
Article
J. Braz. Chem. Soc., Vol. 24, No. 12, 2028-2032, 2013.
Printed in Brazil - ©2013 Sociedade Brasileira de Química
0103 - 5053 $6.00+0.00A
http://dx.doi.org/10.5935/0103-5053.20130254

*e-mail: jaagredab@unal.edu.co

Bursting in the Belousov-Zhabotinsky Reaction Added with
Phenol in a Batch Reactor

Ariel Cadena,a Daniel Barragánb and Jesús Ágreda*,a

aDepartamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia,
Cra 30 No. 45-03, Bogotá, Colombia

bEscuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia,
Calle 59A No. 63-20, Oficina 16-413, Medellín, Colombia

A reação de Belousov-Jabotinsky clássica foi modificada pela adição de fenol como um segundo
substrato orgânico que compete cineticamente com o ácido malônico na redução de Ce4+ para Ce3+ e
na remoção de bromo molecular da reação. A reação oscilante de dois substratos exibiu oscilações
abruptas e período oscilatório de longa duração. A análise de dados experimentais mostra um aumento
do fenômeno abrupto, com pico maior e estado quiescente mais longo, como função do aumento
da concentração de fenol inicial. Hipotetizou-se que o fenômeno de oscilação abrupta pode ser
explicado pela introdução de um ciclo redox entre as espécies fenólicas reduzidas (hidroxifenois)
e as oxidadas onas (quinonas). A hipótese foi testada experimentalmente e numericamente e dos
resultados concluiu-se que o fenômeno oscilatório abrupto exibido pela reação oscilante de dois
substratos é impulsionado principalmente por um ciclo redox p-di-hidroxi-benzeno/p-benzoquinona.

The classic Belousov-Zhabotinsky reaction was modified by adding phenol as a second organic
substrate that kinetically competes with the malonic acid in the reduction of Ce4+ to Ce3+ and in the
removal of molecular bromine of the reaction mixture. The oscillating reaction of two substrates
exhibited burst firing and an oscillatory period of long duration. Analysis of experimental data
shows an increasing of the bursting phenomenon, with a greater spiking in the burst firing and
with a longer quiescent state, as a function of the initial phenol concentration increase. It was
hypothesized that the bursting phenomenon can be explained introducing a redox cycle between
the reduced phenolic species (hydroxyphenols) and the oxidized ones (quinones). The hypothesis
was experimentally and numerically tested and from the results it is possible to conclude that the
bursting phenomenon exhibited by the oscillating reaction of two substrates is mainly driven by
a p-di-hydroxy-benzene/p-benzoquinone redox cycle.

Keywords: reaction kinetics, mechanisms, phenolic compounds, BZ reaction, bursting
phenomenon

Introduction

The Belousov-Zhabotinsky (BZ) and uncatalyzed
bromate oscillator (UBO) reactions have been studied in a
wide of experimental conditions in both batch and continuous
stirred tank (CSTR) reactors.1-5 Complex dynamic behaviors
in oscillating reactions have been found in non-stirred batch
reactors and in CSTR and electrochemical setups.6-12 These
amazing reactions have become relevant in science, and
particularly in biochemistry, due to their similarity with
the dynamic activity of many cellular control processes.13

On the other hand, travelling waves, Turing patterns, burst
firing, sequential oscillations and chaotic phenomena are
some of the more common spatio-temporal dynamics
studied in oscillating reactions.14-18 Looking for a better
understanding of the reaction mechanism and dynamics
of oscillating reactions, researchers have employed several
substrates, individually or mixed, in the study of BZ reaction.
The induction period, frequency, amplitude, shape and
periodicity of oscillations change by the presence of a new
organic or inorganic substance in the reaction mixture of
BZ reaction.19-29

In the present work, the oscillatory dynamics of the
classic BZ reaction30,31 (a mixture of malonic acid, Ce4+ and

Cadena et al. 2029Vol. 24, No. 12, 2013

bromated in sulfuric acidic) were studied in a batch reactor
in the presence of phenol as a second organic substrate
that kinetically competes with the malonic acid in the
reduction of Ce4+ to Ce3+ and in the removal of molecular
bromine. With the two substrates (malonic acid-phenol),
BZ reaction shows an astonishing variation of its dynamics
as a function of the initial concentration of phenol,
exhibiting enhanced periods of oscillations and bursting
phenomenon. At first glance, the malonic acid-phenol BZ
oscillator was thought as a system of coupled oscillators
because the bromate-phenol-sulfuric acidic is a well-known
oscillating chemical reaction (UBO). In order to test this
idea of coupled oscillators, a set of numerical simulations
by using an extended reaction mechanism based on the
Marburg-Budapest-Missoula (MBM)32 and Gyorgyi, Varga,
Körös, Field and Ruoff (GVKFR)33 reaction schemes was
carried out. The MBM mechanism for the cerium-catalyzed
BZ reaction is a complete reaction scheme that includes both
negative feedback loops and radical-radical recombination
reactions of organic species.32 Whereas the GVKFR model
is a mechanism to explain the oscillations observed in the
p-hydroxyphenol-bromate-acidic media reaction,33 the
closer and complete mechanism available in the literature
to UBO that uses phenol as organic substrate. As a result
of these numerical simulations, some interesting behaviors
were obtained, but there was nothing to indicate the
possibility of burst firing.

In order to address the experimental evidence of that
burst firing obtained in this work for the malonic acid-phenol
BZ reaction, a second hypothesis is that the subproducts of
phenol oxidation (hydroxyphenols-quinones) are involved
in a novel redox cycle coupled to the main catalytic cycle of
cerium ions. A series of experiments using 1,4-benzoquinone,
2-hydroxyphenol and 4-hydroxyphenol instead of phenol
as a second organic substrate were carried out to test this
hypothesis. The experimental results obtained by adding
benzoquinone and hydroxyphenols to the BZ reaction
suggest that the hypothesized hydroxyphenol-quinone
redox cycle can be accepted as plausible. This hypothesis
was materialized as a set of reaction steps, and they were
incorporated into an extended MBM-GVKFR mechanism.
The numerical simulation results of this new model
(MBM-GVKFR-hydroxyphenols-quinones redox cycle)
support the idea of the hydroxyphenols-quinones redox
cycle.

Experimental

Sulfur ic acid (Merck 95-98% extra pure) ,
KBrO3 (Carlo Erba Milano ACS Titolo min 99.8%),
Ce(SO4)2

•4H2O (Merck zur Analyse > 98%), malonic

acid (Merck zur Synthese), phenol (JT Baker Chemicals
B. V. “Baker Grade”), 2-hydroxyphenol (Fisher Scientific
Company), 4-hydroxyphenol (Merck zur Synthese) and
p-benzoquinone (Hopkin and Williams, LTD.) were used
as received. All solutions were prepared in deionized water.
The initial concentration of phenol used in the experiments
were: a. 0.00, b. 0.05347, c. 0.1337, d. 0.2673, e. 0.5347,
f. 1.069, g. 1.337, h. 1.604, i. 1.871, j. 2.272, k. 2.673,
l. 3.074, m. 3.476, n. 3.877, o. 4.278, p. 4.679, q. 5.347, and
r. 10.69 mmol L-1. The initial concentrations of classic BZ
reagents were: 28.90 mmol L-1 KBrO3, 26.06 mmol L-1
malonic acid, 0.5606 mmol L-1 Ce(SO4)2 and 1.00 mol L-1
H2SO4. A thermostated (25.0 ± 0.1 oC) 100 mL double jacket
cylindrical cell, with magnetic stirring at 500 rpm, was
used to obtain the potentiometric measurements, using a
platinum electrode Mettler-Toledo Pt4805-60-88TE-S7/120
combination ORP/Redox with Ag/AgCl reference (movable
PTFE reference junction). All the experiments were made
at least by duplicate.

Results and Discussion

The malonic acid-phenol BZ reaction exhibits a striking
alteration of its temporal oscillatory dynamics as a function
of the initial concentration of phenol. An enlargement of the
oscillatory regime and the onset of bursting phenomenon
are the more important observed effects by the addition of
phenol to BZ reaction. The length of the induction time,
the amplitude of sustained oscillations and the increasing
of the total oscillatory reaction time are closely correlated
with the initial concentration of phenol, and the burst firing
appears when the malonic acid-phenol concentration ratio
ranges between 25 and 6. Figure 1 shows the temporal
redox potentiometric measurements of BZ reaction
in the presence of an initial concentration of phenol
(curves a to r). The BZ reaction (Figure 1 curve a) has an
oscillatory reaction time of around 2 h, while at the same
initial concentrations but in the presence of 3.074 mmol L-1
phenol (Figure 1 curve l), the oscillatory reaction time
extends to almost 30 h.

Figure 1 also shows other highlighting features of
this BZ oscillating reaction of two substrates. When the
initial concentration of phenol is lower than 2.0 mmol L-1
(Figure 1 curves from a to i), the reaction mixture exhibits
sustained oscillatory phase, and the period and the
amplitude of the oscillations remain constant before a
sudden ending. If the initial concentration of phenol, ranges
between 2.0 and 10 mmol L-1 (Figure 1 curves j to q), the
BZ reaction mixture shows a transition from sustained to
damped oscillations during its temporal evolution. But the
most astonishing observed effect of phenol on the dynamics

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.2030

of BZ reaction was the bursting phenomenon. If the
initial concentration of phenol ranges between 1.069 and
3.476 mmol L-1 (Figure 1 curves f to m), the reaction
mixture exhibits a complex temporal transition from burst
firing and sustained oscillations (ended suddenly), to still
burst firing but damped oscillations. This means that the
malonic acid-phenol BZ reaction in a batch reactor evolves
in time through different attractors: period-n bursting
attractor, limit cycle and stable focus.

In order to explain the experimental results showed in
Figure 1, a new redox cycle is propose: the Ce4+ oxidation
of phenol to p-quinones34-37 followed by the reduction of
p-quinones to phenolic compounds mediated by transient
reactive organic free radicals in solution,38 like carboxyl
(COOH•) or tartronyl (TA•).31,32,39 If this aromatic redox
cycle is plausible, then the Ce4+/Ce3+ catalytic cycle of BZ
reaction is involved in a kinetic competition, the reduction
of BrO2

• by Ce3+ or phenol. In a typical antioxidation action,
common in phenols, the oxidation of Ce3+ is diminished, and
because of this, the consumption of malonic acid is slower,
whereas the phenol consumption is higher. These facts
together increase the oscillation time of the BZ reaction
of two substrates. Now, at low concentration of phenolic
compounds, the Ce4+ concentration rises, and the Ce4+/Ce3+
catalytic cycle drives the BZ reaction while quinone type
compounds are reduced to phenolic compounds by some
reactive free radicals, like the carboxyl (COOH•) or the
tartronyl (TA•) radicals. When the concentration of phenolic
compounds increases, the aromatic cycle (phenol-quinone)
restarts and drives the oscillating reaction. In this way,
it is proposed that the two catalytic cycles alternate to
drive the reaction until the oscillatory period ends. It is
important to take into account that the polymerization of
the quinones takes place at the reaction mixture conditions,

as it is well-known from the UBO chemical oscillator.33,34
The polymers of quinone are almost insoluble and their
reduction by free radicals is not a viable process and we
suppose that they are involved in the burst firing by way of
a non-synchronized action between catalytic processes. It is
also important to remark that at high enough concentration
of phenol, the Ce4+ oxidation of phenolic compounds is a
kinetically preferred process, instead of the Ce4+ oxidation
of aliphatic species of the BZ reaction.40

All the above ideas have the aim to help to understand,
from a mechanistic point of view, the complex behavior
exhibited by the malonic acid-phenol BZ oscillating
reaction, and those ideas are summarized in the next
way: at the beginning of reaction, the oxidation of phenol
by Ce4+ is the kinetically favored process with a slow
consumption of bromate and malonic acid; in this way,
whereas the concentration of phenolic compounds is over
a critical value, the aromatic catalytic cycle drives BZ
oscillations; and when the phenol concentration is high
enough, insoluble polymers of quinone are produced and
an irregular oscillatory dynamic appears, the bursting
phenomenon. At long times, the phenolic compounds are
decreased in the reaction mixture, and a sequential train
of sustained oscillations, driven by the consumption of
malonic acid by the Ce4+/Ce3+ catalytic cycle, leads the
oscillations to its end.

In order to get some experimental clues about the
participation of phenol in the malonic acid BZ reaction,
the classic experiment was tested in the presence of
some key aromatic compounds, 2-hydroxyphenol,
4-hydroxyphenol and p-benzoquinone. The results are in
Figure 2, in which curves c and e show that the BZ reaction
of two substrates (malonic acid with p-benzoquinone and
malonic acid with 4-hydroxyphenol, respectively) exhibits
a dynamic behavior of a similar type that the malonic acid
with phenol, curve b. On the contrary, the 2-hydroxyphenol,
curve d, does not modify, to an appreciable extent, the
malonic acid BZ reaction, curve a. The main result in
Figure 2 is the evidence suggesting that the proposal, about
the oxidation-reduction cycle, among phenol and quinone
compounds, is capable to explain the experimental results.
Also, it says that the main compound in the phenol-quinone
process is a para compound and not an orto compound, as
could be inferred from UBO oscillators.33

Numerical simulations

Numerical simulations were used as a tool to treat
the fully nonlinear dynamics of the complex chemical
BZ reaction and to test the validity of the previously
presented hypothesis. The following set of reactions 1 to 9

Figure 1. Redox potentiometric signal against time for the BZ oscillating
reaction of two substrates. Initial concentrations for BZ reagents and
initial concentration of phenol (curves a to r) are given in the experimental
section.

Cadena et al. 2031Vol. 24, No. 12, 2013

was added to the complete set of reactions of MBM plus
the GVKFR mechanisms (the complete set of reaction
rates, kinetic constants and the fortran source code used
for these simulations are presented in the Supplementary
Information (SI) section).

Phenol oxidation reactions:

 (1)

 (2)

 (3)

 (4)

Quinone reduction reactions:

 (5)

 (6)

 (7)

 (8)

Quinone consumption:

 (9)

In these reactions, TA is for tartronic acid and MOA is
for meso-oxalic acid.30-32 The rate constants were estimated
based on similar reactions of the MBM and GVKFR
mechanisms. Reactions 1 to 4 describe a sequential electron

transfer for the Ce4+ and the resulting oxidation of phenol
to the corresponding quinone. Reactions 5 to 8 indicate
a plausible sequential reduction of quinone, by reactive
organic free radicals, to phenolic like compounds. The
selection of free radical species involved in reactions 5 to 8
was based on redox potentials. The carboxyl radical
(COOH•) has a standard redox potential of −1.82 V vs.
NHE.38 On the other hand, the tartronyl radical (TA•) was
chosen as a representative free radical that has been found
in the BZ reaction (like the malonyl and bromomalonyl
free radicals).30-32 Finally, the reaction 9 describes the
irreversible degradation or polymerization of quinones.
Figure 3 shows the results obtained for simulations.

The numerical simulations have some of the experimental
observed characteristics of the malonic acid-phenol BZ
oscillating reaction, like an induction time enlargement and
an increasing oscillatory reaction time as the initial phenol
concentration increases. Also, the burst firing appears, and
it is the most interesting result (inset in Figure 3). This
qualitative agreement, between the experiments and the
numerical simulations, is in favor of the hypothesized
phenol-quinone redox cycle. However, it is necessary to
confirm these ideas, in future works, by determining the
experimental rate constant values, and by including, or
deleting, some reactions. Also, a chromatographic and
electron paramagnetic resonance (EPR) spectroscopy
studies would be particularly useful to find the specific
intermediaries.

Conclusions

The results presented in this work show the dynamic
behavior of the malonic acid-phenol BZ reaction. It is
interesting the appearance of bursting phenomenon in a

Figure 2. Redox potentiometric signal against time for the BZ oscillating
reaction of two substrates. a: malonic acid alone, b: malonic acid with
phenol, c: malonic acid with 1,4-benzoquinone, d: malonic acid with
2-hydroxyphenol, and e: malonic acid with 4-hydroxyphenol. The
phenolic species were added in concentration of 1.3 mmol L-1. The other
concentrations were the same as in Figure 1.

Figure 3. Numerical simulations of the two substrates, malonic acid and
phenol, BZ reaction. Curves a to r are for the same initial concentrations
used for Figure 1.

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.2032

closed system. The burst firing origin was explained as a
complex process that involves a kinetic competition between
an aromatic redox cycle of phenolic compounds and the
Ce4+/Ce3+ catalytic cycle of the BZ classic oscillator. In this
way, the presence of phenol in the malonic acid BZ reaction
plays a role as an antioxidant agent preventing the oxidation
of the malonic acid, and its derivatives, by Ce4+ ions.

Supplementary Information

Supplementary data are available free of charge at
http://jbcs.sbq.org.br as PDF file.

Acknowledgment

This project has been supported by the DIB of the
Universidad Nacional de Colombia under the code 803638.

Reference

 1. Sagués, F.; Epstein, I. R.; Dalton Trans. 2003, 7, 1201.

 2. Básángi, T.; Leda, M. Jr.; Toiya, M.; Zhabotinsky, A. M.;

Epstein, I. R.; J. Phys. Chem. A 2009, 113, 5644.

 3. Gentili, P. L.; Horvath, V.; Vanag, V. K.; Epstein, I. R.; Int. J.

Unconv. Comput. 2012, 8, 177.

 4. Adamciková, L.; Misicák, D.; Sevcik, P.; React. Kinet. Catal.

Lett. 2005, 85, 215.

 5. Szabo, E.; Adamciková, L.; Sevcik, P.; J. Phys. Chem. A 2011,

115, 6518.

 6. Ruoff, P.; J. Phys. Chem. 1992, 96, 9104.

 7. Grancicova, O.; Olexova, A.; Z. Phys. Chem. 2009, 223, 1451.

 8. Rachwalska, M.; Kawczynski, A. L.; J. Phys. Chem. A 2001,

105, 7885.

 9. Badola, P.; Rajani, P.; Ravi-Kumar, V; Kulkarni, B. D.; J. Phys.

Chem. 1991, 9, 2939.

 10. Bronnikova, T. V.; Schaffer, W. M.; Olsen, L. F.; J. Phys.

Chem. B 2001, 105, 310.

 11. Kiss, I. Z.; Lv, Q.; Organ, L.; Hudson, J. L.; Phys. Chem. Chem.

Phys. 2006, 8, 2707.

 12. Simo, H.; Woafo, P.; Mech. Res. Comm. 2011, 38, 537.

 13. Izhikevich, E. M.; Int. J. Bifurcation Chaos 2000, 10, 1171.

 14. Lengyel, I.; Epstein, I. R.; Acc. Chem. Res. 1993, 26, 235.

 15. Epstein, I. R.; Showalter, K.; J. Phys. Chem. 1996, 100, 13132.

 16. Epstein, I. R.; Pojman, J. A.; An Introduction to Nonlinear

Chemical Dynamics; Oxford University Press: New York, USA,

1998.

 17. Rastogi, R. P.; Introduction to Non-Equilibrium Physical

Chemistry; Elsevier: Amsterdam, The Netherlands, 2008.

 18. Pojman, J. A.; Tran-Cong-Miyata, Q.; Nonlinear Dynamics with

Polymers; Wiley-VCH Velarg: Weinheim, Germany, 2010.

 19. Heilweil, E. J.; Henchman, M. J.; Epstein, I. R.; J. Am. Chem.

Soc. 1979, 101, 3698.

 20. Treindl, L.; Ruoff, P.; Kvernberg, P. O.; J. Phys. Chem. A 1997,

101, 4606.

 21. Rastogi, R. P.; Chand, P.; Pandey, M. K.; Das, M.; J. Phys.

Chem. A 2005, 109, 4562.

 22. Shah, S.; Wang, J.; J. Phys. Chem. C 2007, 111, 10639.

 23. Zeyer, K.-P.; Schneider, F. W.; J. Phys. Chem. A 1998, 102,

9702.

 24. Chen, Y.; Wang, J.; J. Phys. Chem. A 2005, 109, 3950.

 25. Amemiya, T.; Wang, J.; J. Phys. Chem. A 2010, 114, 13347.

 26. Schwarz, H. A.; Dodson, R. W.; J. Phys. Chem. 1989, 93, 409.

 27. Li, N.; Wang, J.; J. Phys. Chem. A 2008, 112, 6281.

 28. Biosa, G.; Ristori, S.; Spalla, O.; Rustici, M.; Hauser, M. J. B.;

J. Phys. Chem. A. 2011, 115, 3227.

 29. Asakura, K.; Konishi, R.; Nakatani, T.; Nakano, T.; Kamata, M.;

J. Phys. Chem. B 2011, 115, 3959.

 30. Gyorgyi, L.; Turányi. T.; Field, R. J.; J. Phys. Chem. 1990, 94,

7162.

 31. Gyorgyi, L.; Turányi, T.; Field, R. J.; J. Phys. Chem. 1993, 97,

1931.

 32. Hegedeus, L.; Wittman, M.; Noszticzius, Z.; Yan, S.;

Sirimungkala, A.; Försterling, H. D.; Field, R. J.; Faraday

Discuss. 2002, 120, 21.

 33. Györgyi, L.; Varga, M.; Körös, E.; Field, R. J.; Ruoff, P.; J.

Phys. Chem. 1989, 93, 2836.

 34. Spence, W. R.; Duke, F. R.; Anal. Chem. 1954, 26, 919.

 35. Dixon, W. T.; Murphy, D.; J. Chem. Soc., Perkin Trans. 1975,

2, 850.

 36. Domagała, S.; Steglińska, V.; Dziegieć, J.; Monatsh. Chem.

Chem. Mon. 1998, 129, 761.

 37. Simon, A.; Ballai, C.; Lente, G.; Fábián, I.; New. J. Chem. 2011,

35, 235.

 38. Wardman, P.; Reduction Potentials of One-Electron Couples

Involving Free Radicals in Aqueous Solution; American

Chemical Society and the American Institute of Physics for the

National Institute of Standards and Technology: USA, 1989,

p. 1637.

 39. Blagojevic, S. M.; Anic, S. R.; Cupic, Z. D.; Russ. J. Phys.

Chem. A 2011, 85, 2274.

 40. Singh, M. P.; Singh, H. S.; Verma, M.; J. Phys. Chem. 1980,

84, 256.

Submitted: July 27, 2013

Published online: October 16, 2013

Supplementary Information SI
J. Braz. Chem. Soc., Vol. 24, No. 12, S1-S71, 2013.

