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ABSTRACT: As the representative of manufacturing industry, 
aircraft assembly lacks of effective method to forecast 
man-hour. The forecasting accuracy of existing methods is 
universally pretty low. On the basis of full analysis of aircraft 
assembly’s feature, this study proposes a forecasting model 
based on support vector machine (SVM), which is optimized 
by particle swarm optimization. It can carry out quantitative 
prediction of the process’ man-hour during aircraft’s 
assembly. Firstly, we decompose aircraft’s assembly work 
by the concept of work breakdown structure. Further, the 
process parameters related to man-hour were listed and we 
made necessary correlation analysis of these historical data. 
Parameters with high contribution are then used as input of 
forecasting model. A new forecasting model utilizing SVM is 
proposed, which carries out the process as the minimum 
research granularity. Its performance is compared with back 
propagation neural network. The process of automatic drilling 
& riveting is adopted as an example in order to present and 
validate the model. Experimental results reflect that SVM has 
high forecast precision and good fitness, so that it is suitable 
for small sample prediction. Through the optimization, it can 
effectively predict man-hour of assembly work in a short time 
while maintaining sufficient accuracy.

KEYWORDS: SVM, PSO, Aircraft assembly, Man-hour 
prediction, Predictive model.
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INTRODUCTION

Due to the large size, complex shape and numerous parts, 
the amount of aircraft assembly accounts for more than a 
half of total aircraft manufacturing (Enming, 2005). Aircraft 
assembly is the process of assembling a large number of  
aircraft parts according to a certain order and gradually putting 
them into components, forge pieces and sub-units. Finally, the 
components are butted into an entire aircraft. Therefore, aircraft 
assembly, as a very important part in the industry of large 
passenger aircraft, need be carried out strictly in accordance with 
the production plan, which includes not only the distribution 
of production site, equipment and resources, but also the 
arrangement of man-hour. Man-hour quota not only directly 
affects the working time, the utilization rate of the equipment, but 
also is the basic unit for calculating cost (Bin and Zuhua, 2006). 
At the same time, it is widely used as a toll for cost management 
in manufacturing enterprises. Therefore, man-hour prediction as 
the core of man-hour quota management is directly related to 
economic accounting, production schedule control, resource 
optimization, production cycles shortening, cost control 
and product quotation. Besides, it ultimately promotes the 
improvement of labor productivity of enterprises and enhances 
their market competitiveness (Chao and Danchen, 2010).

Just realizing this point, advanced international aircraft 
manufacturing companies have changed the condition that 
arranges production plan passively into predicting man-hours 
actively. Through the analysis, they can determine the production 
planning and production scheduling. Since the civil aircraft 
industry in China started late, there is a big gap in man-hour 
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prediction between China and international level. The overall 
utilization of workshop equipment is less than 40% (Changqing 
et al., 2011). At present, man-hour prediction approach is mainly 
estimated through workers’ experience, analogy and other 
methods based on relevant technical files and it has to calculate 
the production hours according to the detailed production 
process step by step. This method has the disadvantages of slow 
speed, low efficiency, big error and high dependence on personal 
experience, which causes the uncertainties in production planning 
and scheduling (Yajie et al., 2013). As a result, it is unable to adapt 
to the needs of modernization, scientific and fine production 
management, seriously affecting the production schedule and 
production efficiency. 

Different industries including computer, ships, computer 
numerical control (CNC) machining and aerospace have 
devoted a lot to develop a series of man-hour management 
software with good performance. Man-hour prediction has 
been treated as an important method to improve production 
efficiency, optimize resource management and shorten the 
manufacturing cycle. Among this series, the most representative 
are Timesheet, AceTeamwork, Appfarm, G TimeSheet and 
Replicon Web TimeSheet. However, most of these programs 
are integrated with enterprise resource planning (ERP) system, 
manufacturing execution system (MES) and computer aided 
process planning (CAPP). Their core function is to manage and 
share the document and the information during production. 
Thereby, man-hour management is deficient. So far, the time 
forecasting methods in manufacturing industry mainly includes 
standard data method, simulation method by numerical 
control (NC) program and artificial intelligence method. 
Boothroyd (1994) used an injection molding as standard and 
estimated other injection moldings rely on the relative value. 
Wang et al. (2002) used a triangular fuzzy number to estimate 
ready time and solved the ready time scheduling problem. 
Siller (2006) predicted the man-hour by simulation on NC 
program and specially forecasted the cycle of high-speed 
milling. Coelho (2010) also presented a practical mechanistic 
method for milling time estimation when machining free-
form geometries by process simulation method. Bustillo and 
Correa (2012) presented a predictive model by using artificial 
intelligence to optimize deep drilling operations under high 
speed conditions for the manufacture of steel components. 
A feed-forward neural network and support vector machine 
(SVM) are used for surface’s roughness prediction by Çaydaş 
and Ekici (2012). Two soft computing techniques, namely, neuro 

