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Relative Motion Guidance, Navigation
and Control for Autonomous Orbital

Rendezvous

Mohamed Okasha'-2, Brett Newman?

ABSTRACT: In this paper, the dynamics of the relative motion
problem in a perturbed orbital environment are exploited
based on Gauss’ variational equations. The relative coordinate
frame (Hill frame) is studied to describe the relative motion.
A linear high fidelity model is developed to describe the relative
motion. This model takes into account primary gravitational
and atmospheric drag perturbations. In addition, this model
is used in the design of a control, guidance, and navigation
system of a chaser vehicle to approach towards and to
depart from a target vehicle in proximity operations. Relative
navigation uses an extended Kalman filter based on this
relative model to estimate the relative position and velocity of
the chaser vehicle with respect to the target vehicle and the
chaser attitude and gyros biases. This filter uses the range and
angle measurements of the target relative to the chaser from
a simulated Light Detection and Ranging (LIDAR) system, along
with the star tracker and gyro measurements of the chaser.
The corresponding measurement models, process noise
matrix and other filter parameters are provided. Numerical
simulations are performed to assess the precision of this
model with respect to the full nonlinear model. The analyses
include the navigations errors, trajectory dispersions, and
attitude dispersions.

KEYWORDS: Satellite relative motion, Orbital rendezvous.

INTRODUCTION

Although significant progress and technical development
have been achieved with regards to orbital rendezvous such as
International Space Station supply and repair and automated
inspection, servicing, and assembly of space systems, there are
limitations with the traditional methods that struggle to meet
the new demands for orbital rendezvous. Presently, in order to
perform such close proximity operations, mission controllers
generally require significant cooperation between vehicles and
utilize man-in-the-loop to ensure successful maneuvering of both
spacecraft. The interest in autonomous rendezvous and proximity
operations has increased with the recent demonstration of
XSS-11, Demonstration of Autonomous Rendezvous Technology
(DART), and Orbital Express. Autonomous rendezvous and
proximity operations have also been demonstrated by Japanese
EST-VII, and the Russian Progress vehicles. In addition future
missions to the ISS will require autonomous rendezvous and
proximity operations (Fehse, 2003; Woffinden and Geller, 2007).

Many relative motion modeling and control strategies have
been designed using the linearized Clohessy-Wiltshire (CW)
equations to describe the relative motion between satellites.
The CW equations are valid if two conditions are satisfied:

e The distance between the chaser and the target is small
compared tothe distance between the target and the
center of the attracting planet; and

o The target orbit is near circular (Clohessy and Wiltshire, 1960).

The CW equations do not include any disturbance forces, for

example, gravitational perturbations and environmental forces
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(solar radiation pressure and atmospheric drag). Alternative
linear equations that have been used in the literature to model
the relative motion are the Tschauner-Hempel (TH) equations
(Tschauner and Hempel, 1965).These expressions generalize the
CW equations and are similar to them in their derivation and
types of applications. Tschauner and Hempel derived theses
equations from the viewpoint of rendezvous of a spacecraft
with an object in an elliptical orbit. They found complete
solutions for elliptical orbits in terms of the eccentric anomaly.
This advancement was followed by additional papers which
present the complete analytical solution explicit in time,
expanding the state transition matrix in terms of eccentricity
(Yamanaka and Ankersen, 2002; Carter, 1998; Melton, 2000;
Broucke, 2003; Inalhan et al., 2002; Sengupta and Vadali, 2007;
Cho and Park, 2009). This form of solution is used to analyze
the relative motion between the chaser and the target vehicles
in the relative frame of motion more efficiently and rapidly
than solving the exact nonlinear differential equations in the
inertial coordinate system. The TH equations do not take into
account any perturbation forces. These perturbations have a
significant effect on the satellite relative motion.

Due to the previous limitations of the CW and TH models,
this paper proposes an innovative linear model which includes
both the perturbation that reflects the Earth’s oblateness effect
and atmospheric drag perturbation in the Cartesian coordinates
orbital frame with little complication. Especially in low Earth
orbits (LEOs), these perturbations have a deep influence on the
relative dynamics, and their inclusion in the linear model can
sensibly increase the performance of the linear filters, allowing
greater insight of satellite relative motion, and providing an
opportunity to investigate alternative feedback control strategies
for the proximity operations.

Unlike the relative translation motion control, the relative
rotational control is a traditional feedback control system.
During the mission scenarios, the chaser vehicle may need to
track the target vehicle to achieve proper docking maneuvers and
or visual inspection tasks. The paper uses an extended Kalman
filter formulation to estimate the relative motion and chaser
attitude using range and angle measurements from a LIDAR
system coupled with gyro and star tracker measurements of the
chaser (Woffinder and Geller, 2007; Jenkins and Geller, 2007;
Junkins et al., 2005; Woffinden, 2004). The Kalman filter basically
consists of two main stages. The first stage is the propagation
stage, where the states are propagated numerically and it is

based on the proposed linear model. The second stage comes

when the measurements from the sensors are available and it

is used to update the states of the first stage. The corresponding

measurement models, process noise matrix, and other filter
parameters are provided. Momentum wheels are assumed
for attitude control and thrusters are assumed for translation
control. The effects of the navigation filter, pointing algorithms,
and control algorithms are included in the analysis.

