Article

# Acylated Flavonol Glycosides and Terpenoids from the Leaves of Alibertia sessilis

Roberto S. Gallegos Olea<sup>a</sup>, Nídia F. Roque<sup>a</sup>\*, and Vanderlan da S. Bolzani<sup>b</sup>

<sup>a</sup>Instituto de Química, Universidade de São Paulo, CP 26077, 05599-970 - SP, Brazil <sup>b</sup>Instituto de Química, UNESP, SP, Brazil

Received: June 17, 1996

Dois novos flavonóis glicosilados, juntamente com iridóides, triterpenóides, esteróides e tocoferolquinona, foram isolados das folhas de *Alibertia sessilis* (Rubiaceae). As estruturas dos flavonóides foram determinadas através de métodos espectroscópicos, principalmente da RMN de <sup>13</sup>C e de <sup>1</sup>H.

Two novel acylated flavonol glycosides, along with iridoids, triterpenes, steroids and  $\alpha$ -tocopherolquinone, were isolated from the leaves of *Alibertia sessilis* (Rubiaceae). The determination of the structures of the new compounds was based mainly on <sup>1</sup>H- and <sup>13</sup>C-NMR.

**Keywords:** Alibertia sessilis, *Rubiaceae, acylated flavonol glycosides, iridoids, terpenoids,*  $\alpha$ -tocopherolquinone

# Introduction

In the course of our continuing search for new active antifungal compounds from *Alibertia* (Rubiaceae) found in "Cerrado" region of S. Paulo, we studied *Alibertia sessilis* (Vell.) K. Schum. collected in Itirapina, in the state of São Paulo, Brazil. Previous investigations of the leaves of *A. macrophylla* resulted in the isolation of fungitoxic non-glycosidic iridoids 1 $\beta$  and 1 $\alpha$ -hydroxydihydrocornin aglycones, and the caffeic acid esters: 2-phenylethyl caffeoate and 2-methyl-4-hydroxybutyl caffeoate<sup>1</sup>. *A. edulis*, an other species collected in the same region, was also investigated, and no active compound was detected<sup>2</sup>. Relatively few chemical studies of the *Alibertia* genus have been reported, despite evidence of its rich terpenoidic constitution<sup>3</sup>.

In the present study, from the leaves of *A. sessilis* we obtained large amounts of the triterpenes oleanolic, ursolic, and *epi*-betulinic acid, and small amounts of the iridoids gardenoside, deacetylasperuloside, and 10-dehydrogardenoside, together with the fungitoxic  $\alpha$ - and  $\beta$ -gardiol. Besides iridoids and triterpenes, the flavonols quercetin-3-Orutinoside, quercetin-3-O- $\beta$ -D-(2"-O-*trans-p*-coumaroyl) -rutinoside (1) and kaempferol-3-O-  $\beta$ -D-(2"-O-*trans-p*coumaroyl)-rutinoside (2) were isolated. These last two

Present address: Departamento de Química, UFMa.

glycosides are being reported for the first time from a natural source.

# **Results and Discussion**

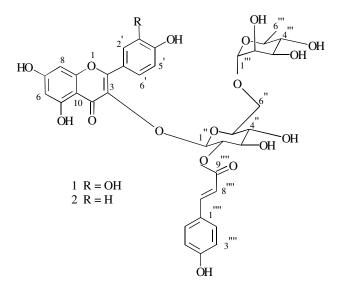
The hexanic extract of the leaves of *Alibertia sessilis* was submitted to a chromatographic process to afforded sitosterol and  $\alpha$ -tocopherolquinone, identified by comparison with authentic samples. After methylation, the CH<sub>2</sub>Cl<sub>2</sub> extract of the leaves gave ursolic, oleanolic, and *epi*-betulinic acid methyl esters<sup>2,4</sup>. After chromatographic separations, the butanolic soluble part of the hydroalcoholic extract afforded a mixture of the isomeric iridoids  $\alpha$  and  $\beta$  gardiol<sup>5</sup>, in addition to gardenoside and deacetylasperulosidic acid methyl ester<sup>6,7</sup>. These compounds were identified by comparing the spectroscopic data with the literature<sup>5-7</sup>.