fuzzy logic technique and support vector regression technique 
were used for the assessment of the remaining useful life (RUL) 
of cutting tools (Gokulachandran and Mohandas, 2013). Li 
et al. (2012) tested various possible linear regression methods 
by using six dependent variables to enhance the production 
yield in the color filter (CF) manufacturing process. In his 
study, the Support Vector Machine for Regression (SVR) 
model was found to be the most appropriate for forecasting 
manufacturing performance. In these methods, SVM owns 
few adjustable parameters, quick computing speed, accurate 
rate, good robustness and good generalization ability (Cao and 
Tay, 2003). In the absence of more background information, it 
can also achieve high prediction accuracy (Kotsiantis, 2007).  
It solves the non-linear, high-dimension and local minima and 
some other issues effectively.

On the basis of extensive study of time prediction methods 
and the present situation in manufacturing industry, aircraft 
assembly work is broken down according to the concept of work 
breakdown structure (WBS). Then, we listed various related 
process parameters. Using process as the smallest granularity, 
the predictive model based on SVM is established. Typically, 
one of the important processes — automatic drilling & riveting  
process — is introduced as an example to verify the model. More-
over, the predictive performance is also compared with the back 
propagation (BP) neural network. Eventually, considering that the 
grid algorithm is time-consuming, we choose to use PSO algorithm 
and genetic algorithm (GA) to optimize the predictive model.

PROBLEM AND ALGORITHM 
DESCRIPTION

Man-hour has different meanings under different situations. 
In this paper, from the perspective of work assignment, it refers 
to a combined unit of human labor and time required to carry 
out individual task needed in the process of production (Hur 
et al., 2013). For instance, a task involves cutting steel plate 
with the size of 1,000 x 800 x 5 mm and it needs two persons to 
complete this work. If it costs 10 minutes for each person, then 
the man-hour of the task is 20 (2 x 10) minutes. The man-hour 
of each task is related to comprehensive factors. Therefore, we 
have to predict the man-hour by taking into account various 
features of the task’s properties, the environment and the 
requirements of the target. Because the process includes basic 
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f(x) = ωφ(x) + b

f(x) = Σk
i=1(αi - α*

i) ϕ(xi) ϕ(x) + b = 
 Σk

i=1(αi - α*
i) K(xi - xj) + b

(1)

(4)

man-hour data and is the foundation for time management and 
prediction, the minimum unit of our research is the process. 

A complex project can be decomposed into a series of clearly 
detailed subprojects by WBS, which groups project elements 
through deliverables-oriented ideas. These elements organize 
and define the work scope of a whole project. The subprojects 
decomposed by WBS cover labor and non-labor resources, 
including man-hour information which provide an important 
foundation for schedule planning, resource requirements, cost 
budget, purchasing plan etc. Top-down approach is applied 
in this paper to complete the WBS decomposition. Namely, 
aircraft assembly is decomposed by the order of project-sortie-
workstation-station-process. Then, we can predict the man-hour 
of each process. The total time of a project can be obtained by 
accumulating all the process’ man-hour. 