The objective of this paper is as follows:

e To develop linearized high fidelity models for relative
motion in a perturbed orbit;

e To design a navigation filter that can determine the
relative position and velocity between target and chaser
vehicles as well as orientations and angular rates of the
chaserthat support closed-loop proximity attitude control
operations and maneuvers; and

e To design a control system for the chaser vehicle to either
approach or depart fromthe target vehicle in proximity
operations in a general perturbed orbit for coupled

translation and rotation relative motion.

The analysis in the current paper is summarized as follows.
First, we present the relative dynamics equation of motion for
the chaser with respect to the target in a general perturbed orbit,
along with attitude dynamics models.Next, a linear high fidelity
relative motion model is developed to describe relative motion
in proximity operations based on Gauss’ variational method.
Then, the relative navigation and an extended Kalman filter
are presented for the relative motion and attitude estimations,
along with the relative translational and rotational controller.
In the simulation section, the accuracy and performanceof the
relative navigation and controller, based on the high fidelity
model, are illustrated through different numerical examples
and comparisons are made with the truth nonlinear model.
Finally, conclusion of the work is presented and suggestions

are made for future work.

RELATIVE MOTION MODELS

Consider an Earth-centered inertia (ECI) frame, with

orthonormal basis {i, i,, i,

equatorial plane, with i, coinciding with the line of equinoxes,

}. The vectors i, and i, lie in the

and i, passing through the North Pole. Relative motion is

conveniently described in a Local-Vertical-Local-Horizontal
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(LVLH) frame,which is attached to the target spacecraft, as

shown in Fig.1. This frame has basis {i , i,, i.,} with i, lying along
the radius vector form the Earth’s center to the spacecraft, i,
coinciding with the normal to the plane defined by the position
and velocity vectors of the spacecraft,and i, =i, x i,. The LVLH
frame rotates with angular velocityvector w, and its current
orientation with respect to the ECI frame is given by the 3-1-3
direction cosine matrix, comprising right ascension of ascending
node (, inclination i, perigee argument w plus true anomaly f,
respectively (Fig.2). The angular velocity can also be expressed
in terms of orbital elements and their rates.

Let the position of the chaser vehicle in the target’s LVLH
frame be denoted by p=xi +yi +zi , where x, y and z denote the

components of the position vector along the radial, transverse,

Iy

Figure 1. Relative Motion Coordinates.

and out-of-plane directions, respectively. pis determined from
p=R-R, where R_and R, are the chaser and target absolute
position vectors. Then, the most general equations modeling

relative motion are given by the following:
p =]V = [f )M - 20 xp—w xwxp—dxp (1)

where [f ]""" and [f """ are the external accelerations acting
on the chaser and the target, respectively in the LVLH frame
of the target vehicle. In Eq. (1), (..) and (.) denote the first and
second derivatives with respect to time.

It is assumed, in this paper, that the externalaccelerations
arise due to two basic groups of accelerations, defined by the

following equation:
f=f+f+f+f, (2)

The first group of accelerationsis due to gravitational effects,
J,atmospheric drag, f , and control, f. Since Earth isn't perfectly
spherical, more accurate gravity models exist, taking into account
Earth’s irregular shape. One irregularity that has a significant
influence on space missions is the Earths bulge at the equator. This
phenomenon is captured in the J, gravity model (Vallado, 2001;
Schaub and Junkins, 2003). The second group of accelerations, f, ,
is considered to be small accelerations, due to the gravity fields
of other planets, solar pressure, or venting, which also perturbs
the spacecraft’s motion. These small accelerationsare grouped
together and modeled as zero mean normally distributed random
variables (Woffinden and Geller, 2007).

Orbital Normal

Orbital Plane
Perigee

Line of Nodes

Figure 2. Orbital Elements.
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In the literature, the most popular methods to model
the spacecraft’s orbit are known as Cowell’s method and
Gauss’s method (Vallado, 2001; Schaub and Junkins, 2003).
The Cowell’s method is basically defined by specifying
the position (R) and velocity (V) vectors of the spacecraft
in the inertial coordinate frame, while Gauss’ method
is defined by an equivalent set of elements called orbital
elements (a,e,i,Q,w,f) which correspond to the semi-major
axis, eccentricity, inclination, right ascension of the ascending
node, argument of periapsis, and true anomaly, respectively,

as shown in Fig. 2.

Table 1. Orbit Model Methods Summary.