Gel permeation chromatography of the EtOAc soluble part of the hydroalcoholic extract gave quercetin-3-O-rutinoside<sup>8</sup> (rutin) and a mixture of the new acylflavonol glycosides 1 and 2. These were purified by subsequent preparative TLC. The <sup>1</sup>H-NMR of 1 and 2 showed signals that suggested the structure of quercetin and kaempferol, respectively, for the aglycones of the compounds. In both spectra signals corresponding to the *trans p*-coumaroyl group and a rhamnose sugar portion were also found (Table 1). The anomeric proton of the rhamnose ap-

**Table 1.** <sup>1</sup>H-NMR spectral data for compounds 1 and 2 in DMSO- $d_6^*$ .

Table 2. <sup>13</sup>C-NMR spectral data for compounds 1 and 2 in DMSO-d<sub>6</sub>.

| Н            | 1                      | 2              |
|--------------|------------------------|----------------|
| 6            | 6.14, d (1.8)          | 5.90, d (1.8)  |
| 8            | 6.33, d (1.8)          | 6.07, d (1.8)  |
| 2'           | 7.48, d (1.8)          | 7.88, d (8.8)  |
| 3'           |                        | 6.84, d (8.8)  |
| 5'           | 6.83, d (9.0)          | 6.84, d (8.8)  |
| 6'           | 7.51, dd (9.0 and 1.8) | 7.88, d (8.8)  |
| 1"           | 5.56, d (8.4)          | 5.54, d (8.3)  |
| 2"           | 4.87, t (8.4)          | 4.80, t (8.3)  |
| 3"           | <i>ca</i> 3.5          | ca 3.5         |
| 4"           | <i>ca</i> 3.4          | ca 3.3         |
| 5"           | <i>ca</i> 3.4          | ca 3.3         |
| 6"           | <i>ca</i> 3.7          | ca 3.7         |
| 1'''         | 4.36, s                | 4.35, s        |
| 2'''         | <i>ca</i> 3.4          | ca 3.2         |
| 3'''         | <i>ca</i> 3.5          | ca 3.5         |
| 4'''         | <i>ca</i> 3.1          | ca 3.1         |
| 5'''         | <i>ca</i> 3.3          | ca 3.3         |
| 6'''         | 0.98, d (6.0)          | 0.99, d (6.0)  |
| 2'''', 6'''' | 7.52, d (8.0)          | 7.51, d (8.5)  |
| 3'''', 5'''' | 6.78, d (8.0)          | 6.77, d (8.5)  |
| 7''''        | 7.56, d (15.6)         | 7.58, d (15.6) |
| 8''''        | 6.37, d (15.6)         | 6.36, d (15.6) |


peared as a singlet ( $\delta$  4.36) in accordance with the  $\alpha$  configuration. Another signal, which could be assigned to an anomeric proton of another sugar appeared at  $\delta \sim 5.5$  (d, J = 8 Hz) in both spectra.

The <sup>13</sup>C-NMR spectra (Table 2) confirmed the structure of quercetin and kaempferol aglycones to 1 and 2, respectively. The presence of rhamnose and coumaroyl moieties was also confirmed. The localization of the carbohydrates in the flavonols at C-3 was deduced by the chemical shifts of C-3, C-2, and C-4, the first being shielded and the latter two deshielded in relation to the free aglycones<sup>8</sup>. The rhamnose signals are unchanged, so the acyl group should be located on the other sugar moiety. The methylenic carbon of that sugar is deshielded by 6 ppm when compared with that of glucose. A COSY <sup>1</sup>H<sup>-1</sup>H spectrum of 1 showed correlations between the anomeric proton signal at  $\delta$  5.56 and a signal at  $\delta$  4.87 (t, J = 8.4 Hz). These values suggested an acylation of the hydroxyl at C-2 and a diaxial hydrogen coupling between H-2/H-1 and H-2/H-3. These data are in agreement with an acylated C-2 glucose.