SUPPORT VECTOR MACHINES
SVM is established on the basis of statistical learning 

theory (Cristianini and Shawe-Taylor, 2000). It is a kind of 
machine learning method which applies the principle of Vapnik-
Chervonenkis (VC) dimension and structural risk minimization. 
It extensively overcomes the problems of “dimension disaster” and 
“too much learning” that exist in traditional machine learning 
methods such as neural network (Peng and Wang, 2009; Choi, 
2009). It shows a lot of unique advantages in solving small 
sample, non-linear and high dimensional recognition problems. 
Especially, it is widely used in pattern recognition, regression 
analysis, function estimation, time series forecasting and other 
fields (Ge et al., 2004; Guo and Li, 2003).

We establish a training set containing n training sam-
ples as {(xi, yi), i = 1, 2, ..., n}. Among them, xi (xi Є Rd) is the 
ith input column vector of training samples. In this study, 
they are a series of variables associated with the man-hour; 
xi = [xi

1, xi
2,..., xi

d]т, yi Є R , is the corresponding output value, namely, 
process’ man-hour, and d is the number of rows. It is clear that man-
hour forecasting belongs to the typical non-linear problem. The 
regression function in high dimensional space, which represents 
the relationship between process’ man-hour and input variables, 
can be expressed as:

ζ limits the error of the regression function and slack 
variables,     ,     (     ≥ 0,     ≥ 0)are introduced. Namely,

where C is the penalty factor.
In order to simplify the learning process of SVM, the 

problem can be changed as follows by using Lagrange function:

(2)

(3)

where K(xi,xj) = ϕ(xi) ϕ(xj) (the inner product of xi and xj) 
is kernel function.

We applied radial basis function (RBF) kernel function 
K(x,y) = exp (           ) in our study. Assuming that the optimal 
solution of Eq. 3 is , α = [α1, α2, ..., αk], α* = [α*

1, α
*
2, ..., α

*
k], then 

we get the regression function:

yx
σ 2

2

In SVM regression problems, the parameter σ controls 
the flexibility of RBF kernel function. It directly affects the 
generalization performance of models. The penalty factor C plays 
the role of balancing decision function and error classification 
samples, which influences the generalization ability of the model.

PARTICLE SWARM OPTIMIZATION
Particle swarm optimization (PSO) was firstly proposed 

Kennedy and Eberhart (1995) and it is based on the research of 
group behavior of birds. PSO looks each individual in n-dimension 
as a particle without weight and volume. It flies in the search space 
with a certain speed. The flight speed is adjusted dynamically by 
individual flight experience and group flying experience.

In a n-dimensional space, the ith particle’s position and 
speed can be expressed respectively as: X1 = (Xi1, Xi2, ..., Xin),  
Vi = (Vi1, Vi2, ..., Vin). The optimal position that each particle has 
experienced is Pi = (Pi1, Pi2, ..., Pin). The global optimal position 

where φ(x) represents the high dimensional feature space. 
It is a non-linear mapping function; ω and b are parameters 
to be estimated. 
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Pg (t) Є {P0(t), ... Pg(t)}| f (Pg(t)) min {f(P0(t)), ... f(Ps(t))}

Vi(t+1) = wVi(t) + c1r1(Pi(t) - xi(t) + c2r2(Pg(t) - Xi(t))

Xi(t+1) = Xi(t) + Vi(t+1)

(5)

(6)

(7)

is Pgbest = (Pg1, Pg2, ..., Pgn). Pg(t) means the best location of a 
population containing s particles. 

and some other kind of parameters. Besides, the relationship 
among these factors is complex, leading the forecasting work 
to a typical non-linear problem. As input parameters of the 
predictive model, man-hour driving factors directly affect 
the predictive accuracy of the model. So, we need to analyze this 
influence from aspects of the contribution and relevance of the 
factors. This step is to make correlation analysis of related factors 
by using statistical product and service solutions (SPSS), an 
IBM software widely used in statistical analysis, data mining, 
prediction analysis and decision support.

Sample data acquisition and processing
The data’s changing scope of sample set imposes an important 

influence on training model. The sample set should reflect 
the characteristics of a process as far as possible. Then the data 
were observed and collected, and invalid data were excluded. 
Due to the big differences in magnitude and unit, the data 
should be normalized before establishing the regression model.

