. Note that CL curves corresponding to 
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AD = 0.71 and 1.77 are symmetric with respect to the CL = 0 
line, meaning that no side (lift) force is generated at these 
amplitudes. In contrast, the CL curve corresponding to 
AD = 2.14 is not symmetric with respect to the CL = 0 line, which 
means that there is a net side force (lift) in this case. The average 
lift coefficients at various flapping amplitudes and St = 0.22 
are shown in Fig. 16. It is clearly seen that lift generation starts 
close to AD = 2. As shown in this figure, when the deflected 
vortex is generated behind the airfoil, a side force (lift) is 
produced. Therefore, the side force is an indication of the 
formation of a deflected vortex behind the airfoil. 

To understand what exactly happens near the transition 
point, which results in transition from symmetric to deflected 
vortex, the vortex patterns are investigated at 4 time steps, 
t = 2T; t = 4T; t = 6T and t = 8T, being T the period of 
oscillation. As shown in Fig. 17, the first dipole vortex 
separates from the trailing edge at t = 2T. This dipole vortex is 
strong enough to bend the flow direction. After that, second 
and third dipole vortices separate from the trailing edge and 
follow the first dipole vortex. These dipole vortices are then 

Figure 16. The effect of oscillation amplitude on average lift 
coefficient for St = 0.22.

Figure 15. Transient lift coefficient for St = 0.22 and AD = 
0.71, 1.77 and 2.14.
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stretched along the vortex street and result in symmetry 
breaking. It is clear that the first dipole vortex is very important 
in the sense that it determines the deflected vortex direction. 
Numerical analysis shows that, when initial phase angle alters, 
the deflected vortex direction alters too. This is clearly seen 
in Fig. 18.

Figure 17. Asymmetric KVS at (a) t = 2T, (b) 4T, (c) 6T and (d) 8T.

Figure 18. Shedding vortices at 2 initial phase angles with 
90° difference. (a) Initial phase = 0°; (b) Initial phase  = 90°. 

(a)

(a)

(b)

(b)

(c)

(d)
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No. Type of vortex Effect on the flow Range of oscillation amplitude

1 KVS 
(drag generating vortex)

Decreasing momentum behind the airfoil/
increasing the drag force AD < 0.70

2 Aligned vortex street 
(neutral type vortex)

Neither decreasing nor increasing 
momentum behind the airfoil 0.70 < AD < 0.72

3 RKVS 
(thrust generating vortex)

Increasing momentum behind the airfoil/
decreasing the drag force and then 

generating a thrust force
0.72 < AD < 2

4 Deflected vortex 
(thrust/lift generating vortex)

Simultaneous thrust and lift force 
generation 2 < AD

Table 3. Vortex types and flow field effects for various AD values at St = 0.22. 

Table 3 summarizes the vortex types and flow field effects 
for various AD values at St = 0.22. 

Flapping at Fixed Amplitude (AD = 0.71)
The effect of St on the vortex structure and thrust 

performance is now studied for fixed oscillation amplitude 
AD = 0.71 and different values of St: 0.1; 0.22; 0.3; 0.4 and 0.5. 
Vortex shedding and average velocity contours in this case 
are shown in Fig. 19. 

Once again, to further explore the flow features, average 
horizontal velocities on a-b and c-d lines are calculated and 
shown in Figs. 20 and 21, respectively. The same trends 
explained before regarding Figs. 12 and 13 are observed 
here again. 

Figure 22 shows the time history of lift coefficient for 
three different Strouhal numbers, i.e. St = 0.22; 0.3 and 0.5, 
and Fig. 23 shows the effect of the St on average lift coefficient 
for AD = 0.71. The same trends explained before regarding 
Figs. 15 and 16 are observed here again. It is clear that lift 
is generated for St > 0.48 in this case.

Table 4 summarizes the vortex types and flow field effects 
for various St values at AD = 0.71. 

No. Type of vortex Effect on the flow Range of Strouhal number

1 KVS 
(drag generating vortex)

Decreasing momentum behind the airfoil/
increasing the drag force St < 0.22

2 Aligned vortex street 
(neutral type vortex)

Neither decreasing nor increasing 
momentum behind the airfoil 0.21 < St < 0.23

3 RKVS 
(thrust generating vortex)

Increasing momentum behind the airfoil/
decreasing the drag force and then 

generating a thrust force
0.23 < St < 0.48

4 Deflected vortex  
(thrust/lift generating vortex)

Simultaneous thrust and lift force 
generation 0.48 < St

Table 4. Vortex types and flow field effects for various St values at AD = 0.22.