Table 1 summarizes the dynamic equations that are used
in order to describe all of these methods. In this table, [.]' and
[.]"V'H denote that the forces are defined in inertial and LVLH
coordinate frames, respectively; a_, a, and a_are the components
of disturbance accelerations acting on the target in the LVLH
reference coordinate frame; s, =sin (-)and c(.)zcos( -);and R are
the Earth gravitational constant and the radius of the Earth; the
terms R and V refer to the magnitude of the position and velocity
vectors, respectively; the quantity H denotes the magnitude of
the specific angular momentum vector defined by H=RxV; X, Y
and Z are the components of the spacecraft position vector; C,

m Dynamic equations

R=f
f=f,+f,+f+f,

fg = Qtyo-pboay Ty,

_ U
Cowell’s Atwo-body = ~ (F) R
I 3 I‘Re 71T
[a]' = =55 22| a - sa/my )— (1 - 5(z/R)? )— (3 - 5(Z/R)? )
1C,A
[f.)' = —5——pVV
da 2a? p
- lesra += = ay]
de 1
T ﬁ{psfax -+ [(p +R)c: + Re]ay}
de 1
i E{psfax + [(@ + R)¢; + Re]a,}
ﬂ _ Rcw+f o
. H ~
dw i RS+ C;
e il —{—pcfax + (@ +R)spay} — %lfl -
ausss
df _H 1
57 R2 — [pcfax —(p+ R)sfay]
[a]Riiet= [a,2 ST Y N
LVLH _ URE T
[‘112] ]z REB [1 = Sisy Sw+f SiZSZ(w+f) 52i5w+f]
1 C
f.JLVLH — _ — D" ypyLVLH
[ a] 5 o0 ,DV
i _ H R 0T
V= E[esf p/R 0]
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is the atmospheric drag coefficient; A denotes the cross sectional
area; m is the spacecraft mass; and finally, p is the atmospheric
density. Exponential atmospheric behavior is used to model
Earth’s atmospheric density. This model and its corresponding
parameters are defined inVallado (2001).

In order to use the generalized relative dynamic model
defined by Eq. (1), the angular velocity vector, w, and the angular
acceleration vector, o, ofthe LVLH frame with respect to the ECI
frame, needs to be determined. Table 2 summarizes the equations
that can be used to compute these vectors. These equations are
derived based on using either Cowell’s method (position and
velocity vectors) or Gauss’s method (orbital elements). In this
table, the matrix T,""*' denotes the direction cosine matrix of the
LVLH coordinate frame with respect to the ECI coordinate frame.

The Euler’s equation of motion is used to describe the attitude
dynamics for both target and chaser vehicles, and a quaternion
formulation is used for attitude kinematics. The dynamics for
both vehicles are given below as (Woftinden and Geller, 2007):

Table 2. LVLH Coordinate Frame Orientation.

305
e 3
qf = 5 ' ®q] G0
o' =171, — o' X I,w'] (3b)
T =T, + Ty, (3¢0)
~C 1 C!
q; = Ewc®‘h (4a)
¢ =IY1, — 0° X I, 0] (4b)
Te =T T T, + T, (4¢)

where ® is the quaternion multiplication operator defined by
Lear (1985).

Pa bs —DP2 DP1][%
—P3  DPa P1 P2||4

P2 —P1 Pa DP3||as )
~P1 —P2 —P3 DPallds

pP®q =

_ Dynamic equations

VLR = [0, iy i,]T
R ., _H T
lx:E' lz=ﬁ, ly=lz><lx
(RIEIVH + R[fZ]LVLH) H — RI[f,]"VLHA
LVLH
Given Inertial RIE,] /H H?
Position and w= 0 , W= 0
Velocity . .
H/R? HR — 2HR
R3
. LVLH 1
[f] = VLR [f] — @ x THVLH[f]!
; . RV
F=Rf, R=——, H=RxXV
CoCo+f — SaSw+fCi  SaCw+f T CoSw+rCi  Sw+rSi
TV =T (0 + AT ()T Q) = —CoSw+f T SaCuw+fCi  ~SaSw+f T CaCuw+fCi Co+fSi
SSi —CaSi Ci
0 di/ 0 Swtf Sl + Coory o
. . dt dt
glf;r;notzb‘tal w=Tw+HT'DO[0|+T@+N| o |+| 0 |= 0
0 0 w+f a2+ (o+f)
1 0 0 Co —Sg Co Sp 0
TY(@) =|0 ¢y sg|, T?2(6)=]0 0| T3(O)=|-s4 cg O
0 —Sg Cp Sp Co 0 0 1
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and the i vehicle gravity gradient torque is defined by

u
Tig =3RS

(R; X I;R;) (6)

In Egs. 3 and 4, the target states include the quaternion,
g/, that defines the orientation of the target with respect to the
inertial frame, and the target’s angular rate, w'. Similarly the chaser
states are g/ and I . andare the target and chaser inertia matrices,

respectively. The gravity gradient torque, 7, for both vehicles

T,

(ig)
(T(Cg) for the chaser and T for the target) is derived from the
Earth'spoint mass gravity models. The random disturbances, 7,

and, T AT€ included in the models to account for disturbance
torques acting on each vehicle such as drag, solar radiation and
other unmodeled disturbances. These unmodeled disturbances
are represented as uncorrelated white noise, with mean and
variance defined by a trial and error technique outlined by Lear
(1985). The control input, 7, is the torque executed by the
actuators (momentum wheels) on the chaser spacecraft.