Model selection and parameter determination
When building SVM, the selection of kernel function is 

directly related to the performance of the model. We choose to 
use radial basis function (RBF) which is widely used owning to its 
best performance. The penalty factor C and the kernel parameter 
g directly influence the accuracy of the predictive model. The 
role of C is to adjust the learning machine’s confidence interval 
range in a certain data subspace. Kernel parameter g affects the 
distribution complexity of sample data’s subspace and determines 
the minimum error (Keerthi and Lin, 2003). In this study, cross 
validation is firstly adopted to determine the parameters C and g. 
Subsequently, we apply PSO to make further optimization and 
we get the best parameter combinations of C and g.

Sample training and model establishment
Generally, for a given time prediction problem, sample 

data {x1, x2, x3, ..., xr} are usually divided into 2 parts. The front 
m data is set as the training sample to build predictive model 
and the latter n-m data is for prediction test. Model building 
is actually the process of solving regression function (Eq. 2) by 
SVM with its good performance. 

Application and forecast
Put the input data that need to be forecast in accordance 

with the specified format. Then, predict them and make error 
analysis through the predictive model achieved in step “Sample 

The updating formula of the ith particle’s velocity and 
position are:

a) velocity updating formula:

b) position updating formula:

where w is the inertia coefficient whose value is also in 
the scope of (0,1); c1 is the cognitive coefficient; c2 is the social 
learning coefficient. The values of c1 and c2 are usually in the 
scope of (1, 2); r1, r2, are the random number in the scope of (0,1).

The parameters C and g should be considered as a particle 
in space. Under this assumption, the problem of parameter 
optimization is substantially to find the global optimal position of 
all particles. Then, the SVM model can be optimized by utilizing 
the advantages of fast global optimization possessed by PSO.

THE PREDICTIVE MODEL BASED ON SUPPORT 
VECTOR MACHINES-PARTICLE SWARM 
OPTIMIZATION MODEL CONSTRUCTION

  Historical data is a comprehensive reflection of the internal 
mechanism of a system’s changes (Bing, 2014). The number of 
historical data shows the mechanism of the changes in an extent. 
Process’ man-hour is an important basis for reasonable plan and 
arrangement of production. Man-hour related data are dependent 
on the specific process. Therefore, process is the basic unit for 
our study. We analyzed the technological characteristics of a 
specific process to extract influence factors. Besides, intrinsic 
relationships between these factors and the process’ man-hour 
were further mined through machine learning, so as to achieve 
the purpose of man-hour prediction.

The steps of establishing the predictive model of SVM are 
described as follows:

Influence factors analysis
The total man-hour of aircraft assembly is affected by many 

factors including product parameters, process parameters 
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IF = f1(Fp,Ft)

T = f(IF,IP, IE, II)

(11)

(10)

Figure 1. The man-hour predictive model based on SVM-PSO.

training and model establishment”. For regression problems, 
the measures to value the performance of a model are mean 
square error (MSE or E) and determination coefficient (R2):

MAN-HOUR PREDICTION OF AUTOMATIC 
DRILLING & RIVETING BY SVM-PSO

WBS decomposition demonstrates that the aircraft assembly 
involves multiple workstations and stations. Assembly work 
eventually composes a series of assembly process. There is a variety 
of connections during the course of aircraft assembly, such as 
riveting, bolting, welding, gluing etc. According to statistics, 70% 
of the aircraft accidents due to fatigue failure were attributed to 
the joint connection. Moreover, 80% of the fatigue cracks occurred 
in hole connection (Liming and Chongneng, 2008). It is visible 
that connection quality greatly affects the life of an aircraft. 
Riveting occupies a very important position among different 
kinds of connections. It is estimated that the amount of assembly 
labor accounts for about half or even more of the entire aircraft 
manufacturing labor. And riveting accounts for 30%. Owning to 
the good fatigue resistance and high reliability, automatic drilling 
& riveting is widely used in the assembly process of large plane 
and wing panel. It is an important process for aircraft assembly. 
Therefore, this paper takes automatic drilling & riveting process 
as an example to conduct the research of man-hour prediction. 

