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Variações nos óleos essenciais foram utilizadas para o estudo da estrutura química espacial de 
oito populações de E. dysenterica do Cerrado central brasileiro. Previamente, o autocorrelograma 
multivariado de Mantel e o particionamento da variação da matriz química, utilizando os conjuntos 
de dados espaciais e ambientais como preditores, sugeriram uma significante variação espacial nos 
óleos essenciais. No presente estudo, os métodos quimiométricos espaciais usando variogramas 
e mapas de probabilidade permitiram a detecção e a caracterização da estrutura químico-espacial 
entre populações, bem como dos fatores ambientais responsáveis por ela. Todas essas estratégias 
indicaram que as populações diferem quimicamente a distâncias geográficas superiores a 120 km, 
um indicador da distância mínima entre amostras necessária para a conservação da diversidade 
genética das populações. Embora sendo raramente usadas com metabólitos secundários, essas 
metodologias possuem uma grande aplicação em conservação de espécies e podem permitir uma 
efetiva integração de perspectivas genética, química e ecológica.

Chemovariations in essential oils were used for studying the spatial chemical structure of 
eight E. dysenterica populations in Central Brazilian Cerrado. Previously, multivariate Mantel 
autocorrelogram and chemical matrix variation partitioning, using the spatial and environmental 
data sets as predictors, have suggested a highly significant spatial variation in essential oils. In the 
present study, spatial chemometric methods using variograms and probability maps detected and 
characterized the spatial chemical structure among populations, as well as the environmental 
factors responsible for them. All these strategies indicated that the populations differ chemically 
whenever the geographical distance exceeds 120 km, an indicator of the minimal distance between 
samples required for conserving the genetic diversity of populations. Although being scarcely used 
with secondary metabolites, these methodologies may be used in a wide range of applications in 
species management and may lead to an effective integration of genetic, chemical and ecological 
perspectives.
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Introduction

Phenotypic variation patterns in secondary plant 
metabolites have strong ecological significance  and are 
an important factor in understanding the evolutionary 
history of natural populations, as they affect both 
intra and interspecific interactions.1 Variation of chemical 
phenotypes can be explained by a combination of genetic or 
ontogenetic and environmental variation sources.2,3 Spatial 

factors can be critical for each of these processes and the 
levels and spatial structure of phenotypic chemovariations 
may affect competition,4 local adaptation to the presence 
of another plant species,5 pollination,6 nutrient cycling,7 
differential freezing resistance,8 foraging behavior  and 
habitat selection,9 as well as influence the capacity of 
herbivores and pathogens to adapt and exert selection on 
plant chemicals.10

Spatial patterns in essential oil variations have been 
described for E. dysenterica from different sites located 
in South East Goiás state, Brazil.11 Multivariate Mantel 
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autocorrelogram and trend surface analysis, with variance 
partitioning by partial redundancy analyses (pRDA),12 have 
enabled the detection and quantification of spatial chemical 
patterns in the same genetically described E. dysenterica 
populations.13-15 All genetic and chemical markers showed 
a similar profile for populations located at around 120 km, 
according to the isolation-by-distance model. This profile 
decreases as distance increases, so that populations located 
more than 190-200 km away become different as far as 
these descriptors are concerned.11,13-15

Here, the spatial chemical patterns of phenotypic 
variation in previously reported E. dysenterica essential 
oil data sets via spatial chemometric methods were 
explored.11 In these techniques, theoretical variograms can 
be fitted to experimental ones, allowing the comparison 
of an observed structure with spatial chemical structures 
derived from chemometric models. Theoretical modeling 
may be used for understanding and as a predictive tool for 
interpolation (kriging) or probability mapping. According 
to this finding, it would be possible to decide which 
groups of local populations should be given priority in 
sampling or preserving,16 as the distribution of genetic 
(chemical) variation in the geographical space is an 
essential factor for the conservation and management of 
wild populations.17 Nevertheless, models predicting the 
spatial distribution of secondary metabolites are scarcely 
studied, mostly restricted to phenolic variations,18-20 despite 
their importance in sampling and species management, as 
well as for individual and community success. 

