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Rapid recognition of the sources of drugs can provide some valuable clues and the basis for 
determining the nature of the case. A novel recognition method was put forward to identify the 
sources of heroin drugs rapidly and non-destructively by using a hand-held near infrared (NIR) 
spectrometer and a multi-layer-extreme learning machine (ML-ELM) algorithm. In contrast 
to traditional linear discriminant analysis (LDA), support vector machine (SVM) and extreme 
learning machine (ELM) algorithms, the accuracy, sensitivity and specificity were the highest for 
the proposed ML-ELM algorithm. The prediction accuracy of the ML-ELM algorithm was 25.33, 
20.00, 17.33% higher than that of LDA, SVM and ELM algorithm, respectively, for 4 cases. The 
ML-ELM models for recognizing the different sources of heroin drugs had the best generalization 
ability and prediction results. The experimental results indicated that the combination of the 
hand‑held NIR technology and ML-ELM algorithm can recognize the different sources of heroin 
drugs rapidly, accurately, and non-destructively on the spot.
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Introduction

Heroin is one of the most common drugs in China. 
It is damaging to the health of people and has become 
a worldwide social problem. Yunnan province is located 
in southwest China and bordered with Myanmar, Laos 
and Vietnam. The border of Yunnan Province is more 
than 4000 kilometers and is an important route for drug 
trafficking. In 2020, 35.4 tons of drugs were caught in 
Yunnan province, accounting for 47.45% of China. As two 
of the most common drugs in China, methamphetamine and 
heroin drugs account for more than 80% of the illicit drugs. 
Yunnan Province has been hit hard by the drugs, especially 
methamphetamine and heroin.1 

The drug source denotes the scenes of the crime and 
case sources of the drugs. Drugs of different cases are all 
illegal production. As the raw material sources, producer 
production equipment, technical level and production 
process are all different for each illegal drug production 
factory, the purity, impurities, content of effective 

ingredients and residual solvent type will be different. 
It provides the basis for using the modern analytical 
techniques to recognize the source of drugs. The rapid 
determination of the source of the drugs can help the 
police to estimate if the drugs are the same case. It can 
provide some valuable clues and the basis for determining 
the nature of the case. Therefore, how to determine the 
sources of the drugs rapidly is very important for the drug 
control. Usually, the conventional method applicable to 
determine the sources of heroin drugs is generally based on 
gas chromatography-mass spectroscopy (GC-MS), which 
is expensive, time-consuming and cannot be synchronized 
to the crime scene. In order to carry out drug control 
efforts more effectively and investigate illegal heroin 
drugs after their confiscation, a fast and reliable qualitative 
determination for the analysis is crucial.2 As a result, it is of 
great importance to develop a new method, which is rapid, 
cheap, reliable and high-efficient.

 Near-infrared (NIR) spectroscopy is a useful analytical 
chemistry tool and it has the advantages such as being 
accurate, cheap, fast, and non-destructive.3 In recent years, 
considerable effort has been invested in applying NIR for 
drug determination and identification. However, few studies 
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have been reported on the recognition of different sources 
of heroin drugs using NIR technology so far. Besides, in 
the previous research,3 it can be known that NIR spectral 
data of drugs involves a large number of correlated features 
and it is difficult to find the connection between spectral 
data and heroin drug sources. Hence engineering the 
features to represent the salient structure of the spectral 
data is important. 

Extreme learning machine (ELM) put forward by 
Huang et al.4 has been widely used in many areas, such 
as classification,5 regression,6 feature selection7 and so on. 
Multi-layer extreme learning machine (ML-ELM) is one 
of the unsupervised learning methods using both deep 
learning and extreme learning machine. Compared with the 
traditional ELM algorithm and the other machine learning 
algorithms, the generalization performance of ML-ELM 
algorithm is better.8-10 However, there are few applications 
in the classification of NIR spectral data. Considering the 
above discussion and analysis, ML-ELM is very suitable 
for the processing of NIR spectral data.11

In this study, a novel classification method using hand-
held NIR technology and ML-ELM algorithm was put 
forward to recognize the sources of heroin drugs rapidly and 
non-destructively. The proposed technique was applied to 
establish the heroin source recognition model and testified 
by practical-seized heroin samples.