Printed in Brazil - ©2013 Sociedade Brasileira de Química
0103 - 5053 $6.00+0.00

*e-mail: jaagredab@unal.edu.co

Bursting in the Belousov-Zhabotinsky Reaction Added with
Phenol in a Batch Reactor

Ariel Cadena,a Daniel Barragánb and Jesús Ágreda*,a

aDepartamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia,
Cra 30 No. 45-03, Bogotá, Colombia

bEscuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia,
Calle 59A No. 63-20, Oficina 16-413, Medellín, Colombia

Table S1. Species nomenclature and initial concentrations used for the simulation of the BZ reaction added with phenol

Specie representation
Initial concentration used for

simulations / (mol L-1)
Specie name Mechanism

c(1) 0 Br – MBM and GVKFR

c(2) 0 HOBr MBM and GVKFR

c(3) 1.29 H+ MBM and GVKFR

c(4) 0 Br2 MBM and GVKFR

c(5) 0 HBrO2 MBM and GVKFR

c(6) 2.8896 × 10-2 BrO3
– MBM and GVKFR

c(7) 0 H2BrO2
+ MBM and GVKFR

c(8) 0 Br2O4 MBM and GVKFR

c(9) 0 BrO2* MBM and GVKFR

c(10) 0 Ce+3 MBM

c(11) 5.606 × 10-4 Ce+4 MBM

c(12) 0 O2 MBM

c(13) 0 BrMA b MBM

c(14) 0 BrMA* b MBM

c(15) 0 BrEETRAb MBM

c(16) 0 CO2 MBM

c(17) 0 BrMA(enol)b MBM

c(18) 0 Br2MA b MBM

c(19) 0 BrMABrO2
 b MBM

c(20) 0 OAb MBM

c(21) 0 BrTAb MBM

c(22) 0 MOAb MBM

c(23) 0 COOH* b MBM

c(24) 0 MA* b MBM

c(25) 2.6056 × 10-2 MAb MBM

c(26) 0 ETAb MBM

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S2

Specie representation
Initial concentration used for

simulations / (mol L-1)
Specie name Mechanism

c(27) 0 MA(enol)b MBM

c(28) 0 MABrO2
b MBM

c(29) 0 TAb MBM

c(30) 0 EETAb MBM

c(31) 0 TA* b MBM

c(32) 0 EEHTRAb MBM

c(33) 0 TA(enol)b MBM

c(34) 0 TABrO2
b MBM

c(35) variablea Fenol GVKFR

c(36) 0 Fenol* GVKFR

c(37) 0 Rox1c GVKFR

c(38) 0 RBr c GVKFR

c(39) 0 RBr2
c GVKFR

c(40) 0 RBr* c GVKFR

c(41) 0 R(BrOH)c GVKFR

c(42) 0 Rox2c GVKFR

c(43) 0 OQNc GVKFR

c(44) 0 RBr2*
 c GVKFR

c(45) 0 RBr(BrOH)c GVKFR

c(46) 0 Rox3c GVKFR

c(47) 0 BrOQNc GVKFR

c(48) 0 Rox4c GVKFR

c(49) 0 p-hidroxyphenol proposed in this work

c(50) 0 p-hidroxyphenol radical proposed in this work

c(51) 0 p-quinone proposed in this work

aEveryone of the 18 experimental concentrations of phenol was used here. bThe nomenclature use in references 32 of the paper was used. cThe nomenclature
use in references 33 of the paper was used.

Table S1. continuation

Cadena et al. S3Vol. 24, No. 12, 2013

Table S2. The complete set of reaction rates used for the simulation of the bursting phenomena in the BZ reaction added with phenol. The numerical values
are the respective kinetic constants. The negative sign precedes the reverse reaction when the reverse kinetic constant is different to zero

Reaction Reaction rate Mechanism

V(1) 8 × 109 c(1) c(2) c(3) - 110 c(4) MBM and GVKFR

V(2) 2.9 × 106 c(1) c(5) c(3) - 2 × 10-5 c(2) c(2) MBM and GVKFR

V(3) 0.6 c(1) c(6) c(3) c(3) - 3.2 c(2) c(5) MBM and GVKFR

V(4) 2 × 106 c(5) c(3) - 1.0 × 108 c(7) MBM and GVKFR

V(5) 1.7 × 105 c(5) c(7) MBM and GVKFR

V(6) 48 c(5) c(6) c(3) - 3.2 × 103 c(8) MBM and GVKFR

V(7) 7.5 × 104 c(8) - 1.4 × 109 c(9) c(9) MBM

V(8) 6 × 104 c(10) c(9) c(3) - 1.3 × 104 c(11) c(5) MBM

V(9) 6 × 10-10 c(6) c(6) c(3) c(3) MBM

V(10) 0.06 c(9) MBM

V(11) 0.1 c(13) c(11) - 400 c(14) c(10) c(3) MBM

V(12) 1 × 109 c(14) c(14) MBM

V(13) 1.2 × 10-2 c(13) - 800 c(17) MBM

V(14) 3.5 × 106 c(17) c(4) MBM

V(15) 1.1 × 106 c(17) c(2) MBM

V(16) 2 × 109 c(14) c(9) MBM

V(17) 0.62 c(19) MBM

V(18) 0.46 c(19) MBM

V(19) 1.5 c(21) MBM

V(20) 7 × 103 c(22) c(11) MBM

V(21) 28 c(20) c(11) MBM

V(22) 5 × 109 c(23) c(23) MBM

V(23) 1 × 1097 c(23) c(11) MBM

V(24) 0.6 × 106 c(23) c(13) MBM

V(25) 3 × 109 c(23) c(14) MBM

V(26) 5 × 109 c(23) c(9) MBM

V(27) 0.23 c(25) c(11) - 2.2 × 104 c(24) c(10) c(3) MBM

V(28) 3.2 × 109 c(24) c(24) MBM

V(29) 2.6 × 10-3 c(25) - 180 c(27) MBM

V(30) 2 × 106 c(27) c(4) MBM

V(31) 6.7 × 105 c(27) c(2) MBM

V(32) 5 × 109 c(24) c(9) MBM

V(33) 0.55 c(28) MBM

V(34) 1.0 c(28) MBM

V(35) 2 × 109 c(24) c(14) MBM

V(36) 4 × 109 c(24) c(23) MBM

V(37) 0.66 c(29) c(11) - 1.7 × 104 c(31) c(10) c(3) MBM

V(38) 1 × 109 c(31) c(31) MBM

V(39) 2.3 × 10-5 c(29) - 1.5 c(33) MBM

V(40) 3 × 105 c(33) c(4) MBM

V(41) 2 × 105 c(33) c(2) MBM

V(42) 1 × 109 c(31) c(24) MBM

V(43) 1 × 109 c(31) c(14) MBM

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S4

Table S2. continuation

Reaction Reaction rate Mechanism

V(44) 3 × 109 c(31) c(23) MBM

V(45) 2 × 109 c(31) c(9) MBM

V(46) 0.1 c(34) MBM

V(47) 5 × 10-5 c(29) c(6) MBM

V(48) 160 c(24) c(6) c(3) MBM

V(49) 1 × 10-2 c(35) c(6) c(3) GVKFR

V(50) 1 × 104 c(35) c(9) GVKFR

V(51) 1 × 104 c(36) c(6) c(3) GVKFR

V(52) 6 × 105 c(35) c(4) GVKFR

V(53) 2 × 103 c(38) c(4) GVKFR

V(54) 1 × 104 c(38) c(9) GVKFR

V(55) 1 × 104 c(40) c(6) c(3) GVKFR

V(56) 1 × 104 c(40) c(6) c(3) GVKFR

V(57) 2 × 10-1 c(41) GVKFR

V(58) 1 × 104 c(39) c(9) GVKFR

V(59) 1 × 104 c(44) c(6) c(3) GVKFR

V(60) 2.5 × 103 c(44) c(6) c(3) GVKFR

V(61) 2 × 10-1 c(45) GVKFR

V(62) 1 × 102 c(4) c(37) GVKFR

V(63) 1 × 103 c(11) c(35) - 4 × 104 c(10) c(36) c(3) our proposal

V(64) 1 × 104 c(36) c(11) our proposal

V(65) 1 × 103 c(49) c(11) - 4 × 104 c(50) c(10) c(3) our proposal

V(66) 1 × 104 c(50) c(11) our proposal

V(67) 1 × 106 c(51) c(23) our proposal

V(68) 1 × 108 c(50) c(23) our proposal

V(69) 1 × 106 c(51) c(31) our proposal

V(70) 1 × 107 c(50) c(31) our proposal

V(71) 1 × 100 c(28) MBM, called NR5

V(72) 1 × 105 c(51) our proposal

All variables used in the computer program were double
precision, and the tolerance for the convergence of the
algorithm was set to 1 × 10-10. Others tolerances were tested

but few changes were found and no more detailed studies
were try respect to this parameter.

Cadena et al. S5Vol. 24, No. 12, 2013

Source code

!Revisado septiembre 17 de 2013.
 Program BarridoFenol
 Implicit none
 DOUBLE PRECISION CFenol
 Integer contador
! Do contador=1,18,1
! If (contador .EQ. 1) then; CFenol=0D0; end if
! If (contador .EQ. 2) then; CFenol=5.347D-5; end if
! If (contador .EQ. 3) then; CFenol=1.337D-4; end if
! If (contador .EQ. 4) then; CFenol=2.673D-4; end if
! If (contador .EQ. 5) then; CFenol=5.347D-4; end if
! If (contador .EQ. 6) then; CFenol=1.069D-3; end if
! If (contador .EQ. 7) then; CFenol=1.337D-3; end if
! If (contador .EQ. 8) then; CFenol=1.604D-3; end if
! If (contador .EQ. 9) then; CFenol=1.871D-2; end if
! If (contador .EQ. 10) then; CFenol=2.272D-2; end if
! If (contador .EQ. 11) then; CFenol=2.673D-2; end if
! If (contador .EQ. 12) then; CFenol=3.074D-2; end if
! If (contador .EQ. 13) then; CFenol=3.476D-2; end if
! If (contador .EQ. 14) then; CFenol=3.877D-2; end if
! If (contador .EQ. 15) then; CFenol=4.278D-2; end if
! If (contador .EQ. 16) then; CFenol=4.679D-2; end if
! If (contador .EQ. 17) then; CFenol=5.347D-2; end if
! If (contador .EQ. 18) then; CFenol=1.069D-1; end if
 contador=18 ! The variable “contador” must be change from 1 to 18 to choose one of the experimental
concentrations of phenol used.
 If (contador .EQ. 1) then; CFenol=0D0; end if
 If (contador .EQ. 2) then; CFenol=5.347D-5; end if
 If (contador .EQ. 3) then; CFenol=1.337D-4; end if
 If (contador .EQ. 4) then; CFenol=2.673D-4; end if
 If (contador .EQ. 5) then; CFenol=5.347D-4; end if
 If (contador .EQ. 6) then; CFenol=1.069D-3; end if
 If (contador .EQ. 7) then; CFenol=1.337D-3; end if
 If (contador .EQ. 8) then; CFenol=1.604D-3; end if
 If (contador .EQ. 9) then; CFenol=1.871D-2; end if
 If (contador .EQ. 10) then; CFenol=2.272D-2; end if
 If (contador .EQ. 11) then; CFenol=2.673D-2; end if
 If (contador .EQ. 12) then; CFenol=3.074D-2; end if
 If (contador .EQ. 13) then; CFenol=3.476D-2; end if
 If (contador .EQ. 14) then; CFenol=3.877D-2; end if
 If (contador .EQ. 15) then; CFenol=4.278D-2; end if
 If (contador .EQ. 16) then; CFenol=4.679D-2; end if
 If (contador .EQ. 17) then; CFenol=5.347D-2; end if
 If (contador .EQ. 18) then; CFenol=1.069D-1; end if
 write(*,*) “Contador = “,contador,”CFenol = “, CFenol
! call sleep(1)
 call MBMReGVKFR(contador,CFenol)
! write(*,*) “CFenol = “, CFenol
! call sleep(1)
! End Do
 end Program BarridoFenol

 Subroutine MBMReGVKFR(contador,CFenol)
 Implicit none
 EXTERNAL F, Jac
 DOUBLE PRECISION ATOL, RWORK, RTOL, T, Tmax,TOUT,c, Delta,Hmax,
 +Max_step,CFenol
 Integer neq,ITOL,ITASK,ISTATE,IOPT,LRW,LIW,MF,LPR,IWORK,I,contador
 DIMENSION c(51),RWORK(3100), IWORK(100)
 character*19 grafile
 Character*1 ContadorArchivo1
 Character*2 ContadorArchivo2

c 15 format(A70)

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S6

C write(*,20)
C 20 format(2x,’Archivo para los datos de integracion: ‘)
C read(*,15) grafile

 If (contador .LT. 10) then
 write(ContadorArchivo1,’(I1)’) contador !convierte entero a caracter
! ContadorArchivo=trim(ContadorArchivo) !Quita los espacios en blanco
 grafile=”Ago-26-2013-”//trim(ContadorArchivo1)//”.txt”
 else
 write(ContadorArchivo2,’(I2)’) contador
 grafile=”Ago-26-2013-”//trim(ContadorArchivo2)//”.txt”
 End if

C Aqui se especifica el número de ecuaciones diferenciales ODES
 neq=51
C *** !Estos datos son los que debe leer la subrutina, o se le deben dar

C WRITE(*,*) ‘Entre el tiempo total de la simulación: ‘
C READ(*,*) Tmax
C WRITE(*,*) ‘Entre el intervalo del tiempo: ‘
C READ(*,*) Delta

 Tmax=2D6 !4D4 !4D5 !2D6
 Delta=40D0

C Concentraciones Iniciales de cada especie
C WRITE(*,*) ‘Entre la concentración inicial 1: ‘
C read(*,*) c(1)
C WRITE(*,*) ‘Entre la concentración inicial 2: ‘
C read(*,*) c(2)

 c(1)=0.00000001 ! c(1)= Br-
 c(2)=0.0 ! c(2)= HOBr
 c(3)=1.29 ! c(3)= H+
 c(4)=0.0 ! c(4)= Br2
 c(5)=0.0 ! c(5)= HBrO2
 c(6)=2.8896D-2 ! Concentraci≤n Ariel !MBM articulo concentraci≤n 0.15D0 ! c(6)= BrO3-
 c(7)=0.0 ! c(7)= H2BrO2+
 c(8)=0.0 ! c(8)= Br2O4
 c(9)=0.0 ! c(9)= BrO2*
 c(10)=0.0 ! c(10)= Ce+3
 c(11)=5.606D-4 ! Concentraci≤n Ariel !MBM articulo concentracion 3.56D-4 ! c(11)=
Ce+4
 c(12)=0.0 ! c(12)= O2
 c(13)=0.0 ! c(13)= BrMA
 c(14)=0.0 ! c(14)= BrMA*
 c(15)=0.0 ! c(15)= BrEETRA
 c(16)=0.0 ! c(16)= CO2
 c(17)=0.0 ! c(17)= BrMA(enol)
 c(18)=0.0 ! c(18)= Br2MA
 c(19)=0.0 ! c(19)= BrMABrO2
 c(20)=0.0 ! c(20)= OA
 c(21)=0.0 ! c(21)= BrTA
 c(22)=0.0 ! c(22)= MOA
 c(23)=0.0 ! c(23)= COOH*
 c(24)=0.0 ! c(24)= MA*
 c(25)=2.6056D-2 ! Concentraci≤n Ariel !MBM articulo concentraci≤n 5D-2 ! c(25)=
MA
 c(26)=0.0 ! c(26)= ETA
 c(27)=0.0 ! c(27)= MA(enol)
 c(28)=0.0 ! c(28)= MABrO2
 c(29)=0.0 ! c(29)= TA
 c(30)=0.0 ! c(30)= EETA
 c(31)=0.0 ! c(31)= TA*
 c(32)=0.0 ! c(32)= EEHTRA
 c(33)=0.0 ! c(33)= TA(enol)
 c(34)=0.0 ! c(34)= TABrO2

Cadena et al. S7Vol. 24, No. 12, 2013

! *** Desde aquí se suman las reacciones del mecanismo GVKFR ***
 c(35)=CFenol ! GVKFR: c(7)= R Fenol H2BrO2+
 c(36)=0.0D0 ! GVKFR: c(8)= R* Fenol* = H-*Fenol=0 Br2O4
 c(37)=0.0D0 ! GVKFR: c(10)= Rox1 HO-HFenol=0 Ce+3
 c(38)=0.0D0 ! GVKFR: c(11)= RBr Br* Ce+4
 c(39)=0.0D0 ! GVKFR: c(12)= RBr2 O=Fenol*-OH = *O-Fenol-OH O2
 c(40)=0.0D0 ! GVKFR: c(13)= RBr* O=Fenol=0 BrMA
 c(41)=0.0D0 ! GVKFR: c(14)= R(BrOH) HO-Fenol-OH BrMA*
 c(42)=0.0D0 ! GVKFR: c(15)= Rox2 HO-Fenol-Br BrEETRA
 c(43)=0.0D0 ! GVKFR: c(16)= OQN (Fenol-O)2 CO2
 c(44)=0.0D0 ! GVKFR: c(17)= RBr2* BrMA(enol)
 c(45)=0.0D0 ! GVKFR: c(18)= RBr(BrOH) Br2MA
 c(46)=0.0D0 ! GVKFR: c(19)= Rox3 BrMABrO2
 c(47)=0.0D0 ! GVKFR: c(20)= BrOQN OA
 c(48)=0.0D0 ! GVKFR: c(21)= Rox4 BrTA
! *** Las especies de las intereacciones
 c(49)=0.0D0 ! Ariel: p-Hidroxyphenol
 c(50)=0.0D0 ! Ariel: p-Hidroxyphenol radical
 c(51)=0.0D0 ! Ariel: p-Quinone

! write(*,*) “cs = “, (c(I), I=1, neq)

 open(9, file = grafile, status=’replace’)

 Hmax= 10D0 ! Maximun step size
 Max_step= 10000000D0

 TOUT = 0D0
 ITOL = 1
 RTOL = 1.D-10 !tol : Error tolerance
 ATOL = 1.D-10 !wlimit : Error control limit
 ITASK = 1
 ISTATE = 1
 IOPT = 1
 LRW = 3100
 LIW = 100
 MF = 22 !, por LSODE suministra el jacobiano full
C Input options
 Do lpr=5,10
 rwork(lpr)=0
 iwork(lpr)=0
 End Do
C rwork(5)=H !h0
 rwork(6)=Hmax
 iwork(6)=Max_step
 Do While (Tout .LE. Tmax) !Del ciclo de integracion DLSODE
 CALL DLSODE(F,NEQ,c,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE,
 + IOPT,RWORK,LRW,IWORK,LIW,Jac,MF)
! WRITE(6,32) T,c(1),c(2)
! 32 FORMAT(7H En T =,E12.4,7H c(1) =,E14.6,7H c(2) =,E14.6)

 WRITE(9,34) T,((c(I)), I=1, neq)
 34 FORMAT(52(1PE13.5))
 IF (ISTATE .LT. 0) Then
 WRITE(6,90)ISTATE
 90 FORMAT(///22H ERROR HALT.. ISTATE =,I3)
 close(9)
 STOP
 End If

 TOUT = TOUT + delta
 End Do !fin Del ciclo de integracion DLSODE **********************************
 WRITE(6,60)IWORK(11),IWORK(12),IWORK(13)
 60 FORMAT(/12H NO. STEPS =,I4,11H NO. F-S =,I4,11H NO. J-S =,I4)
 close(9)

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S8

 END Subroutine MBMReGVKFR
C**
 SUBROUTINE F (NEQ, T, c, YDOT)
 DOUBLE PRECISION T, c, YDOT, V
 DIMENSION c(51), YDOT(51), V(72)
 Integer especie
! *** Para controlar los posibles valores negativos de GVKFR R=c(7) y R*=c(8)
 Do especie=1, 51, 1
 IF (c(especie) < 1D-14) Then
 c(especie)=0D0 !; write (*,*), ‘Se acabo el reactivo. c(7) =’, c(7)
 END IF
 End Do
 V(1)= 8d+9*c(1)*c(2)*c(3)-110*c(4)
 V(2)= 2.9d+6*c(1)*c(5)*c(3)-2d-5*c(2)*c(2)
 V(3)= 0.6*c(1)*c(6)*c(3)*c(3)-3.2*c(2)*c(5)
 V(4)= 2d+6*c(5)*c(3)-1.0d+8*c(7)
 V(5)= 1.7d+5*c(5)*c(7)
 V(6)= 48*c(5)*c(6)*c(3)-3.2d+3*c(8)
 V(7)= 7.5d+4*c(8)-1.4d+9*c(9)*c(9)
 V(8)= 6d+4*c(10)*c(9)*c(3)-1.3d+4*c(11)*c(5)
 V(9)= 6d-10*c(6)*c(6)*c(3)*c(3)
 V(10)= 0.06*c(9)
 V(11)= 0.1*c(13)*c(11)-400*c(14)*c(10)*c(3)
 V(12)= 1d+9*c(14)*c(14)
 V(13)= 1.2d-2*c(13)-800*c(17)
 V(14)= 3.5d+6*c(17)*c(4)
 V(15)= 1.1d+6*c(17)*c(2)
 V(16)= 2d+9*c(14)*c(9)
 V(17)= 0.62*c(19)
 V(18)= 0.46*c(19)
 V(19)= 1.5*c(21)
 V(20)= 7d+3*c(22)*c(11)
 V(21)= 28*c(20)*c(11)
 V(22)= 5d+9*c(23)*c(23)
 V(23)= 1d+7*c(23)*c(11)
 V(24)= 0.6d+6*c(23)*c(13)
 V(25)= 3d+9*c(23)*c(14)
 V(26)= 5d+9*c(23)*c(9)
 V(27)= 0.23*c(25)*c(11)-2.2d+4*c(24)*c(10)*c(3)
 V(28)= 3.2d+9*c(24)*c(24)
 V(29)= 2.6d-3*c(25)-180*c(27)
 V(30)= 2d+6*c(27)*c(4)
 V(31)= 6.7d+5*c(27)*c(2)
 V(32)= 5d+9*c(24)*c(9)
 V(33)= 0.55*c(28)
 V(34)= 1.0*c(28)
 V(35)= 2d+9*c(24)*c(14)
 V(36)= 4d+9*c(24)*c(23)
 V(37)= 0.66*c(29)*c(11)-1.7d+4*c(31)*c(10)*c(3)
 V(38)= 1d+9*c(31)*c(31)
 V(39)= 2.3d-5*c(29)-1.5*c(33)
 V(40)= 3d+5*c(33)*c(4)
 V(41)= 2d+5*c(33)*c(2)
 V(42)= 1d+9*c(31)*c(24)
 V(43)= 1d+9*c(31)*c(14)
 V(44)= 3d+9*c(31)*c(23)
 V(45)= 2d+9*c(31)*c(9)
 V(46)= 0.1*c(34)
 V(47)= 5d-5*c(29)*c(6)
 V(48)= 160*c(24)*c(6)*c(3)
! *** Desde aquí se suman las velocidades del mecanismo GVKFR ***
 V(49)= 1D-2*c(35)*c(6)*c(3)
 V(50)= 1D4*c(35)*c(9)
 V(51)= 1D4*c(36)*c(6)*c(3)
 V(52)= 6D5*c(35)*c(4)
 V(53)= 2D3*c(38)*c(4)
 V(54)= 1D4*c(38)*c(9)