Experimental

Plant material and essential oil data

The complete data of the E. dysenterica sampling 
collection was described previously.11 Briefly, essential oils 
from 121 E. dysenterica trees were extracted from eight 
populations in South East Goiás state, Brazil. Sampling 
sites  and populations are shown in the Supplementary 
Information (SI) section (Figure S1). Essential oil 
data sets were represented by chemical constituents 
(121 samples × 49 variables) or oil constituents rearranged 
according to biosynthetic carbon skeletons (121 × 13).

Spatial chemometric analyses

In the spatial chemometric analyses, the fitted values 
on the first extracted axis of the redundancy analysis 
(RDA) were used to represent essential oil variability in the 
samples, since summarizes the multidimensional chemical 
information of every individual. RDA first axes correspond 

to the main variance fractions explained by significant 
spatial  and environmental predictor variables.11 Spatial 
analyses were also conducted for the percentage values 
of total oxygenated terpenes (sum of monoterpenes and 
sesquiterpenes), total oxygenated monoterpenes and total 
sesquiterpene hydrocarbons, the main biosynthetic classes 
of essential oils.

To determine the strength and scale of spatial chemical 
dependence among populations, the variance (formerly the 
semi-variance) γ(h) was estimated by using the following 
equation 1:21

	 (1)

where n(h) is the number of lag class pairs at h distance 
intervals; Zx  and Zx + h are chemical parameter values at 
location x and x + h, respectively. The number of lag classes 
(h = 14) was determined by Sturge’s rule,22 an objective 
method which avoids arbitrarily inflating the explained 
spatial variation as a function of lag class size. The plot 
of γ(h) against h provides the variogram (Figure S2 in the 
SI section), which will show either purely random behavior 
or systematic behavior described by a theoretical model 
(linear, spherical, gaussian or power law distribution). 
Most models start with a variance value above zero at the 
y-intercept, called the nugget (Co), which is the unexplained 
variance. This can be attributed to variability at a smaller 
scale than the sampling resolution or to measurement errors. 
If there is spatial autocorrelation in the chemical data, the 
variance in the defined distance intervals increases from 
the y-intercept with distance until it reaches its maximum, 
known as the sill (Co + C). The variance between the 
nugget and the sill is called the partial sill (C) and is the part 
of the variance which is explained by the spatial structure 
of the chemical data. The ratio of the partial sill and the 
total sill [C / (Co + C)] determines the strength of the spatial 
autocorrelation (structural variance, Q), i.e., this statistic 
provides a measure of the proportion of sample variance 
(Co + C) that is explained by spatially structured variance 
(C). High values indicate a spatial pattern in the data.

Alternatively, the Cambardella index (Ic) was also 
used to compare the degree of spatial dependence.23 This 
index estimates the proportion of variance which is erratic 
(not spatially structured) and gives a good indication of 
how data set is spatially arranged, namely: Ic < 25: strong 
spatial dependence and small erratic variance; 25 < Ic < 75: 
moderate spatial dependence; and Ic < 75: random spatial 
distribution. The distance in which the model reaches the sill 
is known as the effective range, which shows the extent of 
the spatial dependence on the chemical data. Furthermore, 
the mean correlation distance (MCD = 3/8 × range × Q) was 



Vilela et al. 875Vol. 24, No. 5, 2013

computed at each variable to compare the distance in which 
a high spatial dependence occurred in the variogram.20 If 
the model shows only the nugget, then there is no spatial 
structure in the data.

The coefficient of variance (CV) was calculated for all 
response variables, and the nugget, sill, effective range, Q, 
Ic, correlation coefficient (r), and MCD parameters were 
obtained from the model with the best fit to the variance 
data. All sample data were investigated for anisotropy 
by using directional variograms before calculating 
omnidirectional variograms. When spatial dependency 
was present, the spatial distribution of the chemical 
parameter (Zx) was expressed by a kriged map. This is a 
linear interpolation technique that provides the best linear 
unbiased estimation, which minimizes prediction error 
variances for spatial variables. Although the resulting maps 
provide a powerful visualization of the spatial pattern, 
probability maps that exceed the mean value of the response 
variables were used to avoid excessive smoothing in the 
kriged map.18 Probabilities were calculated by performing 
1000 conditional simulations on the predicted distribution 
of values from response variables.