Experimental

Equipment and samples 

A MicroNIR 1700 device was used to collect the spectral 
data of heroin drugs. The spectral range of the device is 900-
1650 nm and it is provided by Viavi Solution, Milpitas, CA, 
United States. The MicroNIR is equipped with a 128-pixel 
detector array, which records data with a nominal spectral 
resolution of 6.25 nm. The integration time was 10 ms and 
each spectrum was the average of 60 scans, resulting in a 
measurement time of 0.60 s. In the scan process, the device 
was placed directly on the heroin samples to acquire the NIR 
spectroscopy. Meanwhile, a reflectivity plate over 99% was 
also placed under the heroin samples.

In the following research, a total number of 338 seized 
drugs by Yunnan police from 4 different case sources were 
chosen. All the samples were provided by public security 
bureaus of Yunnan province. The differences in the samples 
were very small and they could not be recognized through 
the eyes. Pictures of the samples could not be placed 
here for the reasons of confidentiality. High-performance 
liquid chromatography (HPLC) was used for quantitative 
determination of heroin drugs in order to identify the sources 
of different cases, the purity of the heroin drug samples of 4 
different cases are shown in Table 1. It can be seen in Table 1 
that the differences of the average purity of 4 different cases 
are huge. Besides, the statements of the suspects also showed 
the samples were from 4 different sources and the samples 
in each case were from the same source. In the experimental 
process, the samples were divided into 3 parts. It contained 
calibration, validation and testing samples. The above 
calibration and validation samples were chosen randomly. 
180 samples were chosen as the calibration set, 83 samples 
as the validation samples and 75 samples as the test set. The 
details of the dataset are shown in Table 1. 

Theory of linear discriminant analysis

Linear discriminant analysis (LDA) is a well-known 
dimension reduction and classification method. It is used 
for binary classification problems. Suggest there is a set of 
samples which have two classes C1 and C2. The total number 
of the samples is n.  The number of class C1 is n1 and the 
number of class C2 is n2. If each sample is described by 
q variables, the data forms a matrix X = (Xij), i = 1, …, n; 
j = 1, …,  q. We denote by µk  the mean of class Ck and by 
μ the mean of all the samples:

	 (1)

	 (2)

Then, the between-class scatter matrix SB and the 
within-class scatter matrix SW can be defined as:

Table 1. Details of the heroin drugs dataset

Year Source Feature Samples
Calibration 

samples
Validation 
samples

Testing 
samples

Maximum 
purity / %

Minimum 
purity / %

Average  
purity / %

2021 case 1 125 93 50 23 20 63.15 59.12 61.17

2020 case 2 125 85 45 20 20 77.12 73.15 75.33

2020 case 3 125 75 40 20 15 55.77 54.26 55.18

2020 case 4 125 85 45 20 20 86.14 84.11 85.32
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	 (3)

	 (4)

LDA determines a vector ω such that ωtSBω is 
maximized while ωtSWω is minimized. This double 
objective is realized by the vector ωopt that maximizes the 
criterion:

	 (5)

It can be proved that the solution ωopt  is the eigen vector 
associated to the sole eigen value of  SW

–1SB if SW
–1 exists. 

Once ωopt  is determined, LDA provides a classifier.12,13 

Theory of support vector machine

The theory of support vector machine (SVM) has been 
extensively described in literature.14,15 Considering a binary 
classification problem, the objective is to predict for all 
the objects their belonging to a class y{–1, +1}, from m 
dimensional input data represented by a vector written 
x = (x1, x2, …, xm) and xi for the ith object of the training 
set. In the case of spectra, m represents the number of 
wavelengths. The class prediction first requires training on 
a data set containing the spectra corresponding to n objects 
or samples with known class, that is to say n{x, y} values.