Comparative analyses of the  ${}^{13}$ C-NMR carbohydrate data of **1** and **2** with those of the glucose in rutin<sup>8,9,10</sup> revealed that the

| С            | 1     | 2     |
|--------------|-------|-------|
| 2            | 156.6 | 157.4 |
| 3            | 133.0 | 132.6 |
| 4            | 177.2 | 176.4 |
| 5            | 161.4 | 161.4 |
| 6            | 98.9  | 101.2 |
| 7            | 164.7 | 166.4 |
| 8            | 93.9  | 95.2  |
| 9            | 156.9 | 156.1 |
| 10           | 104.1 | 102.1 |
| 1'           | 121.2 | 121.3 |
| 2'           | 116.4 | 130.9 |
| 3'           | 145.0 | 115.7 |
| 4'           | 148.8 | 160.4 |
| 5'           | 115.5 | 115.7 |
| 5'           | 122.0 | 130.9 |
|              | 98.9  | 99.2  |
| 2"           | 74.2  | 74.4  |
| "            | 74.1  | 74.4  |
|              | 70.8  | 71.0  |
| ;"           | 76.2  | 76.1  |
| <u>;</u> ,,  | 67.4  | 67.3  |
| ,,,          | 101.1 | 101.3 |
|              | 70.8  | 70.8  |
| 3            | 70.6  | 70.8  |
| 1'''         | 72.0  | 72.2  |
| 5'''         | 68.6  | 68.8  |
| 5'''         | 18.0  | 18.2  |
| 1''''        | 125.4 | 125.4 |
| 2****, 6**** | 130.5 | 130.7 |
| 3'''', 5'''' | 116.0 | 116.4 |
| 1''''        | 160.0 | 160.6 |
| 7''''        | 145.1 | 146.3 |
| 8''''        | 114.6 | 114.6 |
| 9,           | 166.0 | 168.2 |

C-2 of the glucose in **1** and **2** was deshielded by +2 ppm, and that C-1 and C-3 are shielded by -2 ppm. These observations are in agreement with the location of the coumaroyl group at C-2 of the glucose moiety. Thus, the structures of the two new acylated flavonol glycoside isolated from *Alibertia sessilis* were established as quercetin-3-O- $\beta$ -D-(2"-O-*trans*-*p*-coumaroyl) -rutinoside (**1**) and kaempherol-3-O- $\beta$ -D-(2"-O-*trans*-*p*coumaroyl)-rutinoside (**2**).



#### Scheme 1.

The occurrence of iridoids and triterpenes in *Alibertia* is in agreement with chemosystematic correlations and botanical positioning of this genus in Gardenieae<sup>3</sup>. However, the isolation of this type of flavonol is unusual if we consider the chemical composition of other *Alibertia* already described in the literature.

## Experimental

#### General experimental procedures

NMR spectra were measured at 200 MHz for <sup>1</sup>H, with TMS as the internal standard and 50 MHz for <sup>13</sup>C, using the solvent signal as reference.

#### Plant material

Alibertia sessilis (Vell.) K. Shum. (Rubiaceae) was collected in the Itirapina Botanic Reserve, in the Cerrado region of São Paulo, Brazil. A voucher specimen is deposited at the Botanical Institute of São Paulo (number S.P. 110683).

#### Extraction and isolation of the constituents

Dried and powdered leaves (515 g) of *A. Sessilis* were successively extracted with hexane, methylene chloride and ethanol/water (6:4). The crude hexane extract (10.4 g) was fractionated on silica gel column chromatography. Further purification of the fractions by preparative TLC, eluted with C<sub>6</sub>H<sub>6</sub>:EtOAc (9:1) yielded sitosterol (86 mg),  $\alpha$ -tocopherolquinone (29 mg), and fatty material.