Cadena et al. S9Vol. 24, No. 12, 2013

 V(55)= 1D4*c(40)*c(6)*c(3)
 V(56)= 1D4*c(40)*c(6)*c(3)
 V(57)= 2D-1*c(41)
 V(58)= 1D4*c(39)*c(9)
 V(59)= 1D4*c(44)*c(6)*c(3)
 V(60)= 2.5D3*c(44)*c(6)*c(3)
 V(61)= 2D-1*c(45)
 V(62)= 1D2*c(4)*c(37)
! *** Estas reacciones se adiciona, digamos inter mecanismos ***
! Se usa el formato largo, propuesto por Ariel - Ver cuaderno.
 V(63)= 1D3*c(11)*c(35)-4D4*c(10)*c(36)*c(3)
 V(64)= 1D4*c(36)*c(11)
 V(65)= 1D3*c(49)*c(11)-4D4*c(50)*c(10)*c(3)
 V(66)= 1D4*c(50)*c(11)
 V(67)= 1D6*c(51)*c(23)
 V(68)= 1D8*c(50)*c(23)
 V(69)= 1D6*c(51)*c(31)
 V(70)= 1D7*c(50)*c(31)
! *** NR5 Revisado en la web http://www.phy.bme.hu/deps/chem_ph/Research/BZ_Simulation/Ce4+.html
 V(71)= 1D0*c(28)
! *** Se adiciona una reacci≤n de consumo de la quinona, para representar la desaparici≤n de esta y por
tanto la desaparici≤n del ciclo que origina los “burst”.
 V(72)= 1D5*c(51)

C Br-
 YDOT(1)=-V(1)-V(2)-V(3)+V(12)+V(14)+V(17)+V(19)+V(24)+V(30)
 ++V(35)+V(40)+V(52)+V(53)+V(57)+V(62)+V(71)

C HOBr
 YDOT(2)=-V(1)+2*V(2)+V(3)+V(5)-V(15)+V(17)-V(31)+V(33)-V(41)

C H+
 YDOT(3)=-V(1)-V(2)-2*V(3)-V(4)+2*V(5)-V(6)-V(8)-2*V(9)+V(11)
 ++V(12)+V(14)+V(17)+V(19)+V(20)+V(21)+V(23)+V(24)+V(27)+V(30)
 ++V(35)+V(37)+V(40)-V(48)-V(49)-V(51)+V(52)+V(53)-V(55)-V(56)
 ++V(57)-V(59)-V(60)+V(61)+V(62)+V(63)+V(64)+V(65)+V(66)+V(71)

c Br2
 YDOT(4)=V(1)+0.5*V(10)-V(14)-V(30)-V(40)-V(52)-V(53)-V(62)

c HBrO2
 YDOT(5)=-V(2)+V(3)-V(4)-V(5)-V(6)+V(8)+2*V(9)+V(18)+V(26)+V(34)
 ++V(46)+V(47)+V(50)+V(54)+V(58)

c BrO3-
 YDOT(6)=-V(3)+V(5)-V(6)-2*V(9)-V(47)-V(48)-V(49)-V(51)-V(55)
 +-V(56)-V(59)-V(60)

c H2BrO2+
 YDOT(7)=V(4)-V(5)

c Br2O4
 YDOT(8)=V(6)-V(7)

c BrO2*
 YDOT(9)=2*V(7)-V(8)-V(10)-V(16)-V(26)-V(32)-V(45)+V(48)+V(49)
 +-V(50)-V(54)+V(55)+V(56)-V(58)+V(59)+V(60)

c Ce+3
 YDOT(10)=-V(8)+V(11)+V(20)+V(21)+V(23)+V(27)+V(37)+V(63)+V(64)
 ++V(65)+V(66)

c Ce+4
 YDOT(11)=+V(8)-V(11)-V(20)-V(21)-V(23)-V(27)-V(37)-V(63)-V(64)
 +-V(65)-V(66)

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S10

c O2
 YDOT(12)=V(9)+V(10) !!!!Solo se acumula

c BrMA
 YDOT(13)=-V(11)-V(13)-V(24)+V(25)+V(30)+V(31)

c BrMA*
 YDOT(14)=V(11)-2*V(12)-V(16)-V(25)-V(35)-V(43)

c BrEETRA
 YDOT(15)=V(12)+V(43) !!!!Solo se acumula

c CO2
 YDOT(16)=V(12)+V(17)+V(21)+V(23)+V(24)+V(25)+V(26)+V(36)+V(38)
 ++V(43)+V(44)+V(67)+V(68)+V(71) !!!!Solo se acumula

c BrMA(enol)
 YDOT(17)=V(13)-V(14)-V(15)

c Br2MA
 YDOT(18)=V(14)+V(15) !!!!Solo se acumula

c BrMABrO2
 YDOT(19)=V(16)-V(17)-V(18)

c OA
 YDOT(20)=V(17)+V(20)-V(21)+V(22)+V(71)

c BrTA
 YDOT(21)=V(18)-V(19)+V(40)+V(41)

c MOA
 YDOT(22)=V(19)-V(20)+V(33)+V(46)+V(47)+V(69)+V(70)

c COOH*
 YDOT(23)=V(20)+V(21)-2D0*V(22)-V(23)-V(24)-V(25)-V(26)-V(36)
 +-V(44)-V(67)-V(68)

c MA*
 YDOT(24)=V(24)+V(27)-2*V(28)-V(32)-V(35)-V(36)-V(42)-V(48)

c MA
 YDOT(25)=-V(27)-V(29)+V(36)

c ETA
 YDOT(26)=V(28) !!!Solo se acumula

c MA(enol)
 YDOT(27)=V(29)-V(30)-V(31)

c MABrO2
 YDOT(28)=V(32)-V(33)-V(34)-V(71)

c TA
 YDOT(29)=V(34)-V(37)-V(39)+V(44)-V(47)

c EETA
 YDOT(30)=V(35)+V(42) !!!!Solo se acumula

c TA*
 YDOT(31)=V(37)-2*V(38)-V(42)-V(43)-V(44)-V(45)-V(69)-V(70)

c EEHTRA
 YDOT(32)=V(38) !!!!Solo se acumula

c TA(enol)
 YDOT(33)=V(39)-V(40)-V(41)

Cadena et al. S11Vol. 24, No. 12, 2013

c TABrO2
 YDOT(34)=V(45)-V(46)
! *** Desde aquφ se suman las EDOs de las especies del mecanismo GVKFR
! R Fenol H2BrO2+
 YDOT(35)=-V(49)-V(50)-V(52)-V(63)

! R* Fenol* = H-*Fenol=0 Br2O4
 YDOT(36)=V(49)+V(50)-V(51)+V(63)-V(64)

! Rox1 HO-HFenol=0 Ce+3
 YDOT(37)=V(51)-V(62)

! RBr Br* Ce+4
 YDOT(38)=V(52)-V(53)-v(54)

! RBr2 O=Fenol*-OH = *O-Fenol-OH O2
 YDOT(39)=V(53)-V(58)

! RBr* O=Fenol=0 BrMA
 YDOT(40)=V(54)-V(55)-V(56)

! R(BrOH) HO-Fenol-OH BrMA*
 YDOT(41)=V(55)-V(57)

! Rox2 HO-Fenol-Br BrEETRA
 YDOT(42)=V(56) !!!!Solo se acumula

! OQN (Fenol-O)2 CO2
 YDOT(43)=V(57) !!!!Solo se acumula

! RBr2*
 YDOT(44)=V(58)-V(59)-V(60)

! RBr(BrOH)
 YDOT(45)=V(59)-V(61)

! Rox3
 YDOT(46)=V(60) !!!!Solo se acumula

! BrOQN
 YDOT(47)=V(61) !!!!Solo se acumula

! Rox4
 YDOT(48)=V(62) !!!!Solo se acumula
! ROH - p-Hidroxifenol - Especie nueva
 YDOT(49)=V(64)-V(65)+V(68)+V(70)
! p-Hidroxifenol Radical - Especie nueva
 YDOT(50)=V(65)-V(66)+V(67)-V(68)+V(69)-V(70)
! p-Quinona - Especie nueva
 YDOT(51)=V(66)-V(67)-V(69)-V(72)
 END SUBROUTINE !F

 SUBROUTINE JAC
 END SUBROUTINE JAC
C***
*DECK DLSODE
 SUBROUTINE DLSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)
C***BEGIN PROLOGUE DLSODE
C***PURPOSE Livermore solver for ordinary differential equations.
C DLSODE solves the initial-value problem for stiff or
C nonstiff systems of first-order ODE’s,
C dy/dt = f(t,y), or, in component form,
C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(N)), i=1,...,N.
C***LIBRARY MATHLIB (ODEPACK)
C***CATEGORY I1A

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S12

C***TYPE DOUBLE PRECISION (SLSODE-S, DLSODE-D)
C***KEYWORDS ORDINARY DIFFERENTIAL EQUATIONS, INITIAL VALUE PROBLEM,
C STIFF, NONSTIFF
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C Computing and Mathematics Research Div., L-316
C Lawrence Livermore National Laboratory
C Livermore, CA 94550.
C***DESCRIPTION
C
C NOTE: The DLSODE solver is not re-entrant, and so is usable on
C the Cray multi-processor machines only if it is not used
C in a multi-tasking environment.
C If re-entrancy is required, use NLSODE instead.
C
C The formats of the DLSODE and NLSODE writeups differ from
C those of the other MATHLIB routines.
C
C The “Usage” and “Arguments” sections treat only a subset of
C available options, in condensed fashion. The options
C covered and the information supplied will support most
C standard uses of DLSODE.
C
C For more sophisticated uses, full details on all options are
C given in the concluding section, headed “Long Description.”
C A synopsis of the DLSODE Long Description is provided at the
C beginning of that section; general topics covered are:
C - Elements of the call sequence; optional input and output
C - Optional supplemental routines in the DLSODE package
C - internal COMMON block
C
C *Usage:
C Communication between the user and the DLSODE package, for normal
C situations, is summarized here. This summary describes a subset
C of the available options. See “Long Description” for complete
C details, including optional communication, nonstandard options,
C and instructions for special situations.
C
C A sample program is given in the “Examples” section.
C
C Refer to the argument descriptions for the definitions of the
C quantities that appear in the following sample declarations.
C
C For MF = 10,
C PARAMETER (LRW = 20 + 16*NEQ, LIW = 20)
C For MF = 21 or 22,
C PARAMETER (LRW = 22 + 9*NEQ + NEQ**2, LIW = 20 + NEQ)
C For MF = 24 or 25,
C PARAMETER (LRW = 22 + 10*NEQ + (2*ML+MU)*NEQ,
C * LIW = 20 + NEQ)
C
C EXTERNAL F, JAC
C INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK(LIW),
C * LIW, MF
C DOUBLE PRECISION Y(NEQ), T, TOUT, RTOL, ATOL(ntol), RWORK(LRW)
C
C CALL DLSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
C * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)
C
C *Arguments:
C F :EXT Name of subroutine for right-hand-side vector f.
C This name must be declared EXTERNAL in calling
C program. The form of F must be:
C
C SUBROUTINE F (NEQ, T, Y, YDOT)
C INTEGER NEQ
C DOUBLE PRECISION T, Y(NEQ), YDOT(NEQ)
C

Cadena et al. S13Vol. 24, No. 12, 2013

C The inputs are NEQ, T, Y. F is to set
C
C YDOT(i) = f(i,T,Y(1),Y(2),...,Y(NEQ)),
C i = 1, ..., NEQ .
C
C NEQ :IN Number of first-order ODE’s.
C
C Y :INOUT Array of values of the y(t) vector, of length NEQ.
C Input: For the first call, Y should contain the
C values of y(t) at t = T. (Y is an input
C variable only if ISTATE = 1.)
C Output: On return, Y will contain the values at the
C new t-value.
C
C T :INOUT Value of the independent variable. On return it
C will be the current value of t (normally TOUT).
C
C TOUT :IN Next point where output is desired (.NE. T).
C
C ITOL :IN 1 or 2 according as ATOL (below) is a scalar or
C an array.
C
C RTOL :IN Relative tolerance parameter (scalar).
C
C ATOL :IN Absolute tolerance parameter (scalar or array).
C If ITOL = 1, ATOL need not be dimensioned.
C If ITOL = 2, ATOL must be dimensioned at least NEQ.
C
C The estimated local error in Y(i) will be controlled
C so as to be roughly less (in magnitude) than
C
C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or
C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2.
C
C Thus the local error test passes if, in each
C component, either the absolute error is less than
C ATOL (or ATOL(i)), or the relative error is less
C than RTOL.
C
C Use RTOL = 0.0 for pure absolute error control, and
C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative
C error control. Caution: Actual (global) errors may
C exceed these local tolerances, so choose them
C conservatively.
C
C ITASK :IN Flag indicating the task DLSODE is to perform.
C Use ITASK = 1 for normal computation of output
C values of y at t = TOUT.
C
C ISTATE:INOUT Index used for input and output to specify the state
C of the calculation.
C Input:
C 1 This is the first call for a problem.
C 2 This is a subsequent call.
C Output:
C 2 DLSODE was successful (otherwise, negative).
C Note that ISTATE need not be modified after a
C successful return.
C -1 Excess work done on this call (perhaps wrong
C MF).
C -2 Excess accuracy requested (tolerances too
C small).
C -3 Illegal input detected (see printed message).
C -4 Repeated error test failures (check all
C inputs).
C -5 Repeated convergence failures (perhaps bad
C Jacobian supplied or wrong choice of MF or

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S14

C tolerances).
C -6 Error weight became zero during problem
C (solution component i vanished, and ATOL or
C ATOL(i) = 0.).
C
C IOPT :IN Flag indicating whether optional inputs are used:
C 0 No.
C 1 Yes. (See “Optional inputs” under “Long
C Description,” Part 1.)
C
C RWORK :WORK Real work array of length at least:
C 20 + 16*NEQ for MF = 10,
C 22 + 9*NEQ + NEQ**2 for MF = 21 or 22,
C 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25.
C
C LRW :IN Declared length of RWORK (in user’s DIMENSION
C statement).
C
C IWORK :WORK Integer work array of length at least:
C 20 for MF = 10,
C 20 + NEQ for MF = 21, 22, 24, or 25.
C
C If MF = 24 or 25, input in IWORK(1),IWORK(2) the
C lower and upper Jacobian half-bandwidths ML,MU.
C
C On return, IWORK contains information that may be
C of interest to the user:
C
C Name Location Meaning
C ----- --------- ---
C NST IWORK(11) Number of steps taken for the problem so
C far.
C NFE IWORK(12) Number of f evaluations for the problem
C so far.
C NJE IWORK(13) Number of Jacobian evaluations (and of
C matrix LU decompositions) for the problem
C so far.
C NQU IWORK(14) Method order last used (successfully).
C LENRW IWORK(17) Length of RWORK actually required. This
C is defined on normal returns and on an
C illegal input return for insufficient
C storage.
C LENIW IWORK(18) Length of IWORK actually required. This
C is defined on normal returns and on an
C illegal input return for insufficient
C storage.
C
C LIW :IN Declared length of IWORK (in user’s DIMENSION
C statement).
C
C JAC :EXT Name of subroutine for Jacobian matrix (MF =
C 21 or 24). If used, this name must be declared
C EXTERNAL in calling program. If not used, pass a
C dummy name. The form of JAC must be:
C
C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
C INTEGER NEQ, ML, MU, NROWPD
C DOUBLE PRECISION T, Y(NEQ), PD(NROWPD,NEQ)
C
C See item c, under “Description” below for more
C information about JAC.
C
C MF :IN Method flag. Standard values are:
C 10 Nonstiff (Adams) method, no Jacobian used.
C 21 Stiff (BDF) method, user-supplied full Jacobian.
C 22 Stiff method, internally generated full
C Jacobian.

Cadena et al. S15Vol. 24, No. 12, 2013

C 24 Stiff method, user-supplied banded Jacobian.
C 25 Stiff method, internally generated banded
C Jacobian.
C
C *Description:
C DLSODE solves the initial value problem for stiff or nonstiff
C systems of first-order ODE’s,
C
C dy/dt = f(t,y) ,
C
C or, in component form,
C
C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ))
C (i = 1, ..., NEQ) .
C
C DLSODE is a package based on the GEAR and GEARB packages, and on
C the October 23, 1978, version of the tentative ODEPACK user
C interface standard, with minor modifications.
C
C The steps in solving such a problem are as follows.
C
C a. First write a subroutine of the form
C
C SUBROUTINE F (NEQ, T, Y, YDOT)
C INTEGER NEQ
C DOUBLE PRECISION T, Y(NEQ), YDOT(NEQ)
C
C which supplies the vector function f by loading YDOT(i) with
C f(i).
C
C b. Next determine (or guess) whether or not the problem is stiff.
C Stiffness occurs when the Jacobian matrix df/dy has an
C eigenvalue whose real part is negative and large in magnitude
C compared to the reciprocal of the t span of interest. If the
C problem is nonstiff, use method flag MF = 10. If it is stiff,
C there are four standard choices for MF, and DLSODE requires the
C Jacobian matrix in some form. This matrix is regarded either
C as full (MF = 21 or 22), or banded (MF = 24 or 25). In the
C banded case, DLSODE requires two half-bandwidth parameters ML
C and MU. These are, respectively, the widths of the lower and
C upper parts of the band, excluding the main diagonal. Thus the
C band consists of the locations (i,j) with
C
C i - ML <= j <= i + MU ,
C
C and the full bandwidth is ML + MU + 1 .
C
C c. If the problem is stiff, you are encouraged to supply the
C Jacobian directly (MF = 21 or 24), but if this is not feasible,
C DLSODE will compute it internally by difference quotients (MF =
C 22 or 25). If you are supplying the Jacobian, write a
C subroutine of the form
C
C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
C INTEGER NEQ, ML, MU, NRWOPD
C DOUBLE PRECISION Y, Y(NEQ), PD(NROWPD,NEQ)
C
C which provides df/dy by loading PD as follows:
C - For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j),
C the partial derivative of f(i) with respect to y(j). (Ignore
C the ML and MU arguments in this case.)
C - For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with
C df(i)/dy(j); i.e., load the diagonal lines of df/dy into the
C rows of PD from the top down.
C - In either case, only nonzero elements need be loaded.
C
C d. Write a main program that calls subroutine DLSODE once for each

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S16

C point at which answers are desired. This should also provide
C for possible use of logical unit 6 for output of error messages
C by DLSODE.
C
C Before the first call to DLSODE, set ISTATE = 1, set Y and T to
C the initial values, and set TOUT to the first output point. To
C continue the integration after a successful return, simply
C reset TOUT and call DLSODE again. No other parameters need be
C reset.
C
C *Examples:
C The following is a simple example problem, with the coding needed
C for its solution by DLSODE. The problem is from chemical kinetics,
C and consists of the following three rate equations:
C
C dy1/dt = -.04*y1 + 1.E4*y2*y3
C dy2/dt = .04*y1 - 1.E4*y2*y3 - 3.E7*y2**2
C dy3/dt = 3.E7*y2**2
C
C on the interval from t = 0.0 to t = 4.E10, with initial conditions
C y1 = 1.0, y2 = y3 = 0. The problem is stiff.
C
C The following coding solves this problem with DLSODE, using
C MF = 21 and printing results at t = .4, 4., ..., 4.E10. It uses
C ITOL = 2 and ATOL much smaller for y2 than for y1 or y3 because y2
C has much smaller values. At the end of the run, statistical
C quantities of interest are printed.
C
C EXTERNAL FEX, JEX
C INTEGER IOPT, IOUT, ISTATE, ITASK, ITOL, IWORK(23), LIW, LRW,
C * MF, NEQ
C DOUBLE PRECISION ATOL(3), RTOL, RWORK(58), T, TOUT, Y(3)
C NEQ = 3
C Y(1) = 1.D0
C Y(2) = 0.D0
C Y(3) = 0.D0
C T = 0.D0
C TOUT = .4D0
C ITOL = 2
C RTOL = 1.D-4
C ATOL(1) = 1.D-6
C ATOL(2) = 1.D-10
C ATOL(3) = 1.D-6
C ITASK = 1
C ISTATE = 1
C IOPT = 0
C LRW = 58
C LIW = 23
C MF = 21
C DO 40 IOUT = 1,12
C CALL DLSODE (FEX, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
C * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JEX, MF)
C WRITE(6,20) T, Y(1), Y(2), Y(3)
C 20 FORMAT(‘ At t =’,D12.4,’ y =’,3D14.6)
C IF (ISTATE .LT. 0) GO TO 80
C 40 TOUT = TOUT*10.D0
C WRITE(6,60) IWORK(11), IWORK(12), IWORK(13)
C 60 FORMAT(/’ No. steps =’,i4,’, No. f-s =’,i4,’, No. J-s =’,i4)
C STOP
C 80 WRITE(6,90) ISTATE
C 90 FORMAT(///’ Error halt.. ISTATE =’,I3)
C STOP
C END
C
C SUBROUTINE FEX (NEQ, T, Y, YDOT)
C INTEGER NEQ
C DOUBLE PRECISION T, Y(3), YDOT(3)

Cadena et al. S17Vol. 24, No. 12, 2013

C YDOT(1) = -.04D0*Y(1) + 1.D4*Y(2)*Y(3)
C YDOT(3) = 3.D7*Y(2)*Y(2)
C YDOT(2) = -YDOT(1) - YDOT(3)
C RETURN
C END
C
C SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD)
C INTEGER NEQ, ML, MU, NRPD
C DOUBLE PRECISION T, Y(3), PD(NRPD,3)
C PD(1,1) = -.04D0
C PD(1,2) = 1.D4*Y(3)
C PD(1,3) = 1.D4*Y(2)
C PD(2,1) = .04D0
C PD(2,3) = -PD(1,3)
C PD(3,2) = 6.D7*Y(2)
C PD(2,2) = -PD(1,2) - PD(3,2)
C RETURN
C END
C
C The output from this program (on a Cray-1 in single precision)
C is as follows.
C
C At t = 4.0000e-01 y = 9.851726e-01 3.386406e-05 1.479357e-02
C At t = 4.0000e+00 y = 9.055142e-01 2.240418e-05 9.446344e-02
C At t = 4.0000e+01 y = 7.158050e-01 9.184616e-06 2.841858e-01
C At t = 4.0000e+02 y = 4.504846e-01 3.222434e-06 5.495122e-01
C At t = 4.0000e+03 y = 1.831701e-01 8.940379e-07 8.168290e-01
C At t = 4.0000e+04 y = 3.897016e-02 1.621193e-07 9.610297e-01
C At t = 4.0000e+05 y = 4.935213e-03 1.983756e-08 9.950648e-01
C At t = 4.0000e+06 y = 5.159269e-04 2.064759e-09 9.994841e-01
C At t = 4.0000e+07 y = 5.306413e-05 2.122677e-10 9.999469e-01
C At t = 4.0000e+08 y = 5.494530e-06 2.197825e-11 9.999945e-01
C At t = 4.0000e+09 y = 5.129458e-07 2.051784e-12 9.999995e-01
C At t = 4.0000e+10 y = -7.170603e-08 -2.868241e-13 1.000000e+00
C
C No. steps = 330, No. f-s = 405, No. J-s = 69
C
C *Accuracy:
C The accuracy of the solution depends on the choice of tolerances
C RTOL and ATOL. Actual (global) errors may exceed these local
C tolerances, so choose them conservatively.
C
C *Cautions:
C The work arrays should not be altered between calls to DLSODE for
C the same problem, except possibly for the conditional and optional
C inputs.
C
C *Portability:
C Since NEQ is dimensioned inside DLSODE, some compilers may object
C to a call to DLSODE with NEQ a scalar variable. In this event,
C use DIMENSION NEQ(1). Similar remarks apply to RTOL and ATOL.
C
C Note to Cray users:
C For maximum efficiency, use the CFT77 compiler. Appropriate
C compiler optimization directives have been inserted for CFT77
C (but not CIVIC).
C
C NOTICE: If moving the DLSODE source code to other systems,
C contact the author for notes on nonstandard Fortran usage,
C COMMON block, and other installation details.
C
C *Reference:
C Alan C. Hindmarsh, “ODEPACK, a systematized collection of ODE
C solvers,” in Scientific Computing, R. S. Stepleman, et al., Eds.
C (North-Holland, Amsterdam, 1983), pp. 55-64.
C
C *Long Description:

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S18

C The following complete description of the user interface to
C DLSODE consists of four parts:
C
C 1. The call sequence to subroutine DLSODE, which is a driver
C routine for the solver. This includes descriptions of both
C the call sequence arguments and user-supplied routines.
C Following these descriptions is a description of optional
C inputs available through the call sequence, and then a
C description of optional outputs in the work arrays.
C
C 2. Descriptions of other routines in the DLSODE package that may
C be (optionally) called by the user. These provide the ability
C to alter error message handling, save and restore the internal
C COMMON, and obtain specified derivatives of the solution y(t).
C
C 3. Descriptions of COMMON block to be declared in overlay or
C similar environments, or to be saved when doing an interrupt
C of the problem and continued solution later.
C
C 4. Description of two routines in the DLSODE package, either of
C which the user may replace with his own version, if desired.
C These relate to the measurement of errors.
C
C
C Part 1. Call Sequence
C ----------------------
C
C Arguments
C ---------
C The call sequence parameters used for input only are
C
C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF,
C
C and those used for both input and output are
C
C Y, T, ISTATE.
C
C The work arrays RWORK and IWORK are also used for conditional and
C optional inputs and optional outputs. (The term output here
C refers to the return from subroutine DLSODE to the user’s calling
C program.)
C
C The legality of input parameters will be thoroughly checked on the
C initial call for the problem, but not checked thereafter unless a
C change in input parameters is flagged by ISTATE = 3 on input.
C
C The descriptions of the call arguments are as follows.
C
C F The name of the user-supplied subroutine defining the ODE
C system. The system must be put in the first-order form
C dy/dt = f(t,y), where f is a vector-valued function of
C the scalar t and the vector y. Subroutine F is to compute
C the function f. It is to have the form
C
C SUBROUTINE F (NEQ, T, Y, YDOT)
C DOUBLE PRECISION Y(NEQ), YDOT(NEQ)
C
C where NEQ, T, and Y are input, and the array YDOT =
C f(T,Y) is output. Y and YDOT are arrays of length NEQ.
C Subroutine F should not alter Y(1),...,Y(NEQ). F must be
C declared EXTERNAL in the calling program.
C
C Subroutine F may access user-defined quantities in
C NEQ(2),... and/or in Y(NEQ(1)+1),..., if NEQ is an array
C (dimensioned in F) and/or Y has length exceeding NEQ(1).
C See the descriptions of NEQ and Y below.
C

Cadena et al. S19Vol. 24, No. 12, 2013

C If quantities computed in the F routine are needed
C externally to DLSODE, an extra call to F should be made
C for this purpose, for consistent and accurate results.
C If only the derivative dy/dt is needed, use DINTDY
C instead.
C
C NEQ The size of the ODE system (number of first-order
C ordinary differential equations). Used only for input.
C NEQ may be decreased, but not increased, during the
C problem. If NEQ is decreased (with ISTATE = 3 on input),
C the remaining components of Y should be left undisturbed,
C if these are to be accessed in F and/or JAC.
C
C Normally, NEQ is a scalar, and it is generally referred
C to as a scalar in this user interface description.
C However, NEQ may be an array, with NEQ(1) set to the
C system size. (The DLSODE package accesses only NEQ(1).)
C In either case, this parameter is passed as the NEQ
C argument in all calls to F and JAC. Hence, if it is an
C array, locations NEQ(2),... may be used to store other
C integer data and pass it to F and/or JAC. Subroutines
C F and/or JAC must include NEQ in a DIMENSION statement
C in that case.
C
C Y A real array for the vector of dependent variables, of
C length NEQ or more. Used for both input and output on
C the first call (ISTATE = 1), and only for output on
C other calls. On the first call, Y must contain the
C vector of initial values. On output, Y contains the
C computed solution vector, evaluated at T. If desired,
C the Y array may be used for other purposes between
C calls to the solver.
C
C This array is passed as the Y argument in all calls to F
C and JAC. Hence its length may exceed NEQ, and locations
C Y(NEQ+1),... may be used to store other real data and
C pass it to F and/or JAC. (The DLSODE package accesses
C only Y(1),...,Y(NEQ).)
C
C T The independent variable. On input, T is used only on
C the first call, as the initial point of the integration.
C On output, after each call, T is the value at which a
C computed solution Y is evaluated (usually the same as
C TOUT). On an error return, T is the farthest point
C reached.
C
C TOUT The next value of T at which a computed solution is
C desired. Used only for input.
C
C When starting the problem (ISTATE = 1), TOUT may be equal
C to T for one call, then should not equal T for the next
C call. For the initial T, an input value of TOUT .NE. T
C is used in order to determine the direction of the
C integration (i.e., the algebraic sign of the step sizes)
C and the rough scale of the problem. Integration in
C either direction (forward or backward in T) is permitted.
C
C If ITASK = 2 or 5 (one-step modes), TOUT is ignored
C after the first call (i.e., the first call with
C TOUT .NE. T). Otherwise, TOUT is required on every call.
C
C If ITASK = 1, 3, or 4, the values of TOUT need not be
C monotone, but a value of TOUT which backs up is limited
C to the current internal T interval, whose endpoints are
C TCUR - HU and TCUR. (See “Optional Outputs” below for
C TCUR and HU.)
C

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S20

C
C ITOL An indicator for the type of error control. See
C description below under ATOL. Used only for input.
C
C RTOL A relative error tolerance parameter, either a scalar or
C an array of length NEQ. See description below under
C ATOL. Input only.
C
C ATOL An absolute error tolerance parameter, either a scalar or
C an array of length NEQ. Input only.
C
C The input parameters ITOL, RTOL, and ATOL determine the
C error control performed by the solver. The solver will
C control the vector e = (e(i)) of estimated local errors
C in Y, according to an inequality of the form
C
C rms-norm of (e(i)/EWT(i)) <= 1,
C
C where
C
C EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i),
C
C and the rms-norm (root-mean-square norm) here is
C
C rms-norm(v) = SQRT(sum v(i)**2 / NEQ).
C
C Here EWT = (EWT(i)) is a vector of weights which must
C always be positive, and the values of RTOL and ATOL
C should all be nonnegative. The following table gives the
C types (scalar/array) of RTOL and ATOL, and the
C corresponding form of EWT(i).
C
C ITOL RTOL ATOL EWT(i)
C ---- ------ ------ -----------------------------
C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL
C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i)
C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL
C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i)
C
C When either of these parameters is a scalar, it need not
C be dimensioned in the user’s calling program.
C
C If none of the above choices (with ITOL, RTOL, and ATOL
C fixed throughout the problem) is suitable, more general
C error controls can be obtained by substituting
C user-supplied routines for the setting of EWT and/or for
C the norm calculation. See Part 4 below.
C
C If global errors are to be estimated by making a repeated
C run on the same problem with smaller tolerances, then all
C components of RTOL and ATOL (i.e., of EWT) should be
C scaled down uniformly.
C
C ITASK An index specifying the task to be performed. Input
C only. ITASK has the following values and meanings:
C 1 Normal computation of output values of y(t) at
C t = TOUT (by overshooting and interpolating).
C 2 Take one step only and return.
C 3 Stop at the first internal mesh point at or beyond
C t = TOUT and return.
C 4 Normal computation of output values of y(t) at
C t = TOUT but without overshooting t = TCRIT. TCRIT
C must be input as RWORK(1). TCRIT may be equal to or
C beyond TOUT, but not behind it in the direction of
C integration. This option is useful if the problem
C has a singularity at or beyond t = TCRIT.
C 5 Take one step, without passing TCRIT, and return.

Cadena et al. S21Vol. 24, No. 12, 2013

C TCRIT must be input as RWORK(1).
C
C Note: If ITASK = 4 or 5 and the solver reaches TCRIT
C (within roundoff), it will return T = TCRIT (exactly) to
C indicate this (unless ITASK = 4 and TOUT comes before
C TCRIT, in which case answers at T = TOUT are returned
C first).
C
C ISTATE An index used for input and output to specify the state
C of the calculation.
C
C On input, the values of ISTATE are as follows:
C 1 This is the first call for the problem
C (initializations will be done). See “Note” below.
C 2 This is not the first call, and the calculation is to
C continue normally, with no change in any input
C parameters except possibly TOUT and ITASK. (If ITOL,
C RTOL, and/or ATOL are changed between calls with
C ISTATE = 2, the new values will be used but not
C tested for legality.)
C 3 This is not the first call, and the calculation is to
C continue normally, but with a change in input
C parameters other than TOUT and ITASK. Changes are
C allowed in NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF,
C ML, MU, and any of the optional inputs except H0.
C (See IWORK description for ML and MU.)
C
C Note: A preliminary call with TOUT = T is not counted as
C a first call here, as no initialization or checking of
C input is done. (Such a call is sometimes useful for the
C purpose of outputting the initial conditions.) Thus the
C first call for which TOUT .NE. T requires ISTATE = 1 on
C input.
C
C On output, ISTATE has the following values and meanings:
C 1 Nothing was done, as TOUT was equal to T with
C ISTATE = 1 on input.
C 2 The integration was performed successfully.
C -1 An excessive amount of work (more than MXSTEP steps)
C was done on this call, before completing the
C requested task, but the integration was otherwise
C successful as far as T. (MXSTEP is an optional input
C and is normally 500.) To continue, the user may
C simply reset ISTATE to a value >1 and call again (the
C excess work step counter will be reset to 0). In
C addition, the user may increase MXSTEP to avoid this
C error return; see “Optional Inputs” below.
C -2 Too much accuracy was requested for the precision of
C the machine being used. This was detected before
C completing the requested task, but the integration
C was successful as far as T. To continue, the
C tolerance parameters must be reset, and ISTATE must
C be set to 3. The optional output TOLSF may be used
C for this purpose. (Note: If this condition is
C detected before taking any steps, then an illegal
C input return (ISTATE = -3) occurs instead.)
C -3 Illegal input was detected, before taking any
C integration steps. See written message for details.
C (Note: If the solver detects an infinite loop of
C calls to the solver with illegal input, it will cause
C the run to stop.)
C -4 There were repeated error-test failures on one
C attempted step, before completing the requested task,
C but the integration was successful as far as T. The
C problem may have a singularity, or the input may be
C inappropriate.
C -5 There were repeated convergence-test failures on one

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S22

C attempted step, before completing the requested task,
C but the integration was successful as far as T. This
C may be caused by an inaccurate Jacobian matrix, if
C one is being used.
C -6 EWT(i) became zero for some i during the integration.
C Pure relative error control (ATOL(i)=0.0) was
C requested on a variable which has now vanished. The
C integration was successful as far as T.
C
C Note: Since the normal output value of ISTATE is 2, it
C does not need to be reset for normal continuation. Also,
C since a negative input value of ISTATE will be regarded
C as illegal, a negative output value requires the user to
C change it, and possibly other inputs, before calling the
C solver again.
C
C IOPT An integer flag to specify whether any optional inputs
C are being used on this call. Input only. The optional
C inputs are listed under a separate heading below.
C 0 No optional inputs are being used. Default values
C will be used in all cases.
C 1 One or more optional inputs are being used.
C
C RWORK A real working array (double precision). The length of
C RWORK must be at least
C
C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM
C
C where
C NYH = the initial value of NEQ,
C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a
C smaller value is given as an optional input),
C LWM = 0 if MITER = 0,
C LWM = NEQ**2 + 2 if MITER = 1 or 2,
C LWM = NEQ + 2 if MITER = 3, and
C LWM = (2*ML + MU + 1)*NEQ + 2
C if MITER = 4 or 5.
C (See the MF description below for METH and MITER.)
C
C Thus if MAXORD has its default value and NEQ is constant,
C this length is:
C 20 + 16*NEQ for MF = 10,
C 22 + 16*NEQ + NEQ**2 for MF = 11 or 12,
C 22 + 17*NEQ for MF = 13,
C 22 + 17*NEQ + (2*ML + MU)*NEQ for MF = 14 or 15,
C 20 + 9*NEQ for MF = 20,
C 22 + 9*NEQ + NEQ**2 for MF = 21 or 22,
C 22 + 10*NEQ for MF = 23,
C 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25.
C
C The first 20 words of RWORK are reserved for conditional
C and optional inputs and optional outputs.
C
C The following word in RWORK is a conditional input:
C RWORK(1) = TCRIT, the critical value of t which the
C solver is not to overshoot. Required if ITASK
C is 4 or 5, and ignored otherwise. See ITASK.
C
C LRW The length of the array RWORK, as declared by the user.
C (This will be checked by the solver.)
C
C IWORK An integer work array. Its length must be at least
C 20 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or
C 20 + NEQ otherwise (MF = 11, 12, 14, 15, 21, 22, 24, 25).
C (See the MF description below for MITER.) The first few
C words of IWORK are used for conditional and optional
C inputs and optional outputs.

Cadena et al. S23Vol. 24, No. 12, 2013

C
C The following two words in IWORK are conditional inputs:
C IWORK(1) = ML These are the lower and upper half-
C IWORK(2) = MU bandwidths, respectively, of the banded
C Jacobian, excluding the main diagonal.
C The band is defined by the matrix locations
C (i,j) with i - ML <= j <= i + MU. ML and MU
C must satisfy 0 <= ML,MU <= NEQ - 1. These are
C required if MITER is 4 or 5, and ignored
C otherwise. ML and MU may in fact be the band
C parameters for a matrix to which df/dy is only
C approximately equal.
C
C LIW The length of the array IWORK, as declared by the user.
C (This will be checked by the solver.)
C
C Note: The work arrays must not be altered between calls to DLSODE
C for the same problem, except possibly for the conditional and
C optional inputs, and except for the last 3*NEQ words of RWORK.
C The latter space is used for internal scratch space, and so is
C available for use by the user outside DLSODE between calls, if
C desired (but not for use by F or JAC).
C
C JAC The name of the user-supplied routine (MITER = 1 or 4) to
C compute the Jacobian matrix, df/dy, as a function of the
C scalar t and the vector y. (See the MF description below
C for MITER.) It is to have the form
C
C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
C DOUBLE PRECISION Y(NEQ), PD(NROWPD,NEQ)
C
C where NEQ, T, Y, ML, MU, and NROWPD are input and the
C array PD is to be loaded with partial derivatives
C (elements of the Jacobian matrix) on output. PD must be
C given a first dimension of NROWPD. T and Y have the same
C meaning as in subroutine F.
C
C In the full matrix case (MITER = 1), ML and MU are
C ignored, and the Jacobian is to be loaded into PD in
C columnwise manner, with df(i)/dy(j) loaded into PD(i,j).
C
C In the band matrix case (MITER = 4), the elements within
C the band are to be loaded into PD in columnwise manner,
C with diagonal lines of df/dy loaded into the rows of PD.
C Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). ML
C and MU are the half-bandwidth parameters (see IWORK).
C The locations in PD in the two triangular areas which
C correspond to nonexistent matrix elements can be ignored
C or loaded arbitrarily, as they are overwritten by DLSODE.
C
C JAC need not provide df/dy exactly. A crude approximation
C (possibly with a smaller bandwidth) will do.
C
C In either case, PD is preset to zero by the solver, so
C that only the nonzero elements need be loaded by JAC.
C Each call to JAC is preceded by a call to F with the same
C arguments NEQ, T, and Y. Thus to gain some efficiency,
C intermediate quantities shared by both calculations may
C be saved in a user COMMON block by F and not recomputed
C by JAC, if desired. Also, JAC may alter the Y array, if
C desired. JAC must be declared EXTERNAL in the calling
C program.
C
C Subroutine JAC may access user-defined quantities in
C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array
C (dimensioned in JAC) and/or Y has length exceeding
C NEQ(1). See the descriptions of NEQ and Y above.

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S24

C
C MF The method flag. Used only for input. The legal values
C of MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24,
C and 25. MF has decimal digits METH and MITER:
C MF = 10*METH + MITER .
C
C METH indicates the basic linear multistep method:
C 1 Implicit Adams method.
C 2 Method based on backward differentiation formulas
C (BDF’s).
C
C MITER indicates the corrector iteration method:
C 0 Functional iteration (no Jacobian matrix is
C involved).
C 1 Chord iteration with a user-supplied full (NEQ by
C NEQ) Jacobian.
C 2 Chord iteration with an internally generated
C (difference quotient) full Jacobian (using NEQ
C extra calls to F per df/dy value).
C 3 Chord iteration with an internally generated
C diagonal Jacobian approximation (using one extra call
C to F per df/dy evaluation).
C 4 Chord iteration with a user-supplied banded Jacobian.
C 5 Chord iteration with an internally generated banded
C Jacobian (using ML + MU + 1 extra calls to F per
C df/dy evaluation).
C
C If MITER = 1 or 4, the user must supply a subroutine JAC
C (the name is arbitrary) as described above under JAC.
C For other values of MITER, a dummy argument can be used.
C
C Optional Inputs
C ---------------
C The following is a list of the optional inputs provided for in the
C call sequence. (See also Part 2.) For each such input variable,
C this table lists its name as used in this documentation, its
C location in the call sequence, its meaning, and the default value.
C The use of any of these inputs requires IOPT = 1, and in that case
C all of these inputs are examined. A value of zero for any of
C these optional inputs will cause the default value to be used.
C Thus to use a subset of the optional inputs, simply preload
C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively,
C and then set those of interest to nonzero values.
C
C Name Location Meaning and default value
C ------ --------- ---
C H0 RWORK(5) Step size to be attempted on the first step.
C The default value is determined by the solver.
C HMAX RWORK(6) Maximum absolute step size allowed. The
C default value is infinite.
C HMIN RWORK(7) Minimum absolute step size allowed. The
C default value is 0. (This lower bound is not
C enforced on the final step before reaching
C TCRIT when ITASK = 4 or 5.)
C MAXORD IWORK(5) Maximum order to be allowed. The default value
C is 12 if METH = 1, and 5 if METH = 2. (See the
C MF description above for METH.) If MAXORD
C exceeds the default value, it will be reduced
C to the default value. If MAXORD is changed
C during the problem, it may cause the current
C order to be reduced.
C MXSTEP IWORK(6) Maximum number of (internally defined) steps
C allowed during one call to the solver. The
C default value is 500.
C MXHNIL IWORK(7) Maximum number of messages printed (per
C problem) warning that T + H = T on a step
C (H = step size). This must be positive to

Cadena et al. S25Vol. 24, No. 12, 2013

C result in a nondefault value. The default
C value is 10.
C
C Optional Outputs
C ----------------
C As optional additional output from DLSODE, the variables listed
C below are quantities related to the performance of DLSODE which
C are available to the user. These are communicated by way of the
C work arrays, but also have internal mnemonic names as shown.
C Except where stated otherwise, all of these outputs are defined on
C any successful return from DLSODE, and on any return with ISTATE =
C -1, -2, -4, -5, or -6. On an illegal input return (ISTATE = -3),
C they will be unchanged from their existing values (if any), except
C possibly for TOLSF, LENRW, and LENIW. On any error return,
C outputs relevant to the error will be defined, as noted below.
C
C Name Location Meaning
C ----- --------- --
C HU RWORK(11) Step size in t last used (successfully).
C HCUR RWORK(12) Step size to be attempted on the next step.
C TCUR RWORK(13) Current value of the independent variable which
C the solver has actually reached, i.e., the
C current internal mesh point in t. On output,
C TCUR will always be at least as far as the
C argument T, but may be farther (if interpolation
C was done).
C TOLSF RWORK(14) Tolerance scale factor, greater than 1.0,
C computed when a request for too much accuracy
C was detected (ISTATE = -3 if detected at the
C start of the problem, ISTATE = -2 otherwise).
C If ITOL is left unaltered but RTOL and ATOL are
C uniformly scaled up by a factor of TOLSF for the
C next call, then the solver is deemed likely to
C succeed. (The user may also ignore TOLSF and
C alter the tolerance parameters in any other way
C appropriate.)
C NST IWORK(11) Number of steps taken for the problem so far.
C NFE IWORK(12) Number of F evaluations for the problem so far.
C NJE IWORK(13) Number of Jacobian evaluations (and of matrix LU
C decompositions) for the problem so far.
C NQU IWORK(14) Method order last used (successfully).
C NQCUR IWORK(15) Order to be attempted on the next step.
C IMXER IWORK(16) Index of the component of largest magnitude in
C the weighted local error vector (e(i)/EWT(i)),
C on an error return with ISTATE = -4 or -5.
C LENRW IWORK(17) Length of RWORK actually required. This is
C defined on normal returns and on an illegal
C input return for insufficient storage.
C LENIW IWORK(18) Length of IWORK actually required. This is
C defined on normal returns and on an illegal
C input return for insufficient storage.
C
C The following two arrays are segments of the RWORK array which may
C also be of interest to the user as optional outputs. For each
C array, the table below gives its internal name, its base address
C in RWORK, and its description.
C
C Name Base address Description
C ---- ------------ --
C YH 21 The Nordsieck history array, of size NYH by
C (NQCUR + 1), where NYH is the initial value of
C NEQ. For j = 0,1,...,NQCUR, column j + 1 of
C YH contains HCUR**j/factorial(j) times the jth
C derivative of the interpolating polynomial
C currently representing the solution, evaluated
C at t = TCUR.
C ACOR LENRW-NEQ+1 Array of size NEQ used for the accumulated

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S26

C corrections on each step, scaled on output to
C represent the estimated local error in Y on
C the last step. This is the vector e in the
C description of the error control. It is
C defined only on successful return from DLSODE.
C
C
C Part 2. Other Callable Routines
C --------------------------------
C
C The following are optional calls which the user may make to gain
C additional capabilities in conjunction with DLSODE.
C
C Form of call Function
C ------------------------ --
C CALL XSETUN(LUN) Set the logical unit number, LUN, for
C output of messages from DLSODE, if the
C default is not desired. The default
C value of LUN is 6. This call may be made
C at any time and will take effect
C immediately.
C CALL XSETF(MFLAG) Set a flag to control the printing of
C messages by DLSODE. MFLAG = 0 means do
C not print. (Danger: this risks losing
C valuable information.) MFLAG = 1 means
C print (the default). This call may be
C made at any time and will take effect
C immediately.
C CALL DSRCOM(RSAV,ISAV,JOB) Saves and restores the contents of the
C internal COMMON blocks used by DLSODE
C (see Part 3 below). RSAV must be a
C real array of length 218 or more, and
C ISAV must be an integer array of length
C 37 or more. JOB = 1 means save COMMON
C into RSAV/ISAV. JOB = 2 means restore
C COMMON from same. DSRCOM is useful if
C one is interrupting a run and restarting
C later, or alternating between two or
C more problems solved with DLSODE.
C CALL DINTDY(,,,,,) Provide derivatives of y, of various
C (see below) orders, at a specified point t, if
C desired. It may be called only after a
C successful return from DLSODE. Detailed
C instructions follow.
C
C Detailed instructions for using DINTDY
C --------------------------------------
C The form of the CALL is:
C
C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG)
C
C The input parameters are:
C
C T Value of independent variable where answers are
C desired (normally the same as the T last returned by
C DLSODE). For valid results, T must lie between
C TCUR - HU and TCUR. (See “Optional Outputs” above
C for TCUR and HU.)
C K Integer order of the derivative desired. K must
C satisfy 0 <= K <= NQCUR, where NQCUR is the current
C order (see “Optional Outputs”). The capability
C corresponding to K = 0, i.e., computing y(t), is
C already provided by DLSODE directly. Since
C NQCUR >= 1, the first derivative dy/dt is always
C available with DINTDY.
C RWORK(21) The base address of the history array YH.
C NYH Column length of YH, equal to the initial value of NEQ.