Theory of extreme learning machine algorithm 

ELM proposed by Huang et al.4 shows that the hidden 
nodes can be randomly generated. The input data is mapped 
to L dimensional ELM random feature space and the 
network output is given by equation 6: 

	 (6)

 
where  b = [b1, …, bL]T is the output weight matrix between 
the hidden nodes and the output nodes, h(x) = [g1(x), …, 
gL(x)] are the hidden node outputs (random hidden features) 
for the input x and gi(x) is the output of the i-the hidden 
node. Given N training samples {(xi, ti)}N

i=1, ELM is to 
resolve the following learning problems:

Hb = T	 (7)

where T = [t1, …, tN]T  are the target labels and 
H = [hT(x1), …, hT(xN)]T means the output matrix of hidden 

layer. The output weights β can be calculated by equation 8:

b = H†T	 (8)

where H† is the Moore-Penrose generalized inverse of 
matrix H.

To have better generalization performance and to make 
the solution more robust, one can add a regularization term 
as shown in equation 9.

	 (9)

where C is the regularization coefficient and the values 
of this parameter will be assigned randomly after the 
appropriate hidden layer numbers are set. 

Theory of multi-layer extreme learning machine algorithm 

If the number of nodes Lk in kth hidden layer is equal 
to the number of nodes Lk–1 in the (k – 1)th hidden layer, 
g could be linear otherwise, g could be nonlinear piecewise, 
e.g., sigmoidal function.

Hk = g((bk)THk–1)	 (10)

where Hk is the output matrix of kth hidden layer. If k = 0, 
the input layer x can be considered as the 0th hidden layer. 
The output of the connections between the last hidden 
layer and the output node t is analytically calculated using 
regularized least squares. 

The steps of recognizing the sources of heroin drugs by 
using ML-ELM algorithm were shown as follows. Firstly, 
the calibration and validation samples were serial treated by 
spectral pre-processing. Then, the parameters of ML-ELM 
algorithm were determined and the classification models 
were built. Finally, the prediction results could be obtained 
by using the built ML-ELM models.

Measures of classification performance

Confusion matrix cannot only be used in the two-
classification discriminant analysis, but also can be used in 
the multi-classification discriminant analysis. The following 
figure presents the basic form of confusion matrix for a multi-
class classification task, with the classes A1, A2, and An. In 
the confusion matrix, Nij represents the number of samples 
actually belonging to class Ai but classified as class Aj.

A number of measures of classification performance can 
be defined based on the confusion matrix. Some common 
measures are given as Figure 1.
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Accuracy is the proportion of the total number of 
predictions that were correct:

	 (11)

Precision is a measure of the accuracy provided that a 
specific class has been predicted. It is defined by:

	 (12)

Specificity is the proportion of actual negatives 
measured that were correct:

	 (13)

In equation 13, TN means true negative and FP means 
false positive.

Sensitivity is a measure of the ability of a prediction 
model to select instances of a certain class from a data set, 
it is defined by the formula:

	 (14)

The traditional F-score (F1 score) is the harmonic mean 
of precision and sensitivity: 

	 (15)

Results and Discussion

The NIR spectral data of all the samples were collected 
by a hand-held NIR spectrometer. No pre-processing 
operation has been done on the samples. In the scan process, 
the samples were measured without the packaging. All the 
physical evidence bag (plastic bag) were opened to avoid 
the influence of a polymer. The device was placed directly 
on the heroin samples to acquire the NIR spectroscopy. 
The NIR spectral data of the dataset of 4 different cases 
are shown in Figure 2. The peaks from 960 to 980 nm and 
1400-1420 nm are the first and second overtone of O-H, 
respectively; peaks in the range of 1490‑1600 nm are 
attributed to the first overtone of N-H. In the literature,5 
results showed that the variables located in the ranges of 
1100-1250 nm and 1350-1600 nm had a great influence 
on heroin.

Savitzky-Golay derivative pre-processing operation 
is performed on the spectral data to reduce the influence 
of instrument noise and improve the signal-to-noise ratio. 
Besides, it can also maximize the small differences in 
absorption bands and correct the light scattering. Table 2 
showed the accuracies of calibration models using LDA, 
ELM and ML-ELM with different parameters of Savitzky-
Golay Derivative pre-processing operation. It could be 

Figure 1. Confusion matrix for a multi-class classification task.