The CHCl<sub>3</sub> insoluble fraction (1.2 g) of the crude dichloromethanic extract (9.5 g) was methylated with CH<sub>2</sub>N<sub>2</sub>. Preparative TLC eluted with CHCl<sub>3</sub>:MeOH (97:3) of this material gave three fractions: the first was a mixture of ursolic acid and oleanolic acid methyl esters (300 mg), the second was the methyl ester of ursolic acid (800 mg), and the third was the methyl ester of *epi*-betulinic acid (30 mg).

The crude ethanol/water (6:4) extract (48 g) was partitioned into ethyl acetate and then into n-butanol. The soluble part of *n*-Butanol (2.5 g) was submitted to column chromatography on silica gel, and eluted with CHCl<sub>3</sub> with increasing amounts of MeOH. After analysis by TLC some fractions were combined. Further preparative TLC eluted with CHCl<sub>3</sub>:MeOH (85:15) of the less polar fractions gave a mixture (5 mg) of the isomeric iridoids -gardiol and  $\beta$ -gardiol. Another fraction of that column was submitted to reversed-phase HPLC [column C-8 (25 x 0.4 cm) and elution with a H<sub>2</sub>O - MeOH gradient, at a flow rate of 8 mL/min, and detector UV (240 nm)], affording the iridoids gardenoside (17 mg) and deacetylasperulosidic acid methyl ester (4 mg).

The soluble part of ethyl acetate (200 mg) was precipitated with CHCl<sub>3</sub>. The precipitate was dissolved in MeOH and submitted to column chromatography on Sephadex LH-20, and eluted with MeOH. After TLC, some fractions were combined and one of them was identified as quercetin-3-O-rutinoside (50 mg). Another fraction was submitted to preparative TLC, and eluted with CHCl<sub>3</sub>:MeOH: *n*-BuOH:H<sub>2</sub>O (25:5:10:1) to afford 12 mg of quercetin-3-O- $\beta$ -D-(2"-*trans-p*-coumaroyl)-rutinoside (1) and 25 mg of kaempferol-3-O- $\beta$ -D-(2"-*trans-p*coumaroyl)-rutinoside (2).

## Acknowledgements

The authors are grateful to CNPq for financial support and schalarships.

### References

- 1. Bolzani, V. da S.; Trevisan, L.M.V.; Young, M.C.M. *Phytochemistry* **1991**, *30*, 2089.
- Brochini, C.B.; Martins, D.; Roque, N.F.; Bolzani, V. da S. *Phytochemistry* 1994, *36*, 1293.
- Robbrecht, E. In *Tropical Woody Rubiaceae*; Vol. 1, Opera Botanica, Belgium, 1991.
- 4. Ty, Ph. D.; Lischewski, M.; Phiet, H.V.; Preiss, A.; Sung, T.V.; Schmidt, J.; Adam, G. *Phytochemistry* **1984**, 23, 2889.
- 5. Boros, C.A.; Stermitz, F.R. J. Nat. Prod. 1990, 53, 1055.
- Chaudhuri, R.K.; Afifi-Yazar, F.V.; Sticher, O. *Helv. Chim. Acta.* **1979**, *62*, 1603.
- 7. Chaudhuri, R.K.; Afifi-Yazar, F.V.; Sticher, O.; Winkler, T. *Tetrahedron* **1980**, *36*, 2317.
- Markham, K.R.; Chari, V.M.; Mabry, T.J. In *Carbon-13* NMR Spectroscopy of Flavonoids in the Flavoids: Advances in Research; Harborne, J.; Mabry, T.J., Eds.; Chapman and Hall; London, 1982, pp. 19-134.
- Breitmaier, E.; Voelter, W. In *Carbon-13 NMR Spectroscopy;* UCH, 3rd Ed.; Weinheim, 1987, p. 134.
- Agrawal, P.K.; Bansal, M.C. "Flavonoids Glycosides" In *Carbon-13 NMR of Flavonoids;* Agrawal, P.K., Ed.; Elsevier, Amsterdam, 1989, pp. 283-364.