Cadena et al. S27Vol. 24, No. 12, 2013

C
C The output parameters are:
C
C DKY Real array of length NEQ containing the computed value
C of the Kth derivative of y(t).
C IFLAG Integer flag, returned as 0 if K and T were legal,
C -1 if K was illegal, and -2 if T was illegal.
C On an error return, a message is also written.
C
C
C Part 3. Common Blocks
C ----------------------
C
C If DLSODE is to be used in an overlay situation, the user must
C declare, in the primary overlay, the variables in:
C (1) the call sequence to DLSODE,
C (2) the internal COMMON block /DLS001/, of length 255
C (218 double precision words followed by 37 integer words).
C
C If DLSODE is used on a system in which the contents of internal
C COMMON blocks are not preserved between calls, the user should
C declare the above COMMON block in his main program to insure that
C its contents are preserved.
C
C If the solution of a given problem by DLSODE is to be interrupted
C and then later continued, as when restarting an interrupted run or
C alternating between two or more problems, the user should save,
C following the return from the last DLSODE call prior to the
C interruption, the contents of the call sequence variables and the
C internal COMMON block, and later restore these values before the
C next DLSODE call for that problem. In addition, if XSETUN and/or
C XSETF was called for non-default handling of error messages, then
C these calls must be repeated. To save and restore the COMMON
C block, use subroutine DSRCOM (see Part 2 above).
C
C
C Part 4. Optionally Replaceable Solver Routines
C ---
C
C Below are descriptions of two routines in the DLSODE package which
C relate to the measurement of errors. Either routine can be
C replaced by a user-supplied version, if desired. However, since
C such a replacement may have a major impact on performance, it
C should be done only when absolutely necessary, and only with great
C caution. (Note: The means by which the package version of a
C routine is superseded by the user’s version may be system-
C dependent.)
C
C DEWSET
C ------
C The following subroutine is called just before each internal
C integration step, and sets the array of error weights, EWT, as
C described under ITOL/RTOL/ATOL above:
C
C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT)
C
C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODE call
C sequence, YCUR contains the current dependent variable vector,
C and EWT is the array of weights set by DEWSET.
C
C If the user supplies this subroutine, it must return in EWT(i)
C (i = 1,...,NEQ) a positive quantity suitable for comparing errors
C in Y(i) to. The EWT array returned by DEWSET is passed to the
C DVNORM routine (see below), and also used by DLSODE in the
C computation of the optional output IMXER, the diagonal Jacobian
C approximation, and the increments for difference quotient
C Jacobians.

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S28

C
C In the user-supplied version of DEWSET, it may be desirable to use
C the current values of derivatives of y. Derivatives up to order NQ
C are available from the history array YH, described above under
C optional outputs. In DEWSET, YH is identical to the YCUR array,
C extended to NQ + 1 columns with a column length of NYH and scale
C factors of H**j/factorial(j). On the first call for the problem,
C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. The
C quantities NQ, NYH, H, and NST can be obtained by including in
C DEWSET the statements:
C
C DOUBLE PRECISION RLS
C COMMON /DLS001/ RLS(218),ILS(37)
C NQ = ILS(33)
C NYH = ILS(12)
C NST = ILS(34)
C H = RLS(212)
C
C Thus, for example, the current value of dy/dt can be obtained as
C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is unnecessary
C when NST = 0).
C
C DVNORM
C ------
C DVNORM is a real function routine which computes the weighted
C root-mean-square norm of a vector v:
C
C d = DVNORM (n, v, w)
C
C where:
C n = the length of the vector,
C v = real array of length n containing the vector,
C w = real array of length n containing weights,
C d = SQRT((1/n) * sum(v(i)*w(i))**2).
C
C DVNORM is called with n = NEQ and with w(i) = 1.0/EWT(i), where
C EWT is as set by subroutine DEWSET.
C
C If the user supplies this function, it should return a nonnegative
C value of DVNORM suitable for use in the error control in DLSODE.
C None of the arguments should be altered by DVNORM. For example, a
C user-supplied DVNORM routine might:
C - Substitute a max-norm of (v(i)*w(i)) for the rms-norm, or
C - Ignore some components of v in the norm, with the effect of
C suppressing the error control on those components of Y.
C ---
C***REFERENCES Alan C. Hindmarsh, “ODEPACK, a systematized collection
C of ODE solvers”, in Scientific Computing, R. S.
C Stepleman, et al. (Eds.), (North-Holland, Amsterdam,
C 1983), pp. 55-64.
C***ROUTINES CALLED DEWSET, DINTDY, DUMACH, DSTODE, DVNORM, XERRWD
C***COMMON BLOCKS DLS001
C***REVISION HISTORY (YYMMDD)
C 791129 DATE WRITTEN
C 870330 Major update by ACH.
C 890426 Modified prologue to SLATEC/LDOC format. (FNF)
C 890501 Many improvements to prologue. (FNF)
C 890503 A few final corrections to prologue. (FNF)
C 890504 Minor cosmetic changes. (FNF)
C 890510 Corrected description of Y in Arguments section. (FNF)
C 890517 Minor corrections to prologue. (FNF)
C 920514 Updated with prologue edited 891025 by G. Shaw for manual.
C 920515 Converted source lines to upper case. (FNF)
C 920603 Revised XERRWV calls using mixed upper-lower case. (ACH)
C 920616 Revised prologue comment regarding CFT. (ACH)
C 921116 Revised prologue comments regarding Common. (ACH).
C 930326 Added comment about non-reentrancy. (FNF)

Cadena et al. S29Vol. 24, No. 12, 2013

C 930723 Changed R1MACH to RUMACH. (FNF)
C 930801 Removed Common variables ILLIN and NTREP (affects driver
C logic and Common references); minor changes to prologue and
C internal comments; changed Hollerith strings to quoted
C strings; changed internal comments to mixed case; changed
C dummy dimensions from 1 to *. (ACH)
C 930809 Changed to generic intrinsic names; changed names of
C subprograms and Common blocks to SLSODE etc. (ACH)
C 930929 Eliminated use of REAL intrinsic; other minor changes. (ACH)
C 931005 Generated double precision version. (ACH)
C***END PROLOGUE DLSODE
C
C*Internal Notes:
C
C Other Routines in the DLSODE Package.
C
C In addition to Subroutine DLSODE, the DLSODE package includes the
C following subroutines and function routines:
C DINTDY computes an interpolated value of the y vector at t = TOUT.
C DSTODE is the core integrator, which does one step of the
C integration and the associated error control.
C DCFODE sets all method coefficients and test constants.
C DPREPJ computes and preprocesses the Jacobian matrix J = df/dy
C and the Newton iteration matrix P = I - h*l0*J.
C DSOLSY manages solution of linear system in chord iteration.
C DEWSET sets the error weight vector EWT before each step.
C DVNORM computes the weighted R.M.S. norm of a vector.
C DSRCOM is a user-callable routine to save and restore
C the contents of the internal Common block.
C DGEFA and DGESL are routines from LINPACK for solving full
C systems of linear algebraic equations.
C DGBFA and DGBSL are routines from LINPACK for solving banded
C linear systems.
C DUMACH computes the unit roundoff in a machine-independent manner.
C XERRWD, XSETUN, and XSETF handle the printing of all error
C messages and warnings. XERRWD is machine-dependent.
C Note.. DVNORM and DUMACH are function routines. All the others
C are subroutines.
C
C The intrinsic routines used by DLSODE are..
C ABS, MAX, MIN, MOD, SIGN, and SQRT.
C
C**End
C
C Declare arguments.
C
 EXTERNAL F, JAC
 INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF
 DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK
 DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW)
C
C Declare externals.
C
 EXTERNAL DPREPJ, DSOLSY
 DOUBLE PRECISION DUMACH, DVNORM
C
C Declare all other variables.
C
 INTEGER INIT, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
 1 MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS
 INTEGER ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
 1 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
 INTEGER I, I1, I2, IFLAG, IMXER, KGO, LF0,
 1 LENIW, LENRW, LENWM, ML, MORD, MU, MXHNL0, MXSTP0
 DOUBLE PRECISION ROWNS,
 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
 DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI,

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S30

 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0
 DIMENSION MORD(2)
 LOGICAL IHIT
 CHARACTER*80 MSG
C---
C The following internal common block contains
C (a) variables which are local to any subroutine but whose values must
C be preserved between calls to the routine (own variables), and
C (b) variables which are communicated between subroutines.
C The structure of the block is as follows.. All real variables are
C listed first, followed by all integers. Within each type, the
C variables are grouped with those local to Subroutine DLSODE first,
C then those local to Subroutine DSTODE, and finally those used
C for communication. The block is declared in subroutines
C DLSODE, DINTDY, DSTODE, DPREPJ, and DSOLSY. Groups of variables are
C replaced by dummy arrays in the common declarations in routines
C where those variables are not used.
C---
 COMMON /DLS001/ ROWNS(209),
 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND,
 2 INIT, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
 3 MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6),
 4 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
C
 DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/
C---
C Block A.
C This code block is executed on every call.
C It tests ISTATE and ITASK for legality and branches appropriately.
C If ISTATE .GT. 1 but the flag INIT shows that initialization has
C not yet been done, an error return occurs.
C If ISTATE = 1 and TOUT = T, return immediately.
C---
C
C***FIRST EXECUTABLE STATEMENT DLSODE
 IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601
 IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602
 IF (ISTATE .EQ. 1) GO TO 10
 IF (INIT .EQ. 0) GO TO 603
 IF (ISTATE .EQ. 2) GO TO 200
 GO TO 20
 10 INIT = 0
 IF (TOUT .EQ. T) RETURN
C---
C Block B.
C The next code block is executed for the initial call (ISTATE = 1),
C or for a continuation call with parameter changes (ISTATE = 3).
C It contains checking of all inputs and various initializations.
C
C First check legality of the non-optional inputs NEQ, ITOL, IOPT,
C MF, ML, and MU.
C---
 20 IF (NEQ(1) .LE. 0) GO TO 604
 IF (ISTATE .EQ. 1) GO TO 25
 IF (NEQ(1) .GT. N) GO TO 605
 25 N = NEQ(1)
 IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606
 IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607
 METH = MF/10
 MITER = MF - 10*METH
 IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608
 IF (MITER .LT. 0 .OR. MITER .GT. 5) GO TO 608
 IF (MITER .LE. 3) GO TO 30
 ML = IWORK(1)
 MU = IWORK(2)
 IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609

Cadena et al. S31Vol. 24, No. 12, 2013

 IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610
 30 CONTINUE
C Next process and check the optional inputs. --------------------------
 IF (IOPT .EQ. 1) GO TO 40
 MAXORD = MORD(METH)
 MXSTEP = MXSTP0
 MXHNIL = MXHNL0
 IF (ISTATE .EQ. 1) H0 = 0.0D0
 HMXI = 0.0D0
 HMIN = 0.0D0
 GO TO 60
 40 MAXORD = IWORK(5)
 IF (MAXORD .LT. 0) GO TO 611
 IF (MAXORD .EQ. 0) MAXORD = 100
 MAXORD = MIN(MAXORD,MORD(METH))
 MXSTEP = IWORK(6)
 IF (MXSTEP .LT. 0) GO TO 612
 IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0
 MXHNIL = IWORK(7)
 IF (MXHNIL .LT. 0) GO TO 613
 IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0
 IF (ISTATE .NE. 1) GO TO 50
 H0 = RWORK(5)
 IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614
 50 HMAX = RWORK(6)
 IF (HMAX .LT. 0.0D0) GO TO 615
 HMXI = 0.0D0
 IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX
 HMIN = RWORK(7)
 IF (HMIN .LT. 0.0D0) GO TO 616
C---
C Set work array pointers and check lengths LRW and LIW.
C Pointers to segments of RWORK and IWORK are named by prefixing L to
C the name of the segment. E.g., the segment YH starts at RWORK(LYH).
C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVF, ACOR.
C---
 60 LYH = 21
 IF (ISTATE .EQ. 1) NYH = N
 LWM = LYH + (MAXORD + 1)*NYH
 IF (MITER .EQ. 0) LENWM = 0
 IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LENWM = N*N + 2
 IF (MITER .EQ. 3) LENWM = N + 2
 IF (MITER .GE. 4) LENWM = (2*ML + MU + 1)*N + 2
 LEWT = LWM + LENWM
 LSAVF = LEWT + N
 LACOR = LSAVF + N
 LENRW = LACOR + N - 1
 IWORK(17) = LENRW
 LIWM = 1
 LENIW = 20 + N
 IF (MITER .EQ. 0 .OR. MITER .EQ. 3) LENIW = 20
 IWORK(18) = LENIW
 IF (LENRW .GT. LRW) GO TO 617
 IF (LENIW .GT. LIW) GO TO 618
C Check RTOL and ATOL for legality. ------------------------------------
 RTOLI = RTOL(1)
 ATOLI = ATOL(1)
 DO 70 I = 1,N
 IF (ITOL .GE. 3) RTOLI = RTOL(I)
 IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
 IF (RTOLI .LT. 0.0D0) GO TO 619
 IF (ATOLI .LT. 0.0D0) GO TO 620
 70 CONTINUE
 IF (ISTATE .EQ. 1) GO TO 100
C If ISTATE = 3, set flag to signal parameter changes to DSTODE. -------
 JSTART = -1
 IF (NQ .LE. MAXORD) GO TO 90

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S32

C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. ---------
 DO 80 I = 1,N
 80 RWORK(I+LSAVF-1) = RWORK(I+LWM-1)
C Reload WM(1) = RWORK(LWM), since LWM may have changed. ---------------
 90 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
 IF (N .EQ. NYH) GO TO 200
C NEQ was reduced. Zero part of YH to avoid undefined references. -----
 I1 = LYH + L*NYH
 I2 = LYH + (MAXORD + 1)*NYH - 1
 IF (I1 .GT. I2) GO TO 200
 DO 95 I = I1,I2
 95 RWORK(I) = 0.0D0
 GO TO 200
C---
C Block C.
C The next block is for the initial call only (ISTATE = 1).
C It contains all remaining initializations, the initial call to F,
C and the calculation of the initial step size.
C The error weights in EWT are inverted after being loaded.
C---
 100 UROUND = DUMACH()
 TN = T
 IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110
 TCRIT = RWORK(1)
 IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625
 IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0)
 1 H0 = TCRIT - T
 110 JSTART = 0
 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
 NHNIL = 0
 NST = 0
 NJE = 0
 NSLAST = 0
 HU = 0.0D0
 NQU = 0
 CCMAX = 0.3D0
 MAXCOR = 3
 MSBP = 20
 MXNCF = 10
C Initial call to F. (LF0 points to YH(*,2).) -------------------------
 LF0 = LYH + NYH
 CALL F (NEQ, T, Y, RWORK(LF0))
 NFE = 1
C Load the initial value vector in YH. ---------------------------------
 DO 115 I = 1,N
 115 RWORK(I+LYH-1) = Y(I)
C Load and invert the EWT array. (H is temporarily set to 1.0.) -------
 NQ = 1
 H = 1.0D0
 CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT))
 DO 120 I = 1,N
 IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621
 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1)
C---
C The coding below computes the step size, H0, to be attempted on the
C first step, unless the user has supplied a value for this.
C First check that TOUT - T differs significantly from zero.
C A scalar tolerance quantity TOL is computed, as MAX(RTOL(I))
C if this is positive, or MAX(ATOL(I)/ABS(Y(I))) otherwise, adjusted
C so as to be between 100*UROUND and 1.0E-3.
C Then the computed value H0 is given by..
C NEQ
C H0**2 = TOL / (w0**-2 + (1/NEQ) * SUM (f(i)/ywt(i))**2)
C 1
C where w0 = MAX (ABS(T), ABS(TOUT)),
C f(i) = i-th component of initial value of f,
C ywt(i) = EWT(i)/TOL (a weight for y(i)).

Cadena et al. S33Vol. 24, No. 12, 2013

C The sign of H0 is inferred from the initial values of TOUT and T.
C---
 IF (H0 .NE. 0.0D0) GO TO 180
 TDIST = ABS(TOUT - T)
 W0 = MAX(ABS(T),ABS(TOUT))
 IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622
 TOL = RTOL(1)
 IF (ITOL .LE. 2) GO TO 140
 DO 130 I = 1,N
 130 TOL = MAX(TOL,RTOL(I))
 140 IF (TOL .GT. 0.0D0) GO TO 160
 ATOLI = ATOL(1)
 DO 150 I = 1,N
 IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
 AYI = ABS(Y(I))
 IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI)
 150 CONTINUE
 160 TOL = MAX(TOL,100.0D0*UROUND)
 TOL = MIN(TOL,0.001D0)
 SUM = DVNORM (N, RWORK(LF0), RWORK(LEWT))
 SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2
 H0 = 1.0D0/SQRT(SUM)
 H0 = MIN(H0,TDIST)
 H0 = SIGN(H0,TOUT-T)
C Adjust H0 if necessary to meet HMAX bound. ---------------------------
 180 RH = ABS(H0)*HMXI
 IF (RH .GT. 1.0D0) H0 = H0/RH
C Load H with H0 and scale YH(*,2) by H0. ------------------------------
 H = H0
 DO 190 I = 1,N
 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1)
 GO TO 270
C---
C Block D.
C The next code block is for continuation calls only (ISTATE = 2 or 3)
C and is to check stop conditions before taking a step.
C---
 200 NSLAST = NST
 GO TO (210, 250, 220, 230, 240), ITASK
 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250
 CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
 IF (IFLAG .NE. 0) GO TO 627
 T = TOUT
 GO TO 420
 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND)
 IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623
 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250
 GO TO 400
 230 TCRIT = RWORK(1)
 IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624
 IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625
 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245
 CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
 IF (IFLAG .NE. 0) GO TO 627
 T = TOUT
 GO TO 420
 240 TCRIT = RWORK(1)
 IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624
 245 HMX = ABS(TN) + ABS(H)
 IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX
 IF (IHIT) GO TO 400
 TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND)
 IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250
 H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND)
 IF (ISTATE .EQ. 2) JSTART = -2
C---
C Block E.