Figure 2. Original spectral data of the heroin drug dataset. 

Table 2. Accuracies of calibration models using LDA, ELM and ML-ELM with different parameters of Savitzky-Golay derivative pre-processing operation

Pre-processing 
method

Parameters Accuracy of calibration models

Derivative Point number Polynomial order LDA / % SVM / % ELM / % ML-ELM / %

Savitzky-Golay

first derivative 5 2 81.22 83.94 85.56 97.78

first derivative 7 2 81.22 84.00 85.83 97.89

first derivative 9 2 81.11 83.89 85.56 97.78

first derivative 11 2 80.78 83.61 85.22 97.67

first derivative 13 2 80.78 83.61 85.22 97.67

LDA: linear discriminant analysis; SVM: support vector machine; ELM: extreme learning machine; ML-ELM: multi-layer-extreme learning machine.
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seen from Table 2 that when the parameters were first 
derivative, 7-point number of smoothing points and two 
polynomial order, the accuracies of the three models were 
the highest. As the result, the above parameters were chosen 
in the following part. The results of Figure 3 showed that 
in the spectral data after pre-processing, the noise were 
reduced and the small differences in absorption bands were 
maximized after the pre-processing operation. 

Then, successive projections algorithm (SPA)16 was 
used to optimize the wavelength. The optimization 
wavelength after using SPA were 1157, 1190, 1200, 1357, 
1391, 1425 and 1570 nm. Table 3 showed the accuracies 
of calibration models using LDA, ELM and ML-ELM 
with the selected wavelength using SPA. It can be seen 
from Table 3 that the accuracies of LDA, SVM, ELM and 
ML‑ELM algorithms were higher comparing with Table 2. 
As the result, the above 7 selected wavelength were chosen 
in the following experiments.

LDA,17 SVM,18 ELM,19,20 and ML-ELM algorithms 
were used to identify the spectral data of different sources 
of heroin drugs. The details of LDA, SVM and ELM 
algorithms dealing with NIR spectral data were shown in 
literature.17-20 To achieve the fair comparison and avoid the 
randomness in test results, all the calibration, validation 
samples were chosen randomly and the three algorithms ran 
on the same calibration and test splits for each calculation. 
For ML-ELM, the number of layers was an important 

parameter. There exists a specific value of the number of 
layers, which can make the ML-ELM achieve the highest 
overall accuracy. If the number of layers was bigger or 
smaller than the specific value, the ML-ELM algorithm 
will not achieve the best classification performance and the 
overall accuracy of the ML-ELM will not be the highest. 
Therefore, the first work was to define the number of hidden 
layers of the ML-ELM algorithm in order to achieve the 
better performance with less parameters. Here, sigmoid 
was set as the activation function and the number of hidden 
nodes was set as 10 and 500. It can be seen from Figure 4 
that the overall accuracy of the dataset increased firstly and 
then decreased as the number of hidden layers increases. 
The accuracy was the highest when the number was 3. 
Three hidden layers of the ML-ELM algorithm will be 
chosen in the following experiment.

Accuracy, precision, sensitivity and F-score were used 
to evaluate the performances of the calibration models, 
validation results and testing results of each algorithm. 
Meanwhile, a ten-fold cross validation was used for each 
experiment in order to avoid over-fitting and reflect the 
performance of the different predictors faithfully. The 
different main factors (1-10) of LDA algorithm were chosen 
and the final value is 8, as the calibration, validation and 
prediction accuracy were the highest when the main factor 
of LDA algorithm was 8. For SVM algorithm, the kernel 

Figure 3. Pre-processing results of the original spectral data of heroin 
drugs. 