It is assumed that the available sensors are the LIDAR for
tracking the target and an assembly of a star tracker and gyros
for attitude determination. The parameter states for these sensors
are modeled as first-order Markov processes with large time
constants, causing them to behave like biases. The parameter
states include the gyros bias b, star camera misalignments €,
and LIDAR misalignments €. The dynamics model associated

with these states is given by:

. b,
b, =——g+wp (7a)
b
S
& =- T—j +ws (7b)
l
€
f=—gt+w (7¢)

where, w¢, w* and w' are white noise terms, driving the first-
order Markov processes and 7¢, 7*and ' are the corresponding
time constants.

The actuator models used in the simulation include
momentum wheels for orientation control and thrusters for
translational control. The mathematical model for the actual
control torque, generated by the wheels, and the impulsive

thrust, by the thrusters, are:

T, = OT(€7) [{13><3 + Diag(fg)}%cc + b + V.i] (8)

uc,, = OT(e5)[{Isx3 + Diag(fiy)}AV, + by, + viy1(9)

The generated torque and impulsive include errors such as
noises 1<, biases b*, scale factor biases f', and misalignments €.
These errors can be modeled also as white noises.

The simulation contains gyros, star tracker, and LIDAR

sensor models. The models for these measurements are given by:

Gyro Model:
@° = 8T (€;,)[Usx3 + Diag (fo,)}w + b, +vg ] (10)

Star Tracker Model:
q; = 8q(v5)®8q(€5)®q:®q;7 (11
LIDAR Model:
a tan~! (i—y) Vg
[i =\ sin71(iy) VB (12)
p Yo
p
where:
Iy Calp o p
i%os = iy =|5aC8 | = TllTlSTS§T§ITIT (_ _) (13)
iz Sﬁ P

The gyro models include bias b, scale factor bias £, and
angular random walk noise v¢. The starcamera model accounts
for the uncertainty in the alignment of the star camera frame
€ with respect to the chaser frame and sensor noise v:. The
g refers to the fixed orientation of the star camera coordinate
frame with respect to the chaser body coordinate frame.
The LIDAR model includes angle measurements (azimuth,
a, and elevation, f§) noises v , v, and range (p) noise, v .
The transformation matrix denoted by T*" is the transformation
matrix used to transform any vector from coordinate b to
coordinate a. The term i, | is the line of sight vector in the
LIDAR coordinate frame (Fig. 3). The transformations T,
TS, T55, T%, and T'" are a series of transformation matrices to
transform the line of sight vector from target LVLH coordinate
frame to the LIDAR coordinate frame. These transformations
include errors from sensor misalignments, noises, and attitude
determination errors.

The small angle rotations can be written in terms of

quaternions as

8q(0) ~ [°/?] (14)
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or attitude matrices as

6T(0) ~ I — 6% (15)

where 6=0u is a small rotation vector, and 6% operating on
vector w is a cross product matrix defined by the ordinary cross

product 6" w = w x 0.

LINEAR HIGH FIDELITY RELATIVE
MODEL

In this section, a linear time varying high fidelity model
is obtained to describe the relative motion dynamics. This
model is derived based on two main assumptions. The first
assumption is that the relative distant between the chaser
and the target vehicles is much less than the target orbital
radius. The second one assumes that the main disturbance
accelerations, that affect both vehicles are the gravitational
acceleration and the atmospheric drag acceleration. Based on
these assumptions, all terms mentioned in the general relative
dynamic expression, Eq. (1), are expanded considering only
first order terms to obtain the new proposed model. Table 3
summarizes the procedures that have been followed to obtain
this model. In this table the linear time varying model reduces

to the following form

x =Ax (16)

Target

Chaser -

A J

Figure 3. Line of Sight Vector.

[

where x is the state vector. This model can be used to approximate

the time varying state transition matrix by expanding the time

invariant exponential matrix solution in a Taylor series to fourth

order, as follows:

A*At?  APALP A*At*
2! * 3! * 4!

¢LTV = eAAt =~ I +AAt + (17)
This matrix is used in the next section as a part of the
extended Kaman filter, to propagate the states forward in time

and to compute the filter parameters.

NAVIGATION CONTROL MODEL
ALGORITHMS

The main objective of the navigation system is to estimate
the target’s relative position, relative velocity and orientation
given noisy sensor measurements, imperfect dynamic models,
and uncertain initial conditions. The logic behind the navigation
filter is to process information collected from sensors and various
mathematical models to generate the best possible estimation
of the states. Space navigation application of the Kalman filter
is presented in this section. The dynamic models for a closed
loop GN&C system are shown in Fig. 4.