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S34

C The next block is normally executed for all calls and contains
C the call to the one-step core integrator DSTODE.
C
C This is a looping point for the integration steps.
C
C First check for too many steps being taken, update EWT (if not at
C start of problem), check for too much accuracy being requested, and
C check for H below the roundoff level in T.
C---
 250 CONTINUE
 IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500
 CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT))
 DO 260 I = 1,N
 IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510
 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1)
 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT))
 IF (TOLSF .LE. 1.0D0) GO TO 280
 TOLSF = TOLSF*2.0D0
 IF (NST .EQ. 0) GO TO 626
 GO TO 520
 280 IF ((TN + H) .NE. TN) GO TO 290
 NHNIL = NHNIL + 1
 IF (NHNIL .GT. MXHNIL) GO TO 290
 MSG = ‘DLSODE- Warning..internal T (=R1) and H (=R2) are’
 CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
 MSG=’ such that in the machine, T + H = T on the next step ‘
 CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
 MSG = ‘ (H = step size). Solver will continue anyway’
 CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H)
 IF (NHNIL .LT. MXHNIL) GO TO 290
 MSG = ‘DLSODE- Above warning has been issued I1 times. ‘
 CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
 MSG = ‘ It will not be issued again for this problem’
 CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0)
 290 CONTINUE
C---
C CALL DSTODE(NEQ,Y,YH,NYH,YH,EWT,SAVF,ACOR,WM,IWM,F,JAC,DPREPJ,DSOLSY)
C---
 CALL DSTODE (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT),
 1 RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), IWORK(LIWM),
 2 F, JAC, DPREPJ, DSOLSY)
 KGO = 1 - KFLAG
 GO TO (300, 530, 540), KGO
C---
C Block F.
C The following block handles the case of a successful return from the
C core integrator (KFLAG = 0). Test for stop conditions.
C---
 300 INIT = 1
 GO TO (310, 400, 330, 340, 350), ITASK
C ITASK = 1. If TOUT has been reached, interpolate. -------------------
 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250
 CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
 T = TOUT
 GO TO 420
C ITASK = 3. Jump to exit if TOUT was reached. ------------------------
 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400
 GO TO 250
C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary.
 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345
 CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
 T = TOUT
 GO TO 420
 345 HMX = ABS(TN) + ABS(H)
 IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX
 IF (IHIT) GO TO 400
 TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND)

Cadena et al. S35Vol. 24, No. 12, 2013

 IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250
 H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND)
 JSTART = -2
 GO TO 250
C ITASK = 5. See if TCRIT was reached and jump to exit. ---------------
 350 HMX = ABS(TN) + ABS(H)
 IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX
C---
C Block G.
C The following block handles all successful returns from DLSODE.
C If ITASK .NE. 1, Y is loaded from YH and T is set accordingly.
C ISTATE is set to 2, the illegal input counter is zeroed, and the
C optional outputs are loaded into the work arrays before returning.
C If ISTATE = 1 and TOUT = T, there is a return with no action taken.
C---
 400 DO 410 I = 1,N
 410 Y(I) = RWORK(I+LYH-1)
 T = TN
 IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420
 IF (IHIT) T = TCRIT
 420 ISTATE = 2
 RWORK(11) = HU
 RWORK(12) = H
 RWORK(13) = TN
 IWORK(11) = NST
 IWORK(12) = NFE
 IWORK(13) = NJE
 IWORK(14) = NQU
 IWORK(15) = NQ
 RETURN
C---
C Block H.
C The following block handles all unsuccessful returns other than
C those for illegal input. First the error message routine is called.
C If there was an error test or convergence test failure, IMXER is set.
C Then Y is loaded from YH and T is set to TN. The optional outputs
C are loaded into the work arrays before returning.
C---
C The maximum number of steps was taken before reaching TOUT. ----------
 500 MSG = ‘DLSODE- At current T (=R1), MXSTEP (=I1) steps ‘
 CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
 MSG = ‘ taken on this call before reaching TOUT ‘
 CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0)
 ISTATE = -1
 GO TO 580
C EWT(I) .LE. 0.0 for some I (not at start of problem). ----------------
 510 EWTI = RWORK(LEWT+I-1)
 MSG = ‘DLSODE- At T (=R1), EWT(I1) has become R2 .LE. 0.’
 CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI)
 ISTATE = -6
 GO TO 580
C Too much accuracy requested for machine precision. -------------------
 520 MSG = ‘DLSODE- At T (=R1), too much accuracy requested ‘
 CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
 MSG = ‘ for precision of machine.. see TOLSF (=R2) ‘
 CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF)
 RWORK(14) = TOLSF
 ISTATE = -2
 GO TO 580
C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. -----
 530 MSG = ‘DLSODE- At T(=R1) and step size H(=R2), the error’
 CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
 MSG = ‘ test failed repeatedly or with ABS(H) = HMIN’
 CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H)
 ISTATE = -4
 GO TO 560
C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ----

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S36

 540 MSG = ‘DLSODE- At T (=R1) and step size H (=R2), the ‘
 CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
 MSG = ‘ corrector convergence failed repeatedly ‘
 CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
 MSG = ‘ or with ABS(H) = HMIN ‘
 CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H)
 ISTATE = -5
C Compute IMXER if relevant. ---
 560 BIG = 0.0D0
 IMXER = 1
 DO 570 I = 1,N
 SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1))
 IF (BIG .GE. SIZE) GO TO 570
 BIG = SIZE
 IMXER = I
 570 CONTINUE
 IWORK(16) = IMXER
C Set Y vector, T, and optional outputs. -------------------------------
 580 DO 590 I = 1,N
 590 Y(I) = RWORK(I+LYH-1)
 T = TN
 RWORK(11) = HU
 RWORK(12) = H
 RWORK(13) = TN
 IWORK(11) = NST
 IWORK(12) = NFE
 IWORK(13) = NJE
 IWORK(14) = NQU
 IWORK(15) = NQ
 RETURN
C---
C Block I.
C The following block handles all error returns due to illegal input
C (ISTATE = -3), as detected before calling the core integrator.
C First the error message routine is called. If the illegal input
C is a negative ISTATE, the run is aborted (apparent infinite loop).
C---
 601 MSG = ‘DLSODE- ISTATE (=I1) illegal ‘
 CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0)
 IF (ISTATE .LT. 0) GO TO 800
 GO TO 700
 602 MSG = ‘DLSODE- ITASK (=I1) illegal ‘
 CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0)
 GO TO 700
 603 MSG = ‘DLSODE- ISTATE .GT. 1 but DLSODE not initialized ‘
 CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
 GO TO 700
 604 MSG = ‘DLSODE- NEQ (=I1) .LT. 1 ‘
 CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0)
 GO TO 700
 605 MSG = ‘DLSODE- ISTATE = 3 and NEQ increased (I1 to I2) ‘
 CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0)
 GO TO 700
 606 MSG = ‘DLSODE- ITOL (=I1) illegal ‘
 CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0)
 GO TO 700
 607 MSG = ‘DLSODE- IOPT (=I1) illegal ‘
 CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0)
 GO TO 700
 608 MSG = ‘DLSODE- MF (=I1) illegal ‘
 CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0)
 GO TO 700
 609 MSG = ‘DLSODE- ML (=I1) illegal.. .LT.0 or .GE.NEQ (=I2)’
 CALL XERRWD (MSG, 50, 9, 0, 2, ML, NEQ(1), 0, 0.0D0, 0.0D0)
 GO TO 700
 610 MSG = ‘DLSODE- MU (=I1) illegal.. .LT.0 or .GE.NEQ (=I2)’
 CALL XERRWD (MSG, 50, 10, 0, 2, MU, NEQ(1), 0, 0.0D0, 0.0D0)

Cadena et al. S37Vol. 24, No. 12, 2013

 GO TO 700
 611 MSG = ‘DLSODE- MAXORD (=I1) .LT. 0 ‘
 CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0)
 GO TO 700
 612 MSG = ‘DLSODE- MXSTEP (=I1) .LT. 0 ‘
 CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0)
 GO TO 700
 613 MSG = ‘DLSODE- MXHNIL (=I1) .LT. 0 ‘
 CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0)
 GO TO 700
 614 MSG = ‘DLSODE- TOUT (=R1) behind T (=R2) ‘
 CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T)
 MSG = ‘ Integration direction is given by H0 (=R1) ‘
 CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0)
 GO TO 700
 615 MSG = ‘DLSODE- HMAX (=R1) .LT. 0.0 ‘
 CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0)
 GO TO 700
 616 MSG = ‘DLSODE- HMIN (=R1) .LT. 0.0 ‘
 CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0)
 GO TO 700
 617 CONTINUE
 MSG=’DLSODE- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)’
 CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0)
 GO TO 700
 618 CONTINUE
 MSG=’DLSODE- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)’
 CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0)
 GO TO 700
 619 MSG = ‘DLSODE- RTOL(I1) is R1 .LT. 0.0 ‘
 CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0)
 GO TO 700
 620 MSG = ‘DLSODE- ATOL(I1) is R1 .LT. 0.0 ‘
 CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0)
 GO TO 700
 621 EWTI = RWORK(LEWT+I-1)
 MSG = ‘DLSODE- EWT(I1) is R1 .LE. 0.0 ‘
 CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0)
 GO TO 700
 622 CONTINUE
 MSG=’DLSODE- TOUT (=R1) too close to T(=R2) to start integration’
 CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T)
 GO TO 700
 623 CONTINUE
 MSG=’DLSODE- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ‘
 CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP)
 GO TO 700
 624 CONTINUE
 MSG=’DLSODE- ITASK = 4 OR 5 and TCRIT (=R1) behind TCUR (=R2) ‘
 CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN)
 GO TO 700
 625 CONTINUE
 MSG=’DLSODE- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ‘
 CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT)
 GO TO 700
 626 MSG = ‘DLSODE- At start of problem, too much accuracy ‘
 CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
 MSG=’ requested for precision of machine.. See TOLSF (=R1) ‘
 CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0)
 RWORK(14) = TOLSF
 GO TO 700
 627 MSG = ‘DLSODE- Trouble in DINTDY. ITASK = I1, TOUT = R1’
 CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0)
C
 700 ISTATE = -3
 RETURN
C

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S38

 800 MSG = ‘DLSODE- Run aborted.. apparent infinite loop ‘
 CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0)
 RETURN
C----------------------- END OF SUBROUTINE DLSODE ----------------------
 END
*DECK DCFODE
 SUBROUTINE DCFODE (METH, ELCO, TESCO)
C***BEGIN PROLOGUE DCFODE
C***SUBSIDIARY
C***PURPOSE Set ODE integrator coefficients.
C***LIBRARY MATHLIB (ODEPACK)
C***TYPE DOUBLE PRECISION (SCFODE-S, DCFODE-D)
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C
C DCFODE is called by the integrator routine to set coefficients
C needed there. The coefficients for the current method, as
C given by the value of METH, are set for all orders and saved.
C The maximum order assumed here is 12 if METH = 1 and 5 if METH = 2.
C (A smaller value of the maximum order is also allowed.)
C DCFODE is called once at the beginning of the problem,
C and is not called again unless and until METH is changed.
C
C The ELCO array contains the basic method coefficients.
C The coefficients el(i), 1 .le. i .le. nq+1, for the method of
C order nq are stored in ELCO(i,nq). They are given by a genetrating
C polynomial, i.e.,
C l(x) = el(1) + el(2)*x + ... + el(nq+1)*x**nq.
C For the implicit Adams methods, l(x) is given by
C dl/dx = (x+1)*(x+2)*...*(x+nq-1)/factorial(nq-1), l(-1) = 0.
C For the BDF methods, l(x) is given by
C l(x) = (x+1)*(x+2)* ... *(x+nq)/K,
C where K = factorial(nq)*(1 + 1/2 + ... + 1/nq).
C
C The TESCO array contains test constants used for the
C local error test and the selection of step size and/or order.
C At order nq, TESCO(k,nq) is used for the selection of step
C size at order nq - 1 if k = 1, at order nq if k = 2, and at order
C nq + 1 if k = 3.
C
C***SEE ALSO DLSODE
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 791129 DATE WRITTEN
C 890501 Modified prologue to SLATEC/LDOC format. (FNF)
C 890503 Minor cosmetic changes. (FNF)
C 930809 Renamed to allow single/double precision versions. (ACH)
C***END PROLOGUE DCFODE
C**End
 INTEGER METH
 INTEGER I, IB, NQ, NQM1, NQP1
 DOUBLE PRECISION ELCO, TESCO
 DOUBLE PRECISION AGAMQ, FNQ, FNQM1, PC, PINT, RAGQ,
 1 RQFAC, RQ1FAC, TSIGN, XPIN
 DIMENSION ELCO(13,12), TESCO(3,12)
 DIMENSION PC(12)
C
C***FIRST EXECUTABLE STATEMENT DCFODE
 GO TO (100, 200), METH
C
 100 ELCO(1,1) = 1.0D0
 ELCO(2,1) = 1.0D0
 TESCO(1,1) = 0.0D0
 TESCO(2,1) = 2.0D0
 TESCO(1,2) = 1.0D0
 TESCO(3,12) = 0.0D0
 PC(1) = 1.0D0

Cadena et al. S39Vol. 24, No. 12, 2013

 RQFAC = 1.0D0
 DO 140 NQ = 2,12
C---
C The PC array will contain the coefficients of the polynomial
C p(x) = (x+1)*(x+2)*...*(x+nq-1).
C Initially, p(x) = 1.
C---
 RQ1FAC = RQFAC
 RQFAC = RQFAC/NQ
 NQM1 = NQ - 1
 FNQM1 = NQM1
 NQP1 = NQ + 1
C Form coefficients of p(x)*(x+nq-1). ----------------------------------
 PC(NQ) = 0.0D0
 DO 110 IB = 1,NQM1
 I = NQP1 - IB
 110 PC(I) = PC(I-1) + FNQM1*PC(I)
 PC(1) = FNQM1*PC(1)
C Compute integral, -1 to 0, of p(x) and x*p(x). -----------------------
 PINT = PC(1)
 XPIN = PC(1)/2.0D0
 TSIGN = 1.0D0
 DO 120 I = 2,NQ
 TSIGN = -TSIGN
 PINT = PINT + TSIGN*PC(I)/I
 120 XPIN = XPIN + TSIGN*PC(I)/(I+1)
C Store coefficients in ELCO and TESCO. --------------------------------
 ELCO(1,NQ) = PINT*RQ1FAC
 ELCO(2,NQ) = 1.0D0
 DO 130 I = 2,NQ
 130 ELCO(I+1,NQ) = RQ1FAC*PC(I)/I
 AGAMQ = RQFAC*XPIN
 RAGQ = 1.0D0/AGAMQ
 TESCO(2,NQ) = RAGQ
 IF (NQ .LT. 12) TESCO(1,NQP1) = RAGQ*RQFAC/NQP1
 TESCO(3,NQM1) = RAGQ
 140 CONTINUE
 RETURN
C
 200 PC(1) = 1.0D0
 RQ1FAC = 1.0D0
 DO 230 NQ = 1,5
C---
C The PC array will contain the coefficients of the polynomial
C p(x) = (x+1)*(x+2)*...*(x+nq).
C Initially, p(x) = 1.
C---
 FNQ = NQ
 NQP1 = NQ + 1
C form coefficients of p(x)*(x+nq). ------------------------------------
 PC(NQP1) = 0.0D0
 DO 210 IB = 1,NQ
 I = NQ + 2 - IB
 210 PC(I) = PC(I-1) + FNQ*PC(I)
 PC(1) = FNQ*PC(1)
C Store coefficients in ELCO and TESCO. --------------------------------
 DO 220 I = 1,NQP1
 220 ELCO(I,NQ) = PC(I)/PC(2)
 ELCO(2,NQ) = 1.0D0
 TESCO(1,NQ) = RQ1FAC
 TESCO(2,NQ) = NQP1/ELCO(1,NQ)
 TESCO(3,NQ) = (NQ+2)/ELCO(1,NQ)
 RQ1FAC = RQ1FAC/FNQ
 230 CONTINUE
 RETURN
C----------------------- END OF SUBROUTINE DCFODE ----------------------
 END

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S40

*DECK DINTDY
 SUBROUTINE DINTDY (T, K, YH, NYH, DKY, IFLAG)
C***BEGIN PROLOGUE DINTDY
C***SUBSIDIARY
C***PURPOSE Interpolate solution derivatives.
C***LIBRARY MATHLIB (ODEPACK)
C***TYPE DOUBLE PRECISION (SINTDY-S, DINTDY-D)
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C
C DINTDY computes interpolated values of the K-th derivative of the
C dependent variable vector y, and stores it in DKY. This routine
C is called within the package with K = 0 and T = TOUT, but may
C also be called by the user for any K up to the current order.
C (See detailed instructions in the usage documentation.)
C
C The computed values in DKY are gotten by interpolation using the
C Nordsieck history array YH. This array corresponds uniquely to a
C vector-valued polynomial of degree NQCUR or less, and DKY is set
C to the K-th derivative of this polynomial at T.
C The formula for DKY is:
C q
C DKY(i) = sum c(j,K) * (T - tn)**(j-K) * h**(-j) * YH(i,j+1)
C j=K
C where c(j,K) = j*(j-1)*...*(j-K+1), q = NQCUR, tn = TCUR, h = HCUR.
C The quantities nq = NQCUR, l = nq+1, N = NEQ, tn, and h are
C communicated by COMMON. The above sum is done in reverse order.
C IFLAG is returned negative if either K or T is out of bounds.
C
C***SEE ALSO DLSODE
C***ROUTINES CALLED XERRWD
C***COMMON BLOCKS DLS001
C***REVISION HISTORY (YYMMDD)
C 791129 DATE WRITTEN
C 890501 Modified prologue to SLATEC/LDOC format. (FNF)
C 890503 Minor cosmetic changes. (FNF)
C 930809 Renamed to allow single/double precision versions. (ACH)
C***END PROLOGUE DINTDY
C**End
 INTEGER K, NYH, IFLAG
 INTEGER IOWND, IOWNS,
 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
 2 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
 INTEGER I, IC, J, JB, JB2, JJ, JJ1, JP1
 DOUBLE PRECISION T, YH, DKY
 DOUBLE PRECISION ROWNS,
 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
 DOUBLE PRECISION C, R, S, TP
 CHARACTER*80 MSG
 DIMENSION YH(NYH,*), DKY(*)
 COMMON /DLS001/ ROWNS(209),
 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND,
 3 IOWND(12), IOWNS(6),
 4 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
C
C***FIRST EXECUTABLE STATEMENT DINTDY
 IFLAG = 0
 IF (K .LT. 0 .OR. K .GT. NQ) GO TO 80
 TP = TN - HU - 100.0D0*UROUND*(TN + HU)
 IF ((T-TP)*(T-TN) .GT. 0.0D0) GO TO 90
C
 S = (T - TN)/H
 IC = 1
 IF (K .EQ. 0) GO TO 15
 JJ1 = L - K
 DO 10 JJ = JJ1,NQ

Cadena et al. S41Vol. 24, No. 12, 2013

 10 IC = IC*JJ
 15 C = IC
 DO 20 I = 1,N
 20 DKY(I) = C*YH(I,L)
 IF (K .EQ. NQ) GO TO 55
 JB2 = NQ - K
 DO 50 JB = 1,JB2
 J = NQ - JB
 JP1 = J + 1
 IC = 1
 IF (K .EQ. 0) GO TO 35
 JJ1 = JP1 - K
 DO 30 JJ = JJ1,J
 30 IC = IC*JJ
 35 C = IC
 DO 40 I = 1,N
 40 DKY(I) = C*YH(I,JP1) + S*DKY(I)
 50 CONTINUE
 IF (K .EQ. 0) RETURN
 55 R = H**(-K)
 DO 60 I = 1,N
 60 DKY(I) = R*DKY(I)
 RETURN
C
 80 MSG = ‘DINTDY- K (=I1) illegal ‘
 CALL XERRWD (MSG, 30, 51, 0, 1, K, 0, 0, 0.0D0, 0.0D0)
 IFLAG = -1
 RETURN
 90 MSG = ‘DINTDY- T (=R1) illegal ‘
 CALL XERRWD (MSG, 30, 52, 0, 0, 0, 0, 1, T, 0.0D0)
 MSG=’ T not in interval TCUR - HU (= R1) to TCUR (=R2) ‘
 CALL XERRWD (MSG, 60, 52, 0, 0, 0, 0, 2, TP, TN)
 IFLAG = -2
 RETURN
C----------------------- END OF SUBROUTINE DINTDY ----------------------
 END
*DECK DPREPJ
 SUBROUTINE DPREPJ (NEQ, Y, YH, NYH, EWT, FTEM, SAVF, WM, IWM,
 1 F, JAC)
C***BEGIN PROLOGUE DPREPJ
C***SUBSIDIARY
C***PURPOSE Compute and process Newton iteration matrix.
C***LIBRARY MATHLIB (ODEPACK)
C***TYPE DOUBLE PRECISION (SPREPJ-S, DPREPJ-D)
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C
C DPREPJ is called by DSTODE to compute and process the matrix
C P = I - h*el(1)*J , where J is an approximation to the Jacobian.
C Here J is computed by the user-supplied routine JAC if
C MITER = 1 or 4, or by finite differencing if MITER = 2, 3, or 5.
C If MITER = 3, a diagonal approximation to J is used.
C J is stored in WM and replaced by P. If MITER .ne. 3, P is then
C subjected to LU decomposition in preparation for later solution
C of linear systems with P as coefficient matrix. This is done
C by DGEFA if MITER = 1 or 2, and by DGBFA if MITER = 4 or 5.
C
C In addition to variables described in DSTODE and DLSODE prologues,
C communication with DPREPJ uses the following:
C Y = array containing predicted values on entry.
C FTEM = work array of length N (ACOR in DSTODE).
C SAVF = array containing f evaluated at predicted y.
C WM = real work space for matrices. On output it contains the
C inverse diagonal matrix if MITER = 3 and the LU decomposition
C of P if MITER is 1, 2 , 4, or 5.
C Storage of matrix elements starts at WM(3).
C WM also contains the following matrix-related data:

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S42

C WM(1) = SQRT(UROUND), used in numerical Jacobian increments.
C WM(2) = H*EL0, saved for later use if MITER = 3.
C IWM = integer work space containing pivot information, starting at
C IWM(21), if MITER is 1, 2, 4, or 5. IWM also contains band
C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5.
C EL0 = EL(1) (input).
C IERPJ = output error flag, = 0 if no trouble, .gt. 0 if
C P matrix found to be singular.
C JCUR = output flag = 1 to indicate that the Jacobian matrix
C (or approximation) is now current.
C This routine also uses the COMMON variables EL0, H, TN, UROUND,
C MITER, N, NFE, and NJE.
C
C***SEE ALSO DLSODE
C***ROUTINES CALLED DGBFA, DGEFA, DVNORM
C***COMMON BLOCKS DLS001
C***REVISION HISTORY (YYMMDD)
C 791129 DATE WRITTEN
C 890501 Modified prologue to SLATEC/LDOC format. (FNF)
C 890504 Minor cosmetic changes. (FNF)
C 930809 Renamed to allow single/double precision versions. (ACH)
C***END PROLOGUE DPREPJ
C**End
 EXTERNAL F, JAC
 INTEGER NEQ, NYH, IWM
 INTEGER IOWND, IOWNS,
 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
 2 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
 INTEGER I, I1, I2, IER, II, J, J1, JJ, LENP,
 1 MBA, MBAND, MEB1, MEBAND, ML, ML3, MU, NP1
 DOUBLE PRECISION Y, YH, EWT, FTEM, SAVF, WM
 DOUBLE PRECISION ROWNS,
 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
 DOUBLE PRECISION CON, DI, FAC, HL0, R, R0, SRUR, YI, YJ, YJJ,
 1 DVNORM
 DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*),
 1 WM(*), IWM(*)
 COMMON /DLS001/ ROWNS(209),
 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND,
 3 IOWND(12), IOWNS(6),
 4 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
C
C***FIRST EXECUTABLE STATEMENT DPREPJ
 NJE = NJE + 1
 IERPJ = 0
 JCUR = 1
 HL0 = H*EL0
 GO TO (100, 200, 300, 400, 500), MITER
C If MITER = 1, call JAC and multiply by scalar. -----------------------
 100 LENP = N*N
 DO 110 I = 1,LENP
 110 WM(I+2) = 0.0D0
 CALL JAC (NEQ, TN, Y, 0, 0, WM(3), N)
 CON = -HL0
 DO 120 I = 1,LENP
 120 WM(I+2) = WM(I+2)*CON
 GO TO 240
C If MITER = 2, make N calls to F to approximate J. --------------------
 200 FAC = DVNORM (N, SAVF, EWT)
 R0 = 1000.0D0*ABS(H)*UROUND*N*FAC
 IF (R0 .EQ. 0.0D0) R0 = 1.0D0
 SRUR = WM(1)
 J1 = 2
 DO 230 J = 1,N
 YJ = Y(J)
 R = MAX(SRUR*ABS(YJ),R0/EWT(J))