ANALYSIS OF THE INFLUENCE FACTORS OF 
PROCESS’ MAN-HOUR

According to statistics, headless riveting accounts for more than 
80% in wing manufacturing process of aircraft ARJ21. Riveting & 
drilling parameters are the key-factors that affect the efficiency and 
quality of assembly (Lianxi et al., 2013). Generally, we analyze the 
driving factors of the automatic drilling & riveting process from the 
aspects of general features of assembly (IF), processing technic (Ip), 
equipment parameters (IE) and performance indexes (II). The function 
relation between man-hour and various factors can be expressed as:

where n is the number of test samples; y1(i = 1, 2, …, n) is 
the real value of the ith sample; y’1(i = 1, 2, …, n) is the predictive 
value of the ith sample. The smaller MSE means the higher 
prediction accuracy. R2 determines the related degree and the 
value more closer to 1 indicates the greater fitness.

Build the man-hour predictive model based on SVM-PSO 
as previously mentioned (Fig. 1).

General features of assembly includes assembly parts (Fp), 
material’s composition (Fi) and thickness of the material (Ft).  
At present, the material’s airframe (including fuselage, wings, tail etc.) 
mainly adopts the materials of aluminum alloy, titanium alloy, steel 
and composite materials in the world. However, aluminum alloy 
material is used in more than 90% of the cases due to the restrictions 
of China’s civil aircraft development. So, material composition is 
removed. Then, general features of assembly can be expressed as:
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IE = f2(Er, Ec, Ed, Ef, Et, Ep)

T = f(Ft, Er, Ec, Ed, Ef, Et)

Il = fa(Il, IRa, Ih )

T = f(Fp, Ft, Er, Ec, Ed, Ef, Et, Ep, Il, IRa, Ih )

(12)

(15)

(16)

(13)

(14)

Fp Ft Er Ec Ed Ef Et Ep Il IRa Ih
Pearson’s  

correlation -0.013 0.485 -0.441 -0.468 -0.337 -0.447 0.930 -0.078 -0.209 0.161 0.179

Conspicuousness 
(bilateral) 0.927 0.066 0.000 0.000 0.001 0.000 0.001 0.444 0.146 0.265 0.213

Table 1. Correlation comparison of different influence factors.

y = 
(ymax - ymin) + (x-xmin)

xmax - xmin

+ ymin , (ymax = 1, ymin = -1)

The processes can be achieved by automatic drilling & 
riveting, which mainly includes: drilling, countersinking, glue, 
nail feeding, fastener installation or completing one or more 
of these operations. We need to use the combination of these 
process. So, it is unnecessary to consider process technic when 
analyzing the influence factors. 

Equipment parameters associated with the man-hour are 
mainly related to drilling parameters including spindle speed 
(Er), clamping force (Ec), feed rate (Ed), riveting force (Ef), 
riveting residence time (Et) and lubrication pressure (Ep). The 
relation between equipment parameters and man-hour can 
be expressed as:

we obtained the correlation between each influence factor and 
process’ man-hour through various analyses, respectively. Finally, 
the results are demonstrated in Table 1.

In the mentioned table, Pearson’s correlation coefficient 
describes the relationship between variables as well as their 
statistical correlation degree. Pearson’s correlation coefficients 
bigger than 0.4 mean good correlation, bigger than 0.5 mean 
strong correlation and bigger than 0.6 represent very strong 
correlation. Conspicuousness can be understood as probability, 
which is used to determine the overall conspicuousness difference 
between reality and hypothesis. It requires conspicuousness 
levels below 0.05, because 5% can be considered as a small 
probability event. It is easy to find from Table 1 that driving 
factors which influence the man-hour of automatic drilling & 
riveting process are:

The indexes of main performance refer to scratch length of 
hole (Il), surface roughness (IRa) and burr height (Ih). 