Table 3. Accuracies of calibration models using LDA, ELM and ML-ELM with the selected wavelength using SPA

Pre-processing method
Selected wavelength 

using SPA / nm

Accuracy of calibration models

LDA / % SVM / % ELM / % ML-ELM / %

Savitzky-Golay 
1157, 1190, 1200, 1357, 

1391,1425 and 1570
81.77 84.22 87.13 98.01

SPA: successive projections algorithm; LDA: linear discriminant analysis; SVM: support vector machine; ELM: extreme learning machine; ML-ELM: 
multi-layer-extreme learning machine.

Figure 4. Overall accuracy of ML-ELM algorithm dealing with heroin 
drug spectral data. 
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function of SVM algorithm was radial basis function 
(RBF). The punishment coefficient was chosen as 1 by 
using a particle swarm optimization algorithm in order 
to achieve the best classification performance. For ELM 
algorithm, the number of hidden neurons was set randomly 
by the computer each time, and the transfer function was 
sigmoidal function.

For the sake of comparison, the performance of LDA, 
SVM, ELM and ML-ELM algorithms are shown in Tables 4 
and 5 in the form of a confusion matrix. As shown in 
the Tables 4 and 5, the accuracy, precision, sensitivity, 
specificity and F-score of ML-ELM algorithm are the 
highest compared with LDA, SVM, ELM algorithms. The 
higher sensitivity means the higher recognition capability 

Table 4. Performance of various heroin drug spectral calibration models on different measures

Algorithm Source
Samples Cal

AC / %
Val

AC / %
Cal Val Pc / % Sn / % Sp / % F-score Pc / % Sn / % Sp / % F-score

LDA

case 1 50 × 10 23 × 10 81.17 83.12 88.11 0.8210 

81.77 

84.88 80.727 87.91 0.8275

81.92
case 2 45 × 10 20 × 10 80.55 82.49 87.09 0.8099 81.05 81.92 86.69 0.8148

case 3 40 × 10 20 × 10 80.41 79.36 90.47 0.7938 82.13 82.91 88.27 0.8252

case 4 45 × 10 20 × 10 76.92 78.32 88.12 0.7658 78.11 81.35 85.12 0.7970

SVM

case 1 50 × 10 23 × 10 84.33 85.51 90.07 0.8492

84.22 

87.90 85.88 88.17 0.8688

81.44
case 2 45 × 10 20 × 10 81.91 84.92 91.42 0.8339 80.08 91.62 89.39 0.8546

case 3 40 × 10 20 × 10 83.62 80.55 92.53 0.8206 80.12 83.84 93.33 0.8194

case 4 45 × 10 20 × 10 84.99 82.71 90.77 0.8383 83.53 84.92 89.77 0.8422

ELM

case 1 50 × 10 23 × 10 86.73 87.22 93.36 0.8697

87.13 

87.82 86.42 94.66 0.8711

86.14
case 2 45 × 10 20 × 10 83.11 86.08 93.74 0.8458 85.13 85.53 93.72 0.8533

case 3 40 × 10 20 × 10 83.70 83.63 95.89 0.8366 85.08 84.67 95.27 0.8487

case 4 45 × 10 20 × 10 87.53 84.17 94.11 0.8582 83.57 85.31 93.11 0.8443

ML-ELM

case 1 50 × 10 23 × 10 98.70 97.93 99.72 0.9831

98.01 

92.27 93.47 98.15 0.9287

92.77
case 2 45 × 10 20 × 10 96.41 98.77 97.58 0.9758 90.09 92.42 97.98 0.9124

case 3 40 × 10 20 × 10 97.45 97.62 97.53 0.9753 92.35 91.68 96.13 0.9201

case 4 45 × 10 20 × 10 98.64 97.11 98.13 0.9787 94.07 91.32 97.07 0.9267

LDA: linear discriminant analysis; SVM: support vector machine; ELM: extreme learning machine; ML-ELM: multi-layer-extreme learning machine. 
TP: true positive; FP: false positive; FN: false negative;  TN: true negative; Pc: precision;  Sn: sensitivity; Sp: specificity; AC: accuracy; Cal: calibration; 
Val: validation.