Performance Map for a Range of St 
normalized amplitude 

The effects of both amplitude and frequency on the drag/
thrust coefficient are shown in Fig. 24 and compared to the 
results reported by He et al. (2012). The drag coefficient 
for the corresponding motionless airfoil is CD0 = 0.86. As 
mentioned before, in the RKVS regime, the vortex system 
transfers momentum to the flow and generates thrust force. 
The situation CD = 0 in Fig. 24 corresponds to a situation 
in which the RKVS regime generates just enough thrust to 
overcome the drag. The reduction of drag coefficient for 
high values of amplitude/frequency corresponds to more 
thrust generation in the RKVS regime.  

If the flapping airfoil is used for the purpose of generating 
propulsion or lift, it is obviously necessary to realize how and 
when the flow regime changes. For a fixed Re, a performance 
map can be developed for both analysis and design purposes. 
Such a map, also called the phase space, is experimentally 
obtained by Godoy-Diana et al. (2008) for the flapping airfoil 
just described in “The Flapping Airfoil Model” section. Here, 
the map is reproduced and shown in Fig. 25 based on the 
numerical results obtained in this study. Different regions 
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in Fig. 25 represent different types of vortex systems and 
flow regimes described previously. 

The KVS regime, which is characterized by zone number 1  
in Fig. 25, is observed when at least one of AD or St values is 
sufficiently low. The lower-left zone of the map corresponds 
to the KVS. At moderately low AD and St values, characterized 
by zone number 2, the aligned vortex system is developed. 
This corresponds to a flow regime between KVS and RKVS. 
Zone 3 in Fig. 25 represents the RKVS regime. As shown in 

Fig. 25, the RKVS is formed at the middle of the map. Note 
that the zero drag (CD = 0) line lies in this region of the map 
as well. At the left-hand side of the CD = 0 line in zone 3, the 
generated thrust is still less than the drag. Propulsive force 
is obtained at oscillations corresponding to the right-hand 
side of the CD = 0 line in zone 3. Finally, the thrust and lift 
generating regime, i.e. the ARKVS regime, is represented 
by zone 4 in Fig. 25. This regime is obtained when both 
frequency and amplitude are sufficiently high.
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Figure 19. (a) Vortex shedding; (b) Time-averaged velocity at AD = 0.71, and St = 0.1; 0.22; 0.3; 0.4 and 0.5.
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Figure 21. Average horizontal velocities at grid points along 
c-d line at AD = 0.71 and St = 0.1; 0.22; 0.3 and 0.4. 
A non-dimensional coordinate along c-d line is employed.

Figure 20. Average horizontal velocities at grid points along 
a-b line at AD = 0.71 and St = 0.1; 0.22; 0.3 and 0.4. 
A non-dimensional coordinate along a-b line is employed.

Figure 24. Drag coefficients in terms of the normalized 
amplitude at St = 0.1; 0.22 and 0.3.

Figure 23. The effect of St on average lift coefficient for 
AD = 0.71.

Figure 22. Transient lift coefficient for AD = 0.71 and 
St = 0.22; 0.3 and 0.5.
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Figure 25. A flapping foil performance map. Zone 1: Kármán 
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CONCLUSIONS

In this paper, an IBM is employed to simulate the flow around a 
flapping airfoil. The boundary conditions are accurately implemented 
by an iterative procedure applied at each time step. Vortex and wake 
patterns as well as lift and drag coefficients are studied at different 
oscillation amplitudes and frequencies. Four distinguished flow 
regimes, controlled by the vortex system generated due to the 
flapping motion, are observed. These flow regimes are the KVS, 
the Aligned Vortex Street (AVS), the RKVS and finally the ARKVS. The 
KVS regime generates drag; the AVS is a neutral regime with no net 
momentum transfer to the main flow; the RKVS is a thrust producing 
regime; and the ARKVS is a thrust and lift generating flow regime.  
For the particular symmetric airfoil used in this study, two 
groups of flapping scenarios are studied at a fixed Reynolds 

number (Re = 255). First, the frequency is fixed at St = 0.22, 
and the amplitude is changed. Then the amplitude is fixed at 
AD = 0.71, and the oscillation frequency is altered. For the fixed 
frequency case, St = 0.22, the transition from KVS to RKVS 
occurs at AD = 0.72, and the ARKVS is developed around  
AD = 2. For the fixed amplitude oscillation, AD = 0.71, the 
transition from KVS to RKVS occurs at St = 0.23, and the ARKVS 
is developed around St = 0.48. Vorticity and velocity contours 
are presented, which helps to understand the physics behind 
the flow. The effects of the dipole vortex system in deflecting 
the wake flow are also discussed. The computational results 
compared to the available experimental data show that the 
iterative-direct forcing immersed boundary method is a reliable 
tool for studying complex transient flows such as the flow around a 
flapping airfoil.
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