The navigation model uses an extended Kalman filter to
estimate the relative position and velocity of the chaser vehicle
with respect to the target vehicle, and the approximated analytical
state transition matrix solution. Orbital elements of the target
are numerically propagated with respect to time using Gauss’s
variational equations, with ], and drag perturbations. These
orbital elements are used to compute the transformation matrix
of the target vehicle with respect to the inertial frame, as well
as to assist in estimating LIDAR measurements. The dynamic

models used to propagate the navigation states are:

da 28*p, . P

E = ? [esfax + an] (18a)

dée 1 R _

- ﬁ{ﬁsfax +[(® + R)cs + Réla,} (18b)

di  Rcg,:

== g*f a, (18¢)
5 A .

dafn _ Rsgip (18d)

E_ ﬁSi %z
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Table 3. Relative Orbit Model Summary.

[ Mool | e

Nonlinear p=1[f]VH —[f]VH 2w xp-—wXwXp—®Xp

CoCo+f — SaSw+fCi  SaCuw+f T CaSw+fCi Sw+f5il

TV = T3 (0 + AT (DT?(Q) = | —CoSwsr — SaCwtrCi  —SaSwif T CaCutfCi CwtrSi

SSi —CaSi Ci
0 dl/dt 0 5w+f5i-Q aF Cw+f dl/dt
w=T(w+AHAT'O[0|+T>w+f)]| o |+|] 0 |= 0
0 0 w+f 2+ (@ + f)
1 0 0 Co 0 —Sp Co N 0
T'O)=[0 co sgf, T?(O)=|0 1 0|, T>(B)=|-ss ¢co O
0 —Sg Cg Sp 0 Co 0 0 1
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%
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z z X zZ 7z
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Linear Time 2 0 0 X
. LVLH H
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Figure 4. Closed Loop GN&C System.

do ﬁS&\H_fCi

1 A ~ A = ~ ~
= ﬁ—é{—pcfax + (p + R)sfay} - ﬁ—siaz (18e)
df H

g_ 18f
dt ~ R? (180

1 A ~ A A ~
+ FE [Bera, — (P + R)sza, ]
where

~» 1LVLH

A1LVLH — [4

[@]"Vit = [a), + f,] (19)
The orbit perturbed acceleration term, d, is different

form the term used in the truth model in which it does not

contain the unmodeled disturbance acceleration term f,. This

navigation target model is used only to assist in the process

of estimation. The dynamic modelfor the relative navigation

states are:
PO _ p(to)
[ﬁ(t)] = ¢rrv(t, to) [E(to) (20)

where ¢, is the state transition matrix, and it is defined by Eq.
(17) for the relative linear time varying model.

The navigation model for the target angular motion is used
only to produce a reference attitude trajectory. This trajectory

will be tracked by the chaser attitude control system.

(21a)
o' =172, — @' x 1,0 (21b)
T = i-tg (21¢)

For the chaser vehicle, the propagation of the state can
be accomplished by using numerical integration techniques.
However, in general, the gyros observations are sampled
at a high rate (usually higher than or at least equal to the

same rate as the vector attitude observations). A discrete
propagation is usually sufficient. Discrete propagation can
be derived using a power series approach (Crassidis and
Junkins, 2004).

q; (t) = Q(®°)q; (to) (22)
where
@° = & - b, (23a)

1 ~ ~
cos (18714 ) s [ %] %
Q@) = ) .
—e 5 (E ||(T)C||At)
sin (% IIE)CIIAt) @°

(23b)

9=

ll@e]|

The propagation dynamic model for the error parameters

is given by
b, b, (to)
@?(t) = ¢Mark0v(tr to) Eg(to) (24)
&t &i(to)
where ¢,, . is defined as follows:
_Aae
w
e bl 0353 033
— _ae
Pmarkov = 0343 [ P 0343 (25)
At
033 0353 e 3y

An extended Kalman filter is derived from the nonlinear
models as illustrated in the equations below (Brown and
Hawag, 1997).

(26a)

x=f(x,u,t) + w(t), w(t)~N(0,Q)

Z, = h(x,t) + vy, v~N(0,Ry) (26b)

Here, the state vector x can represent relative position,

velocity, and orientations of the chaser as well as other
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parameters that need to be estimated for the use by other
flight algorithms. The time derivatives of the states x are a
function of the states, inputs, time, and additive process noise
w. This process noise is used to approximate unmodeled
disturbances and other random disturbances to the dynamics.
The measurements z, are modeled as a function of the states,
time, and measurement noise v,. The process noise and
measurement noise are normally distributed with zero mean
and covariance Q and R, respectively.