After these considerations, Eq. 10 can be expressed as:

It is found that the major driving factors are extremely related 
to some other detail parameters. Besides, these parameters may 
influence each other or some just have weak influence. In the 
current modeling process, we should pay enough attention to 
the pre-condition that improves the accuracy of the model with 
least driving factors to reduce the complexity and the noisy 
interference of the model (Wang et al., 2012).This requires 
further analysis of the factors’ correlation and contribution. 
This study used Statistical Package for the Social Sciences (SPSS) 
to analyze the correlation of 99 sample data extracted from 
historical database. Firstly, the sample data was saved as in the format  
file.sav, which can be recognized by SPSS. Then, the analysis was 
made to judge the correlation between Fp and process’ man-hour, 
including Pearson’s correlation and conspicuousness. Similarly, 

SAMPLE DATA ACQUISITION AND 
PROCESSING

Firstly, we have to screen the sample data extracted from the 
historical database to eliminate invalid data of unconventional 
or high reusable degree. Then, 99 valid data were obtained 
and they were separated into test set (19 data) and training 
set (80 data) when building the model. The training set and 
the test set were randomly selected in order to ensure the 
accuracy of the model. Because the units of Ft, Er, ..., Et  are 
different and the magnitude of them differs tremendously, 
we made the normalization processing of these samples by 
the following formula:

The data were normalized to the range of (-1,1) and 80 
training data after normalization are shown in Table 2.
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Ft Er Ec Ed Ef Et T

1 -0.3333 0.1667 -0.1538 -0.1765 -0.2598 0.5 0.2992
2 0.3333 0.8333 0.8462 1 -1 0.5 0.2356
3 -0.3333 0.1667 -0.1538 -0.1765 -0.2598 0.5 0.2992
4 0.3333 0 -0.2308 -0.2941 -0.2598 -0.3 -0.1811
5 0.6667 -0.6667 -0.6154 -0.5882 -0.4173 0.5 0.6252
6 0.3333 -0.5000 -0.6923 -0.2941 -0.5748 1 0.8425
7 -0.6667 0.3333 -0.0769 -0.1765 -0.1024 0.5 0.2402
8 -1 -0.8333 -0.8462 -0.8824 -0.7638 0.5 0.3228
9 -1 0.1667 -0.3846 -0.1765 -0.4173 0.5 0.1811

10 1 0.5000 0.2308 0.2941 0.2126 -1.1102 0.0236
11 -0.5000 0.4167 0.0769 -0.0588 0.1339 -1.1102 -0.1431
12 1 0.5000 0.2308 0.2941 0.2126 -1.1102 0.0236
… … … … … … … …
80 -0.3333 0.8333 0.8462 0.8824 0.6850 0.6850 -0.6157

Table 2. Sample set after normalization.
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Figure 2. The prediction result of training set. Figure 3. The prediction result of test set.

REGRESSED PREDICTION BASED ON SUPPORT 
VECTOR MACHINES

We will begin to train the sample data and establish 
predictive model in this part after completing the mentioned 
preparations. Firstly, use cross validation (v = 5) to find the 
best parameters of C and g. Secondly, put the normalized 
sample data into predictive model and complete sample 
learning and prediction. The prediction results of training 
set and test set are shown in Figs. 2 and 3.

Both training set and test set were randomly generated in the 
experiment, so it could ensure the universality and accuracy of 
the result. Nevertheless, it is particularly necessary to conduct 

comparative analyses on other methods. In order to further 
validate the performance of the model, we also presented BP 
neural network to make predict experiment. The forecasting 
result is shown in Fig. 4.

Table 3 assesses the comparison of the forecasting 
results by SVM and BP neural network.After comparison, 
it is obvious that the prediction result of SVM is much 
better than BP neural network. MSE of BP neural network 
is much higher than SVM and R2 of SVM is closer to 1. 
Thus, it proves that SVM can be effectively applied to the 
prediction problem of small sample while maintaining 
sufficient accuracy.
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Real man-hour (s)
Prediction value 

by SVM
Prediction value by 
BP neural network

3.7143 3.6083 3.8610
4.6923 4.5447 4.3332
4.6000 4.5341 4.7431
3.8000 3.8413 3.8626
3.0286 3.0816 3.0772
2.5760 2.5947 2.5792
3.3500 3.3457 3.4554
5.0500 5.0346 5.0085
3.7200 3.7602 3.7193
6.2800 6.2320 5.7196
4.6750 4.8345 4.6614
3.7385 3.6001 3.7587
3.5360 3.5565 3.4862
5.9200 5.8023 5.6485
3.6462 3.8205 4.4489
4.3840 4.2309 4.2387
4.9000 5.0474 4.8978
3.0286 3.1098 3.1021
4.9474 4.9944 4.8441
MSE 0.001547 0.0103
R2 0.98933 0.93588

Table 3. The comparison of the forecasting results.
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Figure 4. Prediction result of the test set by BP neural network.