Table 5. Testing results of the heroin drug spectral data using different algorithms

Algorithm Source
Testing 
samples

TP FP FN TN Pc / % Sn / % Sp / % F-score AC / %
Computation 

time / s

LDA

case 1 20 15 5 4 51 75.00 78.95 91.07 0.7692

72.00 1.928
case 2 20 14 6 6 49 70.00 70.00 89.09 0.7000

case 3 15 10 5 5 55 66.67 66.67 91.67 0.6667

case 4 20 15 5 5 50 75.00 75.00 90.91 0.7500

SVM

case 1 20 15 5 4 51 75.00 78.95 91.07 0.7692

77.33 1.022
case 2 20 17 3 4 51 85.00 80.95 94.44 0.8293

case 3 15 11 4 4 56 73.33 73.33 93.33 0.7333

case 4 20 15 5 5 50 75.00 75.00 90.91 0.7500

ELM

case 1 20 18 2 2 53 90.00 90.00 96.36 0.9000

88.00 0.447
case 2 20 17 3 4 51 85.00 80.95 94.44 0.8293

case 3 15 14 1 1 59 93.33 93.33 98.33 0.9333

case 4 20 17 3 5 50 85.00 77.27 94.34 0.8095

ML-ELM

case 1 20 20 0 1 54 100.00 95.24 100.00 0.9756

97.33 0.538
case 2 20 19 1 1 54 95.00 95.00 98.18 0.9500

case 3 15 14 1 1 59 93.33 93.33 98.33 0.9333

case 4 20 20 0 2 53 100.00 90.91 100.00 0.9523

LDA: linear discriminant analysis; SVM: support vector machine; ELM: extreme learning machine; ML-ELM: multi-layer-extreme learning machine. TP: 
true positive; FP: false positive; FN: false negative;  TN: true negative; Pc: precision;  Sn: sensitivity; Sp: specificity; AC: accuracy.
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for a classification model. The higher F-score means the 
lower misdiagnosis rate for a classification model. Here, 
the sensitivity and F-score of the ML-ELM algorithms are 
higher than those of LDA, SVM and ELM algorithms. It 
means the recognition capability of ML-ELM algorithm is 
higher and the misdiagnosis rate is lower. The above results 
show the ML-ELM algorithm has the best performance 
to build the different calibration models for the different 
sources of heroin drugs with NIR spectral data. In Table 5, 
the prediction accuracies of LDA, SVM, ELM and 
ML‑ELM for 4 cases are 72.00, 77.33, 88.00 and 97.33% 
respectively. Therefore, the average prediction accuracy of 
ML-ELM algorithm is 25.33, 20.00, 17.33% higher than 
that of LDA, SVM and ELM, respectively. Besides, the 
calibration models built by the ML-ELM algorithm also 
has the better prediction performance than the other LDA, 
SVM and ELM algorithms. The reason is that ML‑ELM 
classification algorithm achieved the best number of 
hidden nodes by means of using the unsupervised 
learning. It can extract more abstract features of the NIR 
spectral data comparing with the other LDA, SVM and 
ELM algorithms.

Besides, it can be seen in Table 5 that the computing 
times of LDA, SVM, ELM, and ML-ELM algorithms were 
1.928, 1.022, 0.447 and 0.538, respectively. Although the 
computational time of ML-ELM algorithm was not the 
fastest, considering the classification accuracy, ML-ELM 
algorithm was also the best option to classify the NIR 
spectral data of the heroin drugs from different sources.

Conclusions

A hand-held NIR spectrometer was used to identify 
the different sources of heroin drugs based on a ML-
ELM algorithm. The experimental results showed that the 
accuracy, sensitivity and F-score of ML-ELM algorithm 
were all higher than those of LDA, SVM and ELM 
algorithms. It indicated that the performances of ML-
ELM algorithm were better than LDA, SVM and ELM 
algorithms in recognition capability, misdiagnosis rate 
and classification capability. The combination of NIR 
technology and ML-ELM is a useful tool to recognize the 
source of heroin drugs. However, the source can not be 
discriminated if the purity and the substances are close 
for different case sources of heroin drugs. Thus, it will be 
a research focus in the future work. 
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