To assess environmental influence on oil variability, 
leaf nutrients (environmental predictors: P, K+, Mg2+  and 
Cu2+), represented by the first axes of the partial RDA,11 
were submitted to the probability to exceed the mean value 
maps. Thus, the maps of pure environmental influences were 
obtained shared with spatial descriptors. All calculations were 
performed with GS+ (Geostatistics for the Environmental 
Sciences) and variogram plotting was completed using the 
R library Gstat24 version 2.15.0 of the R package.25

Results and Discussion

To identify the existence of spatial structures and describe 
the spatial variability of response variables, variograms of 
RDA first axes from each oil data set, percentage values 
of oxygenated terpenes, oxygenated monoterpene  and 
sesquiterpene hydrocarbons were computed for sampling 
populations. The study of variograms is important in natural 

product chemistry, as its nugget effect provides information 
on the error made by the measuring instruments  and by 
chemovariations undetected in the sampling neighborhood. 
In addition, they offer valuable information regarding the 
spatial dependence of each response variable (nugget/sill 
ratio) and the effective range of spatial autocorrelation, which 
supports the establishment of operational chemical units,11 
similarly to genetic operational units for the purposes of 
conserving and managing populations.26

In the present study, the gaussian models fitted the 
experimental variograms with great success in the majority 
of oil response variables (Table 1). This confirms the 
existence of a spatial structure in essential oil contents and 
rules out the possibility of a random distribution of 
essential oils throughout population sites. According to the 
Cambardella index,23 the spatial dependence of essential oil 
content, as measured by each oil data set, was the highest 
among all response variables.

The nugget/sill ratios were 0.04  and 0.05% for oil 
constituents and oil carbon skeleton, respectively. Thus, 
at least 99.9% of total variance in essential oil data sets 
can be explained by spatially structured variance. On the 
other hand, the proportion of the nugget effect was greater 
for oxygenated monoterpenes (49.9%) than for the sum 
of oxygenated terpenes (8.9%),  and in general reflected 
a moderate spatial dependence of the former biosynthetic 
class. A similar trend was observed for the coefficient of 
variation. For the oxygenated monoterpenes, the variability 
(CV = 62.8%) was more than 2.5 fold higher than the 
variability caused by changes in the oxygenated terpenes 
(CV = 24.9%). In contrast, the variogram model for 
sesquiterpene hydrocarbons (CV = 19.2%) showed only a 
nugget effect, which suggests there is no spatial structure 
in the data (Figure S3 in the SI section).

For both oxygenated biosynthetic classes, the effective 
range of the variograms, which is the distance at which 
a plateau is reached, progressively increased from 
monoterpenes to the sum of oxygenated terpenes. The 
MCD value is an informative parameter of the range of 
distances within which a high spatial dependence exists 

Table 1. Parameters for the variogram models of the response variables from E. dysenterica essential oils

Response variable CV / %a Model Nugget Sill
Effective 
range / m

Ic / %
b Q / %c r MCD / md

Oil constituentse 27.1 gaussian 0.0001 0.226 120204.3 0.04 99.96 0.781 45056.7

Oil carbon skeletone 28.9 gaussian 0.0001 0.199 153113.3 0.05 99.95 0.803 57388.7

Oxygenated terpenes 24.9 gaussian 0.0030 0.034 138044.5 8.9 91.1 0.844 47146.9

Oxygenated monoterpenes 62.8 gaussian 0.1852 0.371 77595.9 49.9 50.1 0.901 14588.4

Sesquiterpene hydrocarbons 19.2 linear 135.4 135.4 111301.3 100.0 0.0 0.322 0.0
aCoefficient of variation; bCambardella index (Co / [Co + C]); cstructural variance (C / [Co + C]); dmean correlation distance (3/8 × range × Q); evalues of 
RDA axis 1.
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among populations. According to Table 1, the MCD value 
tended to expand throughout the oxygenated terpene 
biosynthesis (from 15 km for monoterpenes to 47 km 
with oxygenated sesquiterpenes) indicating a progressive 
increase in the dimension of geographical areas that display 
similar oxygenated terpene contents.