Figure 5. The optimization by PSO when maxgen = 200; 
pop = 20.

OPTIMIZATION OF MAN-HOUR PREDICTIVE MODEL
The parameters of SVM decide its study performance and 

generalization ability. In practical application, in order to reduce 
the dependence of initial sample and improve the accuracy of 

SVM model, it is necessary to optimize the parameters of C and g. 
It means that SVM optimization is actually the optimization of the 
relevant parameters, namely, quickly find optimal SVM parameters 
C and g. Grid search can find the highest accuracy of classification, 
namely, the global optimal solution. However, if you want to find 
the best parameters of C and g in greater scope, it will be very time-
consuming. With the decrease of the grid density, time grows 
exponentially. Heuristic algorithm can find the global optimal solution 
without traversing all the points in the grid. Currently, the widely 
used heuristic algorithms for finding optimal parameters are PSO 
algorithm, genetic algorithm, and simulated annealing algorithm.

  Considering that the principle of PSO and GA is simple 
and they are easy to implement with high efficiency, this study 
tried to imply PSO and GA to optimize SVM prediction results 
obtained above. Figures 5 to 7 show the results of optimization 
using the PSO and their corresponding prediction results.

Figures 8 to 12 show the results of optimization using the 
PSO and their corresponding prediction results. 
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Figure 6. The optimization by PSO when maxgen = 500; pop = 50.

Figure 7. The optimization by PSO when maxgen = 500; pop = 100.

Figure 8. The optimization by GA when maxgen = 200; pop = 20.
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Figure 9. The optimization by GA when maxgen = 500; pop = 50.

Figure 10. The optimization by GA when maxgen = 500; pop = 100.

Figure 11. The optimization by GA when maxgen = 100; pop = 20.
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Figure 12. The optimization by GA when maxgen = 50; pop = 20.

From the optimization experiments of PSO and GA, we 
could find that the optimal prediction result is obtained when 
the maximum number of evolution (maxgen) = 500; population 
(pop) = 100 of PSO (MSE = 0.0019387; R2 = 0.99212). And 
the optimal prediction result is obtained when maxgen = 100; 
pop = 20 of GA (MSE = 0.0022812; R2 = 0.98412). As a result, 
PSO optimization is much better than GA.

CONCLUSION

Aircraft assembly is crucial for its production. It requires 
effective prediction of man-hour at the beginning of a project, 
in order to arrange the resources and make production plan 
reasonably. So far, time prediction mainly relies on work 
experience. It has a lot of problems, such as slow speed, low 
efficiency, big error and serious dependence on personal 
experience. Because the aircraft assembly work is complex 
and be related to various process’ parameters, this research 
decomposed the assembly work through the concept of WBS. 
Then, the parameters that affect process were extracted by 
analyzing process’ features. Parameters with high correlation 
are useful. Further, we selected the parameters that highly 
contributed to predicting man-hour as driving factors. 
Finally, man-hour predictive model based on SVM was 
established. Moreover, we made a comparison with BP neural 
network. As the parameters of C and g extremely determine 
the model’s performance, this study proposed PSO and GA 
to optimize the predictive model. Various experiments were 

made with different parameters to evaluate MSE and R2. 
The results indicate that PSO is more accurate with better 
fitness. The process of automatic drilling & riveting is used 
as an example to validate the model with the comparing 
result of MSE = 0.0019387; R2 = 0.99212. It means that the 
MSE between predictive value and the real value is very 
small and the coefficient of determination reached 0.99212. 
Namely, the goodness of fit is close to 1, which can well reflect 
the relation between the dependent variable (man-hour) and 
the independent variable (Ft, Er, Ec etc.).

  The predictive model based on SVM PSO can effectively 
forecast the man-hour of different processes according to their 
driving factors. It is an important approach for enterprises to 
realize scientific management of the man-hour. In the next 
step, we will continue to do more studies and experiments 
so as to make the prediction more precise.
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