The following steps summarize the Kalman filter equations,
that are used to estimate the relative motion states and it is
based on minimizing mean square of the error.
 Enter prior estimate of x;and its error covariance P; and

compute the Kalman gain
Ko = Py Hic (i P Hic + Ri)™ (272)

* Update estimate by measurement z,

27 = h(®) (27b)
R = X5 + K (2, — 27) 27¢)
e Compute error covariance for updated estimate

P = (I — K H )Py (27d)
e Project ahead

Xi+1 = DXy (27e)
Piyy = OrPrdpi; + Qy (27f)

The term ¢, is the state transition matrix, and H, is the
measurement partial matrix that represents the sensitivity of
the measurements to changes in the states. The state vector of
the Kalman filter is defined to be:

x=[p p 6. b, € ¢l (28)
and Kalman filter matrices are given by:
$rrv 066 066
®r = |O06xe  Pattitude  Ooxe (29a)
Osxe O6x6 PMarkov

Pirv Ogxe O6x6

P, = |06x6 Pattitude  Oexe (29b)
06><6 06><6 PMarkov
Qurv O6x6 O6xc

Qk = |06x6 CQattitude 06x6 (29¢)
06><6 06><6 QMarkov

The state vector contains 8_instead of g because the
quaternion must obey a normalization constraint, which can be
violated by the linear measurement updates associated with the
filter. The most common approach to overcome this shortfall
involves using a multiplicative error quaternion, where after
neglecting higher order terms, the four component quaternion
can effectively be replaced by a three component error vector
0_(Crassidis and Junkins, 2004).Therefore, within first order,
the quaternion update is given by:

qi" = 8q(6.)®q;5” (30)

and the discrete attitude error state transition matrix can

also be derived using a power series approach to be:

®i1 ¢f2]
¢Att1tude ¢)§1 ¢§2 ( )
where
o? 0 0 0 eouoy 0]
0 oy 0 eoy0, 0 0
B 0 0 a2 0 0 0
Pirv = 0 coy0, 0 o? 0 0
xYy x
gooy; 0 0 0 o 0
[ o 0 0 0 0 o2
. 11 —cos([l@°||At)}
@7, = [@° X] PEIE — I33A0 —
o 1z Ul@°llAt — sin([l@°||AL)}
[@° x] FIE (32b)
$31 = 0353 (32¢)
¢32 = I3x3 (32d)

By following the line steps of Woftinden and Geller (2007),
Woffinden (2004) and Lear (1985), the initial error covariance
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matrix P-,which represents how accurate the initial states are
known, is given below for the proposed linear relative model,

attitude, and error parameters.

[ o2 0 0 0 eouoy 0]
0 oy 0 eoy0, 0 0
[ 0 0 o? 0 0 0
VTl 0 eoyo, 0 of 0 0| ©3
gooy; 0 0 0 o 0
[ 0 0 0 0 0 o}l
. Uvzvg 0353
Attitude —
itude 0505 0_‘4212) (33b)
2
_ Oyslzxz 033
PMarkov = v ) 2 - (33C)
0353 0,33

Parameters 0,, 0 and 0, denote the standard deviation
uncertainties of the relative position components, and o, o,
and g, are for the relative velocity components. The coefficient
e refers to the uncertainty correlation coupling between relative
position and velocity components in the LVLH coordinate
frame, and it ranges between a positive and a negative one.
The standard deviations awg, UW::, o,s and o,jare referring to
the uncertainties of initial attitude, gyro biases, star tracker
misalignments, and LIDAR misalignments, respectively.
The discrete process noise matrix components of the relative

motion canbe approximated by:

, (At , (At?
O, = 0 0 Oy - 0 0
At? At?
0 GMZ,y T 0 0 U‘,z,y 7 0
, (A , (At?
- 0 0 Oy, =3 0 0 Ow, -5
K , (340)
G\~ 0 0 g, (At) 0 0
At?
0 o, (7> 0 0 i, (A) 0
At?
0 0 0, <7> 0 0 o, (Bt)

1 1
(Jl,z(c‘)At +§O'3<5)At3) I3X3 _(EUE‘B’AtZ)I3X3
QAttitude = 1 , R (34]3)
—(EO'VZ)AtZ) I35 —(O'thuAt) I35

2
0,sAtl353 0353

_ 34c¢
QMarkov 03><3 031At13x3] ( )

Here,0,,,, Ty, and 0,,, are the standard deviations for the random
unmodeled acceleration disturbances that act on the relative motion
during the sample time period At and 0y5 0yt Oy and o,/ are the
random process uncertainty noises for gyros, gyro biases, star
tracker misalignments, and LIDAR misalignments, respectively.

The measurements sensitivity matrices H, and sensor
measurements noise matrices R, are defined for both star
sensor and LIDAR as:

Hlidar

Hy =[ 1 ] (35)
Rlidar 0

Rk — [ k 3X3] (36)
0553 Ry

The measurement partials for the azimuth, elevation and
range measurements are computed with the help of the LIDAR
measurement range vector. Utilizing Eq. (13) and small angle
approximations leads to the following equation for the relative

range in terms of the navigation states:
CaCp
x . Nl
pl=p <sac/;) = [Lxs — € |[Isxs — €| [I3x5 — 8.51T¥ (q§ T (—p) (37)
Sp