For oxygenated monoterpenes, the MCD value 
(14588.4  m) was only twice the lag class distance 
interval (7823.8 m), leading to a higher proportion 
of nugget effect with moderate spatial dependence 
(Co = 0.1852, Ic = 49.9%). In other words, the variability 
of the oxygenated monoterpene content in the essential oil 
occurred at shorter distances than those involving the other 
response variables, whenever two adjacent sampling sites 
were taken into account. These results confirm the change in 
the spatial pattern of the terpene content in the essential oil 
throughout different biosynthetic classes. The high nugget 
effect proportion may also reflect a strong degree of intra 
or interspecimen variation. Furthermore, this effect should 
be related at least partially to the collection of leaf samples, 
which occurred in July, during the dry season. During this 
time, the peak of leafing activities, senescence and emission 
of new leaves occur,27 thus requiring large amounts of 
carbon and macronutrients for protein and RNA synthesis, 
which is markedly increased in young leaves with a high 
capacity for biosynthesized essential oils. During leaf 
growth, leaf volatiles may provide a constitutive defense 
(by deterring potential herbivores) or an induced response 
to herbivore damage by attracting predators or parasites.28 
However, as biosynthetic terpenes changed, differences 
in oxygenated sesquiterpene content decreased, much in 
the same way that the effective range and the MCD value 
increase for this class. Presumably, this effect reveals 
that a plateau has been reached in the essential oil, which 
results in intra  and interpopulation homogeneity. The 
observed effective range for the oil constituent data set 
(120.2 km) occurred in a similar geographical distance 
(117 km) previously determined by multivariate Mantel 
autocorrelogram.11 These results contrast with numerical 
simulations,29 of which the Mantel test and derived forms 
could not correctly estimate the proportion of the original 
data variation explained by spatial structures.

The spatial pattern for E. dysenterica essential oils is 
in agreement with the evolutionary isolation‑by‑distance 
model observed for morphological  and isozymatic 
descriptors,13,14 as well as for simple sequence repeats 
(SSR)  and random amplification of polymorphic DNA 
(RAPD) genetic markers.15 All of these genetic descriptors 
showed a similar genetic profile for populations located at 
around 120 km. This similarity between the chemical data 
with genetic markers is consistent with the findings of 

other studies which used terpenoids and isozymes, RAPD, 
amplified fragment length polymorphism (AFLP), SSR and 
inter‑simple sequence repeat (ISSR) molecular markers.30 
Predictive maps (Figure 1) based on fitted models for each 
spatially structured biosynthetic class and for each essential 
oil data set were obtained using the probability to exceed 
threshold value (mean value).

All the maps showed greater variation between 
populations with certain similarities in the spatial patterns 
of two well-differentiated areas: an area with high essential 
oil variation in populations located along the Corumbá 
River basin (north-south direction of the plot) and another 
area (east-west) with low oil complexity. This chemical 
variability may be explained as a result of localized 
inbreeding effects associated with a low gene migration 
rate among populations.15,16,31

The Corumbá River basin separates the two North West 
populations, Goiânia (8) and Senador Canedo (7), through 
a depression formed by the river and its tributaries. This 
spatial barrier could contribute at least partially to ecological 
isolation, a pre-requisite for speciation and chemovariation 
between two sampling sites. In fact, the existence of 
chemotypic differentiation between populations from 
these sites could be confirmed by the fact that cultivated 
plants grown adjacently in the same environment displayed 
the typical composition of their wild populations.32 
Furthermore, samples from Senador Canedo and Goiânia 
tend to reveal a certain level of segregation for some 
response variables (Figures 1a and 1b). These variations 
were not previously observed  and may be attributed to 
the Meia Ponte River basin that separates these sampling 
locations. On the other hand, samples from populations 4 
(Campo Alegre de Goiás)  and  5 (Cristalina) showed 
low oil variability (Figures 1a  and 1b) or corresponded 
to a transition between the highest variability centers 
(Figures  1c  and 1d). These populations are located 
between two geographical barriers, the mountain ridges 
of Cristais  and Contraforte Central, which may be an 
important factor for isolation and speciation.