Cadena et al. S43Vol. 24, No. 12, 2013

 Y(J) = Y(J) + R
 FAC = -HL0/R
 CALL F (NEQ, TN, Y, FTEM)
 DO 220 I = 1,N
 220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC
 Y(J) = YJ
 J1 = J1 + N
 230 CONTINUE
 NFE = NFE + N
C Add identity matrix. ---
 240 J = 3
 NP1 = N + 1
 DO 250 I = 1,N
 WM(J) = WM(J) + 1.0D0
 250 J = J + NP1
C Do LU decomposition on P. --
 CALL DGEFA (WM(3), N, N, IWM(21), IER)
 IF (IER .NE. 0) IERPJ = 1
 RETURN
C If MITER = 3, construct a diagonal approximation to J and P. ---------
 300 WM(2) = HL0
 R = EL0*0.1D0
 DO 310 I = 1,N
 310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2))
 CALL F (NEQ, TN, Y, WM(3))
 NFE = NFE + 1
 DO 320 I = 1,N
 R0 = H*SAVF(I) - YH(I,2)
 DI = 0.1D0*R0 - H*(WM(I+2) - SAVF(I))
 WM(I+2) = 1.0D0
 IF (ABS(R0) .LT. UROUND/EWT(I)) GO TO 320
 IF (ABS(DI) .EQ. 0.0D0) GO TO 330
 WM(I+2) = 0.1D0*R0/DI
 320 CONTINUE
 RETURN
 330 IERPJ = 1
 RETURN
C If MITER = 4, call JAC and multiply by scalar. -----------------------
 400 ML = IWM(1)
 MU = IWM(2)
 ML3 = ML + 3
 MBAND = ML + MU + 1
 MEBAND = MBAND + ML
 LENP = MEBAND*N
 DO 410 I = 1,LENP
 410 WM(I+2) = 0.0D0
 CALL JAC (NEQ, TN, Y, ML, MU, WM(ML3), MEBAND)
 CON = -HL0
 DO 420 I = 1,LENP
 420 WM(I+2) = WM(I+2)*CON
 GO TO 570
C If MITER = 5, make MBAND calls to F to approximate J. ----------------
 500 ML = IWM(1)
 MU = IWM(2)
 MBAND = ML + MU + 1
 MBA = MIN(MBAND,N)
 MEBAND = MBAND + ML
 MEB1 = MEBAND - 1
 SRUR = WM(1)
 FAC = DVNORM (N, SAVF, EWT)
 R0 = 1000.0D0*ABS(H)*UROUND*N*FAC
 IF (R0 .EQ. 0.0D0) R0 = 1.0D0
 DO 560 J = 1,MBA
 DO 530 I = J,N,MBAND
 YI = Y(I)
 R = MAX(SRUR*ABS(YI),R0/EWT(I))
 530 Y(I) = Y(I) + R

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S44

 CALL F (NEQ, TN, Y, FTEM)
 DO 550 JJ = J,N,MBAND
 Y(JJ) = YH(JJ,1)
 YJJ = Y(JJ)
 R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ))
 FAC = -HL0/R
 I1 = MAX(JJ-MU,1)
 I2 = MIN(JJ+ML,N)
 II = JJ*MEB1 - ML + 2
 DO 540 I = I1,I2
 540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC
 550 CONTINUE
 560 CONTINUE
 NFE = NFE + MBA
C Add identity matrix. ---
 570 II = MBAND + 2
 DO 580 I = 1,N
 WM(II) = WM(II) + 1.0D0
 580 II = II + MEBAND
C Do LU decomposition of P. --
 CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(21), IER)
 IF (IER .NE. 0) IERPJ = 1
 RETURN
C----------------------- END OF SUBROUTINE DPREPJ ----------------------
 END
*DECK DSOLSY
 SUBROUTINE DSOLSY (WM, IWM, X, TEM)
C***BEGIN PROLOGUE DSOLSY
C***SUBSIDIARY
C***PURPOSE ODEPACK linear system solver.
C***LIBRARY MATHLIB (ODEPACK)
C***TYPE DOUBLE PRECISION (SSOLSY-S, DSOLSY-D)
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C
C This routine manages the solution of the linear system arising from
C a chord iteration. It is called if MITER .ne. 0.
C If MITER is 1 or 2, it calls DGESL to accomplish this.
C If MITER = 3 it updates the coefficient h*EL0 in the diagonal
C matrix, and then computes the solution.
C If MITER is 4 or 5, it calls DGBSL.
C Communication with DSOLSY uses the following variables:
C WM = real work space containing the inverse diagonal matrix if
C MITER = 3 and the LU decomposition of the matrix otherwise.
C Storage of matrix elements starts at WM(3).
C WM also contains the following matrix-related data:
C WM(1) = SQRT(UROUND) (not used here),
C WM(2) = HL0, the previous value of h*EL0, used if MITER = 3.
C IWM = integer work space containing pivot information, starting at
C IWM(21), if MITER is 1, 2, 4, or 5. IWM also contains band
C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5.
C X = the right-hand side vector on input, and the solution vector
C on output, of length N.
C TEM = vector of work space of length N, not used in this version.
C IERSL = output flag (in COMMON). IERSL = 0 if no trouble occurred.
C IERSL = 1 if a singular matrix arose with MITER = 3.
C This routine also uses the COMMON variables EL0, H, MITER, and N.
C
C***SEE ALSO DLSODE
C***ROUTINES CALLED DGBSL, DGESL
C***COMMON BLOCKS DLS001
C***REVISION HISTORY (YYMMDD)
C 791129 DATE WRITTEN
C 890501 Modified prologue to SLATEC/LDOC format. (FNF)
C 890503 Minor cosmetic changes. (FNF)
C 930809 Renamed to allow single/double precision versions. (ACH)
C***END PROLOGUE DSOLSY

Cadena et al. S45Vol. 24, No. 12, 2013

C**End
 INTEGER IWM
 INTEGER IOWND, IOWNS,
 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
 2 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
 INTEGER I, MEBAND, ML, MU
 DOUBLE PRECISION WM, X, TEM
 DOUBLE PRECISION ROWNS,
 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
 DOUBLE PRECISION DI, HL0, PHL0, R
 DIMENSION WM(*), IWM(*), X(*), TEM(*)
 COMMON /DLS001/ ROWNS(209),
 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND,
 3 IOWND(12), IOWNS(6),
 4 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
C
C***FIRST EXECUTABLE STATEMENT DSOLSY
 IERSL = 0
 GO TO (100, 100, 300, 400, 400), MITER
 100 CALL DGESL (WM(3), N, N, IWM(21), X, 0)
 RETURN
C
 300 PHL0 = WM(2)
 HL0 = H*EL0
 WM(2) = HL0
 IF (HL0 .EQ. PHL0) GO TO 330
 R = HL0/PHL0
 DO 320 I = 1,N
 DI = 1.0D0 - R*(1.0D0 - 1.0D0/WM(I+2))
 IF (ABS(DI) .EQ. 0.0D0) GO TO 390
 320 WM(I+2) = 1.0D0/DI
 330 DO 340 I = 1,N
 340 X(I) = WM(I+2)*X(I)
 RETURN
 390 IERSL = 1
 RETURN
C
 400 ML = IWM(1)
 MU = IWM(2)
 MEBAND = 2*ML + MU + 1
 CALL DGBSL (WM(3), MEBAND, N, ML, MU, IWM(21), X, 0)
 RETURN
C----------------------- END OF SUBROUTINE DSOLSY ----------------------
 END
*DECK DSRCOM
 SUBROUTINE DSRCOM (RSAV, ISAV, JOB)
C***BEGIN PROLOGUE DSRCOM
C***SUBSIDIARY
C***PURPOSE Save/restore ODEPACK COMMON blocks.
C***LIBRARY MATHLIB (ODEPACK)
C***TYPE DOUBLE PRECISION (SSRCOM-S, DSRCOM-D)
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C
C This routine saves or restores (depending on JOB) the contents of
C the COMMON block DLS001, which is used internally
C by one or more ODEPACK solvers.
C
C RSAV = real array of length 218 or more.
C ISAV = integer array of length 37 or more.
C JOB = flag indicating to save or restore the COMMON blocks:
C JOB = 1 if COMMON is to be saved (written to RSAV/ISAV)
C JOB = 2 if COMMON is to be restored (read from RSAV/ISAV)
C A call with JOB = 2 presumes a prior call with JOB = 1.
C
C***SEE ALSO DLSODE

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S46

C***ROUTINES CALLED (NONE)
C***COMMON BLOCKS DLS001
C***REVISION HISTORY (YYMMDD)
C 791129 DATE WRITTEN
C 890501 Modified prologue to SLATEC/LDOC format. (FNF)
C 890503 Minor cosmetic changes. (FNF)
C 921116 Deleted treatment of block /EH0001/. (ACH)
C 930801 Reduced Common block length by 2. (ACH)
C 930809 Renamed to allow single/double precision versions. (ACH)
C***END PROLOGUE DSRCOM
C**End
 INTEGER ISAV, JOB
 INTEGER ILS
 INTEGER I, LENILS, LENRLS
 DOUBLE PRECISION RSAV, RLS
 DIMENSION RSAV(*), ISAV(*)
 COMMON /DLS001/ RLS(218), ILS(37)
 DATA LENRLS/218/, LENILS/37/
C
C***FIRST EXECUTABLE STATEMENT DSRCOM
 IF (JOB .EQ. 2) GO TO 100
C
 DO 10 I = 1,LENRLS
 10 RSAV(I) = RLS(I)
 DO 20 I = 1,LENILS
 20 ISAV(I) = ILS(I)
 RETURN
C
 100 CONTINUE
 DO 110 I = 1,LENRLS
 110 RLS(I) = RSAV(I)
 DO 120 I = 1,LENILS
 120 ILS(I) = ISAV(I)
 RETURN
C----------------------- END OF SUBROUTINE DSRCOM ----------------------
 END
*DECK DSTODE
 SUBROUTINE DSTODE (NEQ, Y, YH, NYH, YH1, EWT, SAVF, ACOR,
 1 WM, IWM, F, JAC, PJAC, SLVS)
C***BEGIN PROLOGUE DSTODE
C***SUBSIDIARY
C***PURPOSE Performs one step of an ODEPACK integration.
C***LIBRARY MATHLIB (ODEPACK)
C***TYPE DOUBLE PRECISION (SSTODE-S, DSTODE-D)
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C
C DSTODE performs one step of the integration of an initial value
C problem for a system of ordinary differential equations.
C Note: DSTODE is independent of the value of the iteration method
C indicator MITER, when this is .ne. 0, and hence is independent
C of the type of chord method used, or the Jacobian structure.
C Communication with DSTODE is done with the following variables:
C
C NEQ = integer array containing problem size in NEQ(1), and
C passed as the NEQ argument in all calls to F and JAC.
C Y = an array of length .ge. N used as the Y argument in
C all calls to F and JAC.
C YH = an NYH by LMAX array containing the dependent variables
C and their approximate scaled derivatives, where
C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate
C j-th derivative of y(i), scaled by h**j/factorial(j)
C (j = 0,1,...,NQ). on entry for the first step, the first
C two columns of YH must be set from the initial values.
C NYH = a constant integer .ge. N, the first dimension of YH.
C YH1 = a one-dimensional array occupying the same space as YH.
C EWT = an array of length N containing multiplicative weights

Cadena et al. S47Vol. 24, No. 12, 2013

C for local error measurements. Local errors in Y(i) are
C compared to 1.0/EWT(i) in various error tests.
C SAVF = an array of working storage, of length N.
C Also used for input of YH(*,MAXORD+2) when JSTART = -1
C and MAXORD .lt. the current order NQ.
C ACOR = a work array of length N, used for the accumulated
C corrections. On a successful return, ACOR(i) contains
C the estimated one-step local error in Y(i).
C WM,IWM = real and integer work arrays associated with matrix
C operations in chord iteration (MITER .ne. 0).
C PJAC = name of routine to evaluate and preprocess Jacobian matrix
C and P = I - h*el0*JAC, if a chord method is being used.
C SLVS = name of routine to solve linear system in chord iteration.
C CCMAX = maximum relative change in h*el0 before PJAC is called.
C H = the step size to be attempted on the next step.
C H is altered by the error control algorithm during the
C problem. H can be either positive or negative, but its
C sign must remain constant throughout the problem.
C HMIN = the minimum absolute value of the step size h to be used.
C HMXI = inverse of the maximum absolute value of h to be used.
C HMXI = 0.0 is allowed and corresponds to an infinite hmax.
C HMIN and HMXI may be changed at any time, but will not
C take effect until the next change of h is considered.
C TN = the independent variable. TN is updated on each step taken.
C JSTART = an integer used for input only, with the following
C values and meanings:
C 0 perform the first step.
C .gt.0 take a new step continuing from the last.
C -1 take the next step with a new value of H, MAXORD,
C N, METH, MITER, and/or matrix parameters.
C -2 take the next step with a new value of H,
C but with other inputs unchanged.
C On return, JSTART is set to 1 to facilitate continuation.
C KFLAG = a completion code with the following meanings:
C 0 the step was succesful.
C -1 the requested error could not be achieved.
C -2 corrector convergence could not be achieved.
C -3 fatal error in PJAC or SLVS.
C A return with KFLAG = -1 or -2 means either
C abs(H) = HMIN or 10 consecutive failures occurred.
C On a return with KFLAG negative, the values of TN and
C the YH array are as of the beginning of the last
C step, and H is the last step size attempted.
C MAXORD = the maximum order of integration method to be allowed.
C MAXCOR = the maximum number of corrector iterations allowed.
C MSBP = maximum number of steps between PJAC calls (MITER .gt. 0).
C MXNCF = maximum number of convergence failures allowed.
C METH/MITER = the method flags. See description in driver.
C N = the number of first-order differential equations.
C The values of CCMAX, H, HMIN, HMXI, TN, JSTART, KFLAG, MAXORD,
C MAXCOR, MSBP, MXNCF, METH, MITER, and N are communicated via COMMON.
C
C***SEE ALSO DLSODE
C***ROUTINES CALLED DCFODE, DVNORM
C***COMMON BLOCKS DLS001
C***REVISION HISTORY (YYMMDD)
C 791129 DATE WRITTEN
C 890501 Modified prologue to SLATEC/LDOC format. (FNF)
C 890503 Minor cosmetic changes. (FNF)
C 930809 Renamed to allow single/double precision versions. (ACH)
C***END PROLOGUE DSTODE
C**End
 EXTERNAL F, JAC, PJAC, SLVS
 INTEGER NEQ, NYH, IWM
 INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP,
 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
 2 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S48

 INTEGER I, I1, IREDO, IRET, J, JB, M, NCF, NEWQ
 DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, ACOR, WM
 DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO,
 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
 DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP,
 1 R, RH, RHDN, RHSM, RHUP, TOLD, DVNORM
 DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*),
 1 ACOR(*), WM(*), IWM(*)
 COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12),
 1 HOLD, RMAX, TESCO(3,12),
 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, IOWND(12),
 3 IALTH, IPUP, LMAX, MEO, NQNYH, NSLP,
 4 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
C
C***FIRST EXECUTABLE STATEMENT DSTODE
 KFLAG = 0
 TOLD = TN
 NCF = 0
 IERPJ = 0
 IERSL = 0
 JCUR = 0
 ICF = 0
 DELP = 0.0D0
 IF (JSTART .GT. 0) GO TO 200
 IF (JSTART .EQ. -1) GO TO 100
 IF (JSTART .EQ. -2) GO TO 160
C---
C On the first call, the order is set to 1, and other variables are
C initialized. RMAX is the maximum ratio by which H can be increased
C in a single step. It is initially 1.E4 to compensate for the small
C initial H, but then is normally equal to 10. If a failure
C occurs (in corrector convergence or error test), RMAX is set to 2
C for the next increase.
C---
 LMAX = MAXORD + 1
 NQ = 1
 L = 2
 IALTH = 2
 RMAX = 10000.0D0
 RC = 0.0D0
 EL0 = 1.0D0
 CRATE = 0.7D0
 HOLD = H
 MEO = METH
 NSLP = 0
 IPUP = MITER
 IRET = 3
 GO TO 140
C---
C The following block handles preliminaries needed when JSTART = -1.
C IPUP is set to MITER to force a matrix update.
C If an order increase is about to be considered (IALTH = 1),
C IALTH is reset to 2 to postpone consideration one more step.
C If the caller has changed METH, DCFODE is called to reset
C the coefficients of the method.
C If the caller has changed MAXORD to a value less than the current
C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly.
C If H is to be changed, YH must be rescaled.
C If H or METH is being changed, IALTH is reset to L = NQ + 1
C to prevent further changes in H for that many steps.
C---
 100 IPUP = MITER
 LMAX = MAXORD + 1
 IF (IALTH .EQ. 1) IALTH = 2
 IF (METH .EQ. MEO) GO TO 110
 CALL DCFODE (METH, ELCO, TESCO)

Cadena et al. S49Vol. 24, No. 12, 2013

 MEO = METH
 IF (NQ .GT. MAXORD) GO TO 120
 IALTH = L
 IRET = 1
 GO TO 150
 110 IF (NQ .LE. MAXORD) GO TO 160
 120 NQ = MAXORD
 L = LMAX
 DO 125 I = 1,L
 125 EL(I) = ELCO(I,NQ)
 NQNYH = NQ*NYH
 RC = RC*EL(1)/EL0
 EL0 = EL(1)
 CONIT = 0.5D0/(NQ+2)
 DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L)
 EXDN = 1.0D0/L
 RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0)
 RH = MIN(RHDN,1.0D0)
 IREDO = 3
 IF (H .EQ. HOLD) GO TO 170
 RH = MIN(RH,ABS(H/HOLD))
 H = HOLD
 GO TO 175
C---
C DCFODE is called to get all the integration coefficients for the
C current METH. Then the EL vector and related constants are reset
C whenever the order NQ is changed, or at the start of the problem.
C---
 140 CALL DCFODE (METH, ELCO, TESCO)
 150 DO 155 I = 1,L
 155 EL(I) = ELCO(I,NQ)
 NQNYH = NQ*NYH
 RC = RC*EL(1)/EL0
 EL0 = EL(1)
 CONIT = 0.5D0/(NQ+2)
 GO TO (160, 170, 200), IRET
C---
C If H is being changed, the H ratio RH is checked against
C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to
C L = NQ + 1 to prevent a change of H for that many steps, unless
C forced by a convergence or error test failure.
C---
 160 IF (H .EQ. HOLD) GO TO 200
 RH = H/HOLD
 H = HOLD
 IREDO = 3
 GO TO 175
 170 RH = MAX(RH,HMIN/ABS(H))
 175 RH = MIN(RH,RMAX)
 RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH)
 R = 1.0D0
 DO 180 J = 2,L
 R = R*RH
 DO 180 I = 1,N
 180 YH(I,J) = YH(I,J)*R
 H = H*RH
 RC = RC*RH
 IALTH = L
 IF (IREDO .EQ. 0) GO TO 690
C---
C This section computes the predicted values by effectively
C multiplying the YH array by the Pascal Triangle matrix.
C RC is the ratio of new to old values of the coefficient H*EL(1).
C When RC differs from 1 by more than CCMAX, IPUP is set to MITER
C to force PJAC to be called, if a Jacobian is involved.
C In any case, PJAC is called at least every MSBP steps.
C---

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S50

 200 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER
 IF (NST .GE. NSLP+MSBP) IPUP = MITER
 TN = TN + H
 I1 = NQNYH + 1
 DO 215 JB = 1,NQ
 I1 = I1 - NYH
Cdir$ ivdep
 DO 210 I = I1,NQNYH
 210 YH1(I) = YH1(I) + YH1(I+NYH)
 215 CONTINUE
C---
C Up to MAXCOR corrector iterations are taken. A convergence test is
C made on the R.M.S. norm of each correction, weighted by the error
C weight vector EWT. The sum of the corrections is accumulated in the
C vector ACOR(i). The YH array is not altered in the corrector loop.
C---
 220 M = 0
 DO 230 I = 1,N
 230 Y(I) = YH(I,1)
 CALL F (NEQ, TN, Y, SAVF)
 NFE = NFE + 1
 IF (IPUP .LE. 0) GO TO 250
C---
C If indicated, the matrix P = I - h*el(1)*J is reevaluated and
C preprocessed before starting the corrector iteration. IPUP is set
C to 0 as an indicator that this has been done.
C---
 CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC)
 IPUP = 0
 RC = 1.0D0
 NSLP = NST
 CRATE = 0.7D0
 IF (IERPJ .NE. 0) GO TO 430
 250 DO 260 I = 1,N
 260 ACOR(I) = 0.0D0
 270 IF (MITER .NE. 0) GO TO 350
C---
C In the case of functional iteration, update Y directly from
C the result of the last function evaluation.
C---
 DO 290 I = 1,N
 SAVF(I) = H*SAVF(I) - YH(I,2)
 290 Y(I) = SAVF(I) - ACOR(I)
 DEL = DVNORM (N, Y, EWT)
 DO 300 I = 1,N
 Y(I) = YH(I,1) + EL(1)*SAVF(I)
 300 ACOR(I) = SAVF(I)
 GO TO 400
C---
C In the case of the chord method, compute the corrector error,
C and solve the linear system with that as right-hand side and
C P as coefficient matrix.
C---
 350 DO 360 I = 1,N
 360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I))
 CALL SLVS (WM, IWM, Y, SAVF)
 IF (IERSL .LT. 0) GO TO 430
 IF (IERSL .GT. 0) GO TO 410
 DEL = DVNORM (N, Y, EWT)
 DO 380 I = 1,N
 ACOR(I) = ACOR(I) + Y(I)
 380 Y(I) = YH(I,1) + EL(1)*ACOR(I)
C---
C Test for convergence. If M.gt.0, an estimate of the convergence
C rate constant is stored in CRATE, and this is used in the test.
C---
 400 IF (M .NE. 0) CRATE = MAX(0.2D0*CRATE,DEL/DELP)

Cadena et al. S51Vol. 24, No. 12, 2013

 DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT)
 IF (DCON .LE. 1.0D0) GO TO 450
 M = M + 1
 IF (M .EQ. MAXCOR) GO TO 410
 IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410
 DELP = DEL
 CALL F (NEQ, TN, Y, SAVF)
 NFE = NFE + 1
 GO TO 270
C---
C The corrector iteration failed to converge.
C If MITER .ne. 0 and the Jacobian is out of date, PJAC is called for
C the next try. Otherwise the YH array is retracted to its values
C before prediction, and H is reduced, if possible. If H cannot be
C reduced or MXNCF failures have occurred, exit with KFLAG = -2.
C---
 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430
 ICF = 1
 IPUP = MITER
 GO TO 220
 430 ICF = 2
 NCF = NCF + 1
 RMAX = 2.0D0
 TN = TOLD
 I1 = NQNYH + 1
 DO 445 JB = 1,NQ
 I1 = I1 - NYH
Cdir$ ivdep
 DO 440 I = I1,NQNYH
 440 YH1(I) = YH1(I) - YH1(I+NYH)
 445 CONTINUE
 IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680
 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670
 IF (NCF .EQ. MXNCF) GO TO 670
 RH = 0.25D0
 IPUP = MITER
 IREDO = 1
 GO TO 170
C---
C The corrector has converged. JCUR is set to 0
C to signal that the Jacobian involved may need updating later.
C The local error test is made and control passes to statement 500
C if it fails.
C---
 450 JCUR = 0
 IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ)
 IF (M .GT. 0) DSM = DVNORM (N, ACOR, EWT)/TESCO(2,NQ)
 IF (DSM .GT. 1.0D0) GO TO 500
C---
C After a successful step, update the YH array.
C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1.
C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for
C use in a possible order increase on the next step.
C If a change in H is considered, an increase or decrease in order
C by one is considered also. A change in H is made only if it is by a
C factor of at least 1.1. If not, IALTH is set to 3 to prevent
C testing for that many steps.
C---
 KFLAG = 0
 IREDO = 0
 NST = NST + 1
 HU = H
 NQU = NQ
 DO 470 J = 1,L
 DO 470 I = 1,N
 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I)
 IALTH = IALTH - 1