Using the chain rule, the partial of the range vector with
respect to the navigation states can be expressed as (Woffinden
and Geller, 2007):

p'®)| _[9p'®) 006(?6)+5P‘(X) 0B(x)+6P‘(X) 9p(x)

ox |, | da ox op  ox p  ox | g
= [(oPe)he + (opp)hy + Doy
_Cﬁsa —SﬁCa CﬁCa
ph=|CC |,  pp=|"%|, ph=|%B5|39)
0 Cp Sp

The measurement geometry can now be computed by taking
the advantages of the property that p, p;and p 'are orthogonal to
each other and taking the dot product with respect to each of them.

ap'(x)
ox

LN\NT
A _ (o)

T
(P) [9p'x)
« =" "3 hy =——
P 14

ap'(x)
) = On)[52] (4O

’
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The evaluation of the relative range vector with respect to

the navigation states yields

ap'(x)
ox

:[—TW 0O3x3 —TliTis[ng] 05 —T[p* x] —[Pix]:(‘“)

Now, the LIDAR measurement sensitivity matrix and

covariance matrix can be written as:

HYder = (R, Ry R, (42)
and
g2 0 0
Rider |0 o7 0 (43)
0 0 of

When processing star tracker data, a derived measurement
is calculated (Woffinden and Geller, 2007). This quantity is
effectively the residual to be processed by the filter.

1_
[E Zs] = §;®[7. QG ®8q (&))] (44)
1

The derived star tracker measurement can be written as a

function of the navigation states as:
Z; = hy(x) +v; = 0] + € +v§ (45)

Therefore, the measurement sensitivity matrix for the star

tracker can be derived to be

. Ohg(x)
k= =[06x6 I3x3 O3x3 I3x3 0343](46)
x |
and the star tracker measurement covariance is
R}i = O-SZI3X3 (47)

For close proximity operations, a propositional-derivative
(PD) controller is employed for both the rotational and
translational controls. The commanded torques for the chaser
spacecraft to match its orientation with the target vehicle are
computed as

%CC = KqS/q\ + Kws(’l\) (48)

where

6q = éq., 64, (49a)
8® = @5, — &° (49b)
and

4, = q; (50a)
@, =T @ (50b)
2.~ 5,00 = (53" (500

A A . . . .
q; and w‘,_are the desired orientation and angular velocity,
desc esc
respectively, to be tracked by the chaser vehicle. The angular offset
and angular rate offset between target and chaser are denoted
A A . . _—

by dq, and dw, respectively. The proportional and derivative
control gains K and K are determined based on the desired
natural frequency w,, damping ratio {, of the attitude control
system, and the moment of inertia of the chaser spacecraft I
(Wie, 1998).
K, = wjl,, K, = 2{pwql, (51)

On the other hand, The translation control algorithm
computes the required continuous thrust, f, based on the
previous linear model, in order to track the desired trajectory

specified by the following guidance algorithm:

Uy =f.=K,8p +K,8p (52a)
0p =Paes —P (52b)
6P = Paes — 5 (52¢)

The proportional and derivative control gains K and K,
are determined based on the desired natural frequency w and

damping ratio Cp of the translational control system.
K, = wjl33K, = 2,w,I343 (53)
Variables p, and p,_are, respectively, the desired relative

position and relative velocity to be tracked by the chaser
vehicle, and it is defined by the guidance algorithms. It is
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worth noting that the equivalent continuous velocity increment
AV, based on the continuous thrust, can be approximated

for small to be

AV = UAVAt (54)

SIMULATION EXAMPLES

The key metrics of the analysis fall into three main
categories. The first is navigation performance, which is
how well the states are estimated by the filter. This metric
is measured by the navigation error, the difference between
the true states and the filter states. The second is trajectory
control performance, which is a measure of how closely the
chaser vehicle is able to follow the guidance algorithms.
The third is fuel performance, or AV fuel usage, and it
is computed based on the linear model developed in the
previous section.

The preceding guidance and navigation algorithms are
illustrated now through different examples. Initial conditions
for simulation are listed in Tables 4 to 6.

A Simulink model is built using the MATLAB software to
demonstrate the closed-loop guidance transfer of the chaser
in order to approach and to depart from the target vehicle in
any orbit, either circular or elliptic, given uncertain initial
conditions, noisy measurements, and limited dynamics.
This model consists of three main parts, guidance, navigation,
and control. The proposed linear time varying model is used

in designing the navigation filter and in maneuver targeting of

Table 4. Navigation Filter Parameters.

Parameter Value

Initial Relative = (G, = (i = 25 BT
Position and Velocity x_ :
Uncertainties 0x = 0y = 0; = 0.01m/s

Owy = Ow, =5 X Hlogn s

Process Noise
W, = 5 T

Measurements

o, =0z = 0.06deg, 0, =0.5m
Noise « p &
Simulation Step 0.1s
Measurements
Update 1 Hz

the guidance system. The target is assumed to be in a passive
nadir pointing mode andnot in maneuvering. The chaser
uses star tracker data and gyro data to determine attitude
and attitude rate. Momentum wheels and PD controller are
used to point the chaser LIDAR at the target. The chaser uses
LIDAR data to determine the relative position and velocity
of the target. Maneuver targeting algorithms, based on PD
controller, are used to compute commands in the chaser
body frame as to track the desired trajectory.