Another source of oil variation was the nutrient 
resource variability due to the fact that the environmental 
predictors were leaf nutrients (P, K+, Mg2+  and Cu2+), 
which account for 8% of the chemovariation.11 The maps 
created for pure environmental influences and shared with 
spatial predictors coincide with the regions of oil variation 
(Figure S4 in the SI section) and are a relative indication 
of the divergence in terpenes. These micronutrient 
effects should be associated with a strict requirement 
for sesquiterpene synthases with divalent metal ions as 
cofactors, especially Mg2+, which have also influenced the 
number of by-products obtained from these reactions.33 
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Terpenoid accumulation was related to high P and K+ soil 
contents or when culture media were supplemented with 
increased P concentration.34 On the other hand, populations 
located around the Meia Ponte River (7  and 8)  and the 
mountainous populations (4 and 5) were discriminated by 
pure spatial influence and by the fact that they are shared 
by environmental predictors along the sampling sites  
(Figure S5 in the SI section).

Unlike the frequent assessment of the geographical 
distribution of genetic diversity,35 the description of the 
spatial structure of essential oil variability has been scarcely 
studied until now.11,36 These studies have focused on spatial 
autocorrelation approaches, such as the Mantel test  and 
other derived forms, which could not correctly estimate 
the proportion of the original data variation explained 
by spatial structures.29 Trend surface analyses have faced 

difficulties in interpreting the terms of the polynomials, 
in addition to the non-independence of the monomials.37 
Furthermore, they have been unable to correctly model 
fine-scale patterns.38 Thus, spatial chemometric methods 
which use variograms of essential oil chemovariations may 
be used as additional tools to establish in situ conservation 
areas or sampling areas for ex situ conservation. In addition, 
the ecological role of essential oils in neotropical Myrtaceae 
has not yet been investigated,39 but the studies referred to 
here are very important for conservation and management 
strategies.

Conclusions

In the present study, spatial chemometric methods 
detected and characterized the spatial chemical structure 

Figure 1. Spatial distribution of the essential oil variations in the leaves from eight E. dysenterica populations from Central Brazilian Cerrado: oil constituents 
(a) and oil constituents arranged according to carbon skeleton (b); oxygenated terpene (c) and oxygenated monoterpene (d) biosynthetic classes. The maps 
show the probability of finding a value higher than the mean content.
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among populations of E. dysenterica based on fitted 
models using variograms  and probability maps. In 
addition to multivariate Mantel autocorrelagram and trend 
surface analyses,11 all chemical strategies showed that 
E. dysenterica populations differ chemically whenever 
the geographical distance exceeds 120 km, an indicator 
of the minimal distance between samples required for 
conserving the genetic diversity of populations. Although 
being scarcely used with essential oil variations, these 
methodologies show a wide range of applications in species 
management and may lead to an effective integration of 
genetic, chemical and ecological perspectives.

Supplementary Information

Supplementary data (Figures S1-S5) is available free 
of charge at http://jbcs.sbq.org.br as a PDF file.
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Figure S1. Map of Goiás State showing Corumbá and Meia Ponte River basins separating E. dysenterica populations 1-6 and 7 from 8, respectively. 
Cristais and Contraforte Central mountain ridges help to isolate populations 4 and 5. Populations: 1 = Catalão-1, 2 = Catalão-2, 3 = Três Ranchos, 4 = 
Campo Alegre de Goiás, 5 = Cristalina, 6 = Luziânia, 7 = Senador Canedo, 8 = Goiânia.

Figure S2. Generalized variogram model showing estimate parameters 
for sill, nugget and effective range. The spatially structured variance is 
represented by fraction C.
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Figure S4. Distribution of environmental predictors (leaf nutrients: P, 
K+, Mg2+, Cu2+) of oil constituent variations in the leaves from eight 
E. dysenterica populations from Central Brazilian Cerrado: pure 
environmental influence (a) and environmental factors shared by spatial 
predictors (b). The maps show the probability of finding a value higher 
than the mean content.Figure S3. Variograms for essential oils from eight E. dysenterica 

populations represented by oil constituent data set (a) and for the 
sesquiterpene hydrocarbon content (b) along the separation distance of 
sampling sites. Fitted models show spatially structured variance (a) and 
nugget effect only (b), with no spatial structure in the data.
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Figure S5. Distribution of spatial predictors of oil constituent variations 
in the leaves from eight E. dysenterica populations from Central 
Brazilian Cerrado: pure spatial influence (a) and spatial factors shared by 
environmental predictors (b). The maps show the probability of finding a 
value higher than the mean content.