The performance of the navigation system is shown in
Figs. 5 to 7. In this case, the thrusters are off and both target
and chaser vehicles are initially in the same neighborhood
(Table 5). Figure 5 shows the relative position and relative
velocity between the vehicles during simulation. Figure 6 depicts
how accurately the navigation system can estimate the chaser’s
relative position and velocity. Form this figure, the filter is able
to converge within few minutes and the relative position and
velocity can be accurately estimatedwithin the accuracy of
the sensors. The attitude navigation errors and the PD control
tracking performance are shown in Fig. 7. As indicated by this
figure, the chaser attitude navigation system is able to converge
quickly and the chaser attitude PD controller can track the
target attitude and angular velocity trajectories.

The basic glidelope rendezvous and close proximity operations
scenario used to evaluate the performance of the entire closed-
loop relative position and attitude control system with the
navigation filter consists of two main segments: the inbound
and theoutbound segments. Each segment of the glideslope
is followed by 3 minutes of station keeping. First, the inbound
segment: the chaser starts to approach the target form [58-580 0]
m behind the target and ends at [0-100 0] m. After 3 minutes

Table 5. Vehicles Orbital Elements.

ak 6723.2576 6723.2576
e 0.1 0.1
i, deg 51.6467 51.6467
0,deg 188. 0147 188. 0147
w,deg 174.3022 174.3022
fdeg 270.0882 270.0832
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Table 6. Simulation Initial Conditions.

Chaser
Inertia
Target
Initial Relative Attitude Errors
Rotationalnatural frequency
Control Rotational damping ratio
IR Translational natural frequency
Translational damping ratio
Unmodeled Rotational disturbances
Disturbances

Translational disturbances

Gyro error (3)

Star Tracker error (3)
Sensors Errors

LIDAR error (3)

of station keeping at -100 m behind the target, the chaser starts
to depart away from the target and leading to a new location
-1000 m behind the target. The chase then stays at rest at that
location for another 3 minutes. The results of this scenario are
shown in Figs. 8 and 9. In all of these figures, different segments
of the glideslope are shown, and the variations of in-plane relative
motion of the chaser with respect to target vehicle are presented.
Figure 8 shows the relative position and velocity plots of relative
motion along with the required in order to achieve this trajectory
maneuver, while Fig. 9 shows the error in relative position and
velocity between the truth model and the navigation model.
In all of the above glideslopes, the overall performance of the

rendezvous and proximity operations are satisfactory.

1S5l 0 0
L [ 0 10220 0 ]x 106 kg-m’
0 0 10.65
128 0 0
I [ 0 107 0 [x10°kg-m’
0 0 201
8¢,66,0y [(7.5&-7.5&7.5)]deg
w, 1/30 s
¢, 0.7
w, 1/50 s*
(P 0.7
T, kg-km?/s?
£, km/s?

Drift rate 3 deg/hr/axis
Random walk 0.05 mrad/s'”?
Misalignment 1 mrad/axis

Noise 1 mrad/axis
Measurements 1Hz
Misalignment 1 mrad/axis

Noise [1 mrad 1 mrad 0.5 m]
Measurements 1 Hz

The continuous thrust is calculated using the estimated
relative position and velocity, either from the Kalman filter or
from the knowledge of initial conditions, not from the true
relative position and velocity of the chaser. As such, the chaser
is not expected to reach its intended place exactly, but in
the neighborhood thereof. Aided by the sensors, the initial
estimation errors subside to an optimal level, determined by
the ratio of the process noise matrix , and the measurement
noise matrix ,earlier defined. Because of the active range and
the angle measurements from the LIDAR system, and relatively
small measurement errors, the true and the estimated relative
position and velocity states are almost indistinguishable, as

seen in previous figures during the steady state.
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Figure 9. Relative Motion Navigation and Control Performance (Summary Scenario).

CONCLUSION

The results of this study indicate that the proposed linear
model is clearly effective at estimating the relative position and
velocity and controlling the relative trajectory. In addition, this
model is not restricted to a circular orbit but it can be used as
well for an eccentric orbit. Furthermore, by using this model,
simple guidance algorithms for glideslope are developed to
autonomously approach and depart form a target vehicle. The

relative navigation in this study is utilizing range, azimuth, and

elevation measurements of the target relative to the chaser froma
simulated LIDAR system, along with the star tracker and gyro
measurements of the chaser and an extended Kalman filter. The
vehicle attitude dynamics, attitude tracking control, attitude
determination, and uncertainties like measurement biases and
sensor misalignments are considered in this study to fire the
thrusters in the right direction and spin the momentum wheels
at the proper rate in the chaser coordinate frame. The analyst
must consider, in addition, off nominal situations, limitations
and operational range of the sensors, and limitations of the

actuators. These topics and others will be addressed in the future.
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