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S52

 IF (IALTH .EQ. 0) GO TO 520
 IF (IALTH .GT. 1) GO TO 700
 IF (L .EQ. LMAX) GO TO 700
 DO 490 I = 1,N
 490 YH(I,LMAX) = ACOR(I)
 GO TO 700
C---
C The error test failed. KFLAG keeps track of multiple failures.
C Restore TN and the YH array to their previous values, and prepare
C to try the step again. Compute the optimum step size for this or
C one lower order. After 2 or more failures, H is forced to decrease
C by a factor of 0.2 or less.
C---
 500 KFLAG = KFLAG - 1
 TN = TOLD
 I1 = NQNYH + 1
 DO 515 JB = 1,NQ
 I1 = I1 - NYH
Cdir$ ivdep
 DO 510 I = I1,NQNYH
 510 YH1(I) = YH1(I) - YH1(I+NYH)
 515 CONTINUE
 RMAX = 2.0D0
 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660
 IF (KFLAG .LE. -3) GO TO 640
 IREDO = 2
 RHUP = 0.0D0
 GO TO 540
C---
C Regardless of the success or failure of the step, factors
C RHDN, RHSM, and RHUP are computed, by which H could be multiplied
C at order NQ - 1, order NQ, or order NQ + 1, respectively.
C In the case of failure, RHUP = 0.0 to avoid an order increase.
C The largest of these is determined and the new order chosen
C accordingly. If the order is to be increased, we compute one
C additional scaled derivative.
C---
 520 RHUP = 0.0D0
 IF (L .EQ. LMAX) GO TO 540
 DO 530 I = 1,N
 530 SAVF(I) = ACOR(I) - YH(I,LMAX)
 DUP = DVNORM (N, SAVF, EWT)/TESCO(3,NQ)
 EXUP = 1.0D0/(L+1)
 RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0)
 540 EXSM = 1.0D0/L
 RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0)
 RHDN = 0.0D0
 IF (NQ .EQ. 1) GO TO 560
 DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ)
 EXDN = 1.0D0/NQ
 RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0)
 560 IF (RHSM .GE. RHUP) GO TO 570
 IF (RHUP .GT. RHDN) GO TO 590
 GO TO 580
 570 IF (RHSM .LT. RHDN) GO TO 580
 NEWQ = NQ
 RH = RHSM
 GO TO 620
 580 NEWQ = NQ - 1
 RH = RHDN
 IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0
 GO TO 620
 590 NEWQ = L
 RH = RHUP
 IF (RH .LT. 1.1D0) GO TO 610
 R = EL(L)/L
 DO 600 I = 1,N

Cadena et al. S53Vol. 24, No. 12, 2013

 600 YH(I,NEWQ+1) = ACOR(I)*R
 GO TO 630
 610 IALTH = 3
 GO TO 700
 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610
 IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0)
C---
C If there is a change of order, reset NQ, l, and the coefficients.
C In any case H is reset according to RH and the YH array is rescaled.
C Then exit from 690 if the step was OK, or redo the step otherwise.
C---
 IF (NEWQ .EQ. NQ) GO TO 170
 630 NQ = NEWQ
 L = NQ + 1
 IRET = 2
 GO TO 150
C---
C Control reaches this section if 3 or more failures have occured.
C If 10 failures have occurred, exit with KFLAG = -1.
C It is assumed that the derivatives that have accumulated in the
C YH array have errors of the wrong order. Hence the first
C derivative is recomputed, and the order is set to 1. Then
C H is reduced by a factor of 10, and the step is retried,
C until it succeeds or H reaches HMIN.
C---
 640 IF (KFLAG .EQ. -10) GO TO 660
 RH = 0.1D0
 RH = MAX(HMIN/ABS(H),RH)
 H = H*RH
 DO 645 I = 1,N
 645 Y(I) = YH(I,1)
 CALL F (NEQ, TN, Y, SAVF)
 NFE = NFE + 1
 DO 650 I = 1,N
 650 YH(I,2) = H*SAVF(I)
 IPUP = MITER
 IALTH = 5
 IF (NQ .EQ. 1) GO TO 200
 NQ = 1
 L = 2
 IRET = 3
 GO TO 150
C---
C All returns are made through this section. H is saved in HOLD
C to allow the caller to change H on the next step.
C---
 660 KFLAG = -1
 GO TO 720
 670 KFLAG = -2
 GO TO 720
 680 KFLAG = -3
 GO TO 720
 690 RMAX = 10.0D0
 700 R = 1.0D0/TESCO(2,NQU)
 DO 710 I = 1,N
 710 ACOR(I) = ACOR(I)*R
 720 HOLD = H
 JSTART = 1
 RETURN
C----------------------- END OF SUBROUTINE DSTODE ----------------------
 END
*DECK DEWSET
 SUBROUTINE DEWSET (N, ITOL, RTOL, ATOL, YCUR, EWT)
C***BEGIN PROLOGUE DEWSET
C***SUBSIDIARY
C***PURPOSE Set error weight vector.
C***LIBRARY MATHLIB (ODEPACK)

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S54

C***TYPE DOUBLE PRECISION (SEWSET-S, DEWSET-D)
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C
C This subroutine sets the error weight vector EWT according to
C EWT(i) = RTOL(i)*ABS(YCUR(i)) + ATOL(i), i = 1,...,N,
C with the subscript on RTOL and/or ATOL possibly replaced by 1 above,
C depending on the value of ITOL.
C
C***SEE ALSO DLSODE
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 791129 DATE WRITTEN
C 890501 Modified prologue to SLATEC/LDOC format. (FNF)
C 890503 Minor cosmetic changes. (FNF)
C 930809 Renamed to allow single/double precision versions. (ACH)
C***END PROLOGUE DEWSET
C**End
 INTEGER N, ITOL
 INTEGER I
 DOUBLE PRECISION RTOL, ATOL, YCUR, EWT
 DIMENSION RTOL(*), ATOL(*), YCUR(N), EWT(N)
C
C***FIRST EXECUTABLE STATEMENT DEWSET
 GO TO (10, 20, 30, 40), ITOL
 10 CONTINUE
 DO 15 I = 1,N
 15 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(1)
 RETURN
 20 CONTINUE
 DO 25 I = 1,N
 25 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(I)
 RETURN
 30 CONTINUE
 DO 35 I = 1,N
 35 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(1)
 RETURN
 40 CONTINUE
 DO 45 I = 1,N
 45 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(I)
 RETURN
C----------------------- END OF SUBROUTINE DEWSET ------------------------
 END
*DECK DVNORM
 DOUBLE PRECISION FUNCTION DVNORM (N, V, W)
C***BEGIN PROLOGUE DVNORM
C***SUBSIDIARY
C***PURPOSE Weighted root-mean-square vector norm.
C***LIBRARY MATHLIB (ODEPACK)
C***TYPE DOUBLE PRECISION (SVNORM-S, DVNORM-D)
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C
C This function routine computes the weighted root-mean-square norm
C of the vector of length N contained in the array V, with weights
C contained in the array W of length N:
C DVNORM = SQRT((1/N) * SUM(V(i)*W(i))**2)
C
C***SEE ALSO DLSODE
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 791129 DATE WRITTEN
C 890501 Modified prologue to SLATEC/LDOC format. (FNF)
C 890503 Minor cosmetic changes. (FNF)
C 930809 Renamed to allow single/double precision versions. (ACH)
C***END PROLOGUE DVNORM
C**End

Cadena et al. S55Vol. 24, No. 12, 2013

 INTEGER N, I
 DOUBLE PRECISION V, W, SUM
 DIMENSION V(N), W(N)
C
C***FIRST EXECUTABLE STATEMENT DVNORM
 SUM = 0.0D0
 DO 10 I = 1,N
 10 SUM = SUM + (V(I)*W(I))**2
 DVNORM = SQRT(SUM/N)
 RETURN
C----------------------- END OF FUNCTION DVNORM ------------------------
 END
*DECK DUMACH
 DOUBLE PRECISION FUNCTION DUMACH ()
C***BEGIN PROLOGUE DUMACH
C***PURPOSE Compute the unit roundoff of the machine.
C***LIBRARY MATHLIB
C***CATEGORY R1
C***TYPE DOUBLE PRECISION (RUMACH-S, DUMACH-D)
C***KEYWORDS MACHINE CONSTANTS
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C *Usage:
C DOUBLE PRECISION A, DUMACH
C A = DUMACH()
C
C *Function Return Values:
C A : the unit roundoff of the machine.
C
C *Description:
C The unit roundoff is defined as the smallest positive machine
C number u such that 1.0 + u .ne. 1.0. This is computed by DUMACH
C in a machine-independent manner.
C
C***REFERENCES (NONE)
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 930216 DATE WRITTEN
C 930818 Added SLATEC-format prologue. (FNF)
C***END PROLOGUE DUMACH
C
C*Internal Notes:
C---
C Subroutines/functions called by DUMACH.. None
C---
C**End
C
 DOUBLE PRECISION U, COMP
C***FIRST EXECUTABLE STATEMENT DUMACH
 U = 1.0D0
 10 U = U*0.5D0
 COMP = 1.0D0 + U
 IF (COMP .NE. 1.0D0) GO TO 10
 DUMACH = U*2.0D0
 RETURN
C----------------------- End of Function DUMACH ------------------------
 END
*DECK XERRWD
 SUBROUTINE XERRWD (MSG, NMES, NERR, LEVEL, NI, I1, I2, NR, R1, R2)
C***BEGIN PROLOGUE XERRWD
C***SUBSIDIARY
C***PURPOSE Write error message with values.
C***LIBRARY MATHLIB
C***CATEGORY R3C
C***TYPE DOUBLE PRECISION (XERRWV-S, XERRWD-D)
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S56

C
C Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV,
C as given here, constitute a simplified version of the SLATEC error
C handling package.
C
C All arguments are input arguments.
C
C MSG = The message (character array).
C NMES = The length of MSG (number of characters).
C NERR = The error number (not used).
C LEVEL = The error level..
C 0 or 1 means recoverable (control returns to caller).
C 2 means fatal (run is aborted--see note below).
C NI = Number of integers (0, 1, or 2) to be printed with message.
C I1,I2 = Integers to be printed, depending on NI.
C NR = Number of reals (0, 1, or 2) to be printed with message.
C R1,R2 = Reals to be printed, depending on NR.
C
C Note.. this routine is machine-dependent and specialized for use
C in limited context, in the following ways..
C 1. The argument MSG is assumed to be of type CHARACTER, and
C the message is printed with a format of (1X,A).
C 2. The message is assumed to take only one line.
C Multi-line messages are generated by repeated calls.
C 3. If LEVEL = 2, control passes to the statement STOP
C to abort the run. This statement may be machine-dependent.
C 4. R1 and R2 are assumed to be in double precision and are printed
C in D21.13 format.
C
C***ROUTINES CALLED IXSAV
C***REVISION HISTORY (YYMMDD)
C 920831 DATE WRITTEN
C 921118 Replaced MFLGSV/LUNSAV by IXSAV. (ACH)
C 930329 Modified prologue to SLATEC format. (FNF)
C 930407 Changed MSG from CHARACTER*1 array to variable. (FNF)
C 930922 Minor cosmetic change. (FNF)
C***END PROLOGUE XERRWD
C
C*Internal Notes:
C
C For a different default logical unit number, IXSAV (or a subsidiary
C routine that it calls) will need to be modified.
C For a different run-abort command, change the statement following
C statement 100 at the end.
C---
C Subroutines called by XERRWD.. None
C Function routine called by XERRWD.. IXSAV
C---
C**End
C
C Declare arguments.
C
 DOUBLE PRECISION R1, R2
 INTEGER NMES, NERR, LEVEL, NI, I1, I2, NR
 CHARACTER*(*) MSG
C
C Declare local variables.
C
 INTEGER LUNIT, IXSAV, MESFLG
C
C Get logical unit number and message print flag.
C
C***FIRST EXECUTABLE STATEMENT XERRWD
 LUNIT = IXSAV (1, 0, .FALSE.)
 MESFLG = IXSAV (2, 0, .FALSE.)
 IF (MESFLG .EQ. 0) GO TO 100
C

Cadena et al. S57Vol. 24, No. 12, 2013

C Write the message.
C
 WRITE (LUNIT,10) MSG
 10 FORMAT(1X,A)
 IF (NI .EQ. 1) WRITE (LUNIT, 20) I1
 20 FORMAT(6X,’In above message, I1 =’,I10)
 IF (NI .EQ. 2) WRITE (LUNIT, 30) I1,I2
 30 FORMAT(6X,’In above message, I1 =’,I10,3X,’I2 =’,I10)
 IF (NR .EQ. 1) WRITE (LUNIT, 40) R1
 40 FORMAT(6X,’In above message, R1 =’,D21.13)
 IF (NR .EQ. 2) WRITE (LUNIT, 50) R1,R2
 50 FORMAT(6X,’In above, R1 =’,D21.13,3X,’R2 =’,D21.13)
C
C Abort the run if LEVEL = 2.
C
 100 IF (LEVEL .NE. 2) RETURN
 STOP
C----------------------- End of Subroutine XERRWD ----------------------
 END
*DECK XSETF
 SUBROUTINE XSETF (MFLAG)
C***BEGIN PROLOGUE XSETF
C***PURPOSE Reset the error print control flag.
C***LIBRARY MATHLIB
C***CATEGORY R3A
C***TYPE ALL (XSETF-A)
C***KEYWORDS ERROR CONTROL
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C
C XSETF sets the error print control flag to MFLAG:
C MFLAG=1 means print all messages (the default).
C MFLAG=0 means no printing.
C
C***SEE ALSO XERMSG, XERRWD, XERRWV
C***REFERENCES (NONE)
C***ROUTINES CALLED IXSAV
C***REVISION HISTORY (YYMMDD)
C 921118 DATE WRITTEN
C 930329 Added SLATEC format prologue. (FNF)
C 930407 Corrected SEE ALSO section. (FNF)
C 930922 Made user-callable, and other cosmetic changes. (FNF)
C***END PROLOGUE XSETF
C
C Subroutines called by XSETF.. None
C Function routine called by XSETF.. IXSAV
C---
C**End
 INTEGER MFLAG, JUNK, IXSAV
C
C***FIRST EXECUTABLE STATEMENT XSETF
 IF (MFLAG .EQ. 0 .OR. MFLAG .EQ. 1) JUNK = IXSAV (2,MFLAG,.TRUE.)
 RETURN
C----------------------- End of Subroutine XSETF -----------------------
 END
*DECK XSETUN
 SUBROUTINE XSETUN (LUN)
C***BEGIN PROLOGUE XSETUN
C***PURPOSE Reset the logical unit number for error messages.
C***LIBRARY MATHLIB
C***CATEGORY R3B
C***TYPE ALL (XSETUN-A)
C***KEYWORDS ERROR CONTROL
C***DESCRIPTION
C
C XSETUN sets the logical unit number for error messages to LUN.
C

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S58

C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***SEE ALSO XERMSG, XERRWD, XERRWV
C***REFERENCES (NONE)
C***ROUTINES CALLED IXSAV
C***REVISION HISTORY (YYMMDD)
C 921118 DATE WRITTEN
C 930329 Added SLATEC format prologue. (FNF)
C 930407 Corrected SEE ALSO section. (FNF)
C 930922 Made user-callable, and other cosmetic changes. (FNF)
C***END PROLOGUE XSETUN
C
C Subroutines called by XSETUN.. None
C Function routine called by XSETUN.. IXSAV
C---
C**End
 INTEGER LUN, JUNK, IXSAV
C
C***FIRST EXECUTABLE STATEMENT XSETUN
 IF (LUN .GT. 0) JUNK = IXSAV (1,LUN,.TRUE.)
 RETURN
C----------------------- End of Subroutine XSETUN ----------------------
 END
*DECK IXSAV
 INTEGER FUNCTION IXSAV (IPAR, IVALUE, ISET)
C***BEGIN PROLOGUE IXSAV
C***SUBSIDIARY
C***PURPOSE Save and recall error message control parameters.
C***LIBRARY MATHLIB
C***CATEGORY R3C
C***TYPE ALL (IXSAV-A)
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C
C IXSAV saves and recalls one of two error message parameters:
C LUNIT, the logical unit number to which messages are printed, and
C MESFLG, the message print flag.
C This is a modification of the SLATEC library routine J4SAVE.
C
C Saved local variables..
C LUNIT = Logical unit number for messages. The default is obtained
C by a call to IUMACH (may be machine-dependent).
C MESFLG = Print control flag..
C 1 means print all messages (the default).
C 0 means no printing.
C
C On input..
C IPAR = Parameter indicator (1 for LUNIT, 2 for MESFLG).
C IVALUE = The value to be set for the parameter, if ISET = .TRUE.
C ISET = Logical flag to indicate whether to read or write.
C If ISET = .TRUE., the parameter will be given
C the value IVALUE. If ISET = .FALSE., the parameter
C will be unchanged, and IVALUE is a dummy argument.
C
C On return..
C IXSAV = The (old) value of the parameter.
C
C***SEE ALSO XERMSG, XERRWD, XERRWV
C***ROUTINES CALLED IUMACH
C***REVISION HISTORY (YYMMDD)
C 921118 DATE WRITTEN
C 930329 Modified prologue to SLATEC format. (FNF)
C 930915 Added IUMACH call to get default output unit. (ACH)
C 930922 Minor cosmetic changes. (FNF)
C***END PROLOGUE IXSAV
C
C Subroutines called by IXSAV.. None
C Function routine called by IXSAV.. IUMACH

Cadena et al. S59Vol. 24, No. 12, 2013

C---
C**End
 LOGICAL ISET
 INTEGER IPAR, IVALUE
C---
 INTEGER LUNIT, MESFLG
C---
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this routine.
C---
 SAVE LUNIT, MESFLG
 DATA LUNIT/-1/, MESFLG/1/
C
C***FIRST EXECUTABLE STATEMENT IXSAV
 IF (IPAR .EQ. 1) THEN
 IF (LUNIT .EQ. -1) LUNIT = IUMACH()
 IXSAV = LUNIT
 IF (ISET) LUNIT = IVALUE
 ENDIF
C
 IF (IPAR .EQ. 2) THEN
 IXSAV = MESFLG
 IF (ISET) MESFLG = IVALUE
 ENDIF
C
 RETURN
C----------------------- End of Function IXSAV -------------------------
 END
*DECK IUMACH
 INTEGER FUNCTION IUMACH()
C***BEGIN PROLOGUE IUMACH
C***PURPOSE Provide standard output unit number.
C***LIBRARY MATHLIB
C***CATEGORY R1
C***TYPE INTEGER (IUMACH-I)
C***KEYWORDS MACHINE CONSTANTS
C***AUTHOR Hindmarsh, Alan C., (LLNL)
C***DESCRIPTION
C *Usage:
C INTEGER LOUT, IUMACH
C LOUT = IUMACH()
C
C *Function Return Values:
C LOUT : the standard logical unit for Fortran output.
C
C***REFERENCES (NONE)
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 930915 DATE WRITTEN
C 930922 Made user-callable, and other cosmetic changes. (FNF)
C***END PROLOGUE IUMACH
C
C*Internal Notes:
C The built-in value of 6 is standard on a wide range of Fortran
C systems. This may be machine-dependent.
C**End
C***FIRST EXECUTABLE STATEMENT IUMACH
 IUMACH = 6
C
 RETURN
C----------------------- End of Function IUMACH ------------------------
 END

 subroutine dgefa(a,lda,n,ipvt,info)
 integer lda,n,ipvt(1),info
 double precision a(lda,1)
c

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S60

c dgefa factors a double precision matrix by gaussian elimination.
c
c dgefa is usually called by dgeco, but it can be called
c directly with a saving in time if rcond is not needed.
c (time for dgeco) = (1 + 9/n)*(time for dgefa) .
c
c on entry
c
c a double precision(lda, n)
c the matrix to be factored.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c on return
c
c a an upper triangular matrix and the multipliers
c which were used to obtain it.
c the factorization can be written a = l*u where
c l is a product of permutation and unit lower
c triangular matrices and u is upper triangular.
c
c ipvt integer(n)
c an integer vector of pivot indices.
c
c info integer
c = 0 normal value.
c = k if u(k,k) .eq. 0.0 . this is not an error
c condition for this subroutine, but it does
c indicate that dgesl or dgedi will divide by zero
c if called. use rcond in dgeco for a reliable
c indication of singularity.
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c blas daxpy,dscal,idamax
c
c internal variables
c
 double precision t
 integer idamax,j,k,kp1,l,nm1
c
c
c gaussian elimination with partial pivoting
c
 info = 0
 nm1 = n - 1
 if (nm1 .lt. 1) go to 70
 do 60 k = 1, nm1
 kp1 = k + 1
c
c find l = pivot index
c
 l = idamax(n-k+1,a(k,k),1) + k - 1
 ipvt(k) = l
c
c zero pivot implies this column already triangularized
c
 if (a(l,k) .eq. 0.0d0) go to 40
c
c interchange if necessary

Cadena et al. S61Vol. 24, No. 12, 2013

c
 if (l .eq. k) go to 10
 t = a(l,k)
 a(l,k) = a(k,k)
 a(k,k) = t
 10 continue
c
c compute multipliers
c
 t = -1.0d0/a(k,k)
 call dscal(n-k,t,a(k+1,k),1)
c
c row elimination with column indexing
c
 do 30 j = kp1, n
 t = a(l,j)
 if (l .eq. k) go to 20
 a(l,j) = a(k,j)
 a(k,j) = t
 20 continue
 call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
 30 continue
 go to 50
 40 continue
 info = k
 50 continue
 60 continue
 70 continue
 ipvt(n) = n
 if (a(n,n) .eq. 0.0d0) info = n
 return
 end
 subroutine dgesl(a,lda,n,ipvt,b,job)
 integer lda,n,ipvt(1),job
 double precision a(lda,1),b(1)
c
c dgesl solves the double precision system
c a * x = b or trans(a) * x = b
c using the factors computed by dgeco or dgefa.
c
c on entry
c
c a double precision(lda, n)
c the output from dgeco or dgefa.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c ipvt integer(n)
c the pivot vector from dgeco or dgefa.
c
c b double precision(n)
c the right hand side vector.
c
c job integer
c = 0 to solve a*x = b ,
c = nonzero to solve trans(a)*x = b where
c trans(a) is the transpose.
c
c on return
c
c b the solution vector x .
c
c error condition

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S62

c
c a division by zero will occur if the input factor contains a
c zero on the diagonal. technically this indicates singularity
c but it is often caused by improper arguments or improper
c setting of lda . it will not occur if the subroutines are
c called correctly and if dgeco has set rcond .gt. 0.0
c or dgefa has set info .eq. 0 .
c
c to compute inverse(a) * c where c is a matrix
c with p columns
c call dgeco(a,lda,n,ipvt,rcond,z)
c if (rcond is too small) go to ...
c do 10 j = 1, p
c call dgesl(a,lda,n,ipvt,c(1,j),0)
c 10 continue
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c blas daxpy,ddot
c
c internal variables
c
 double precision ddot,t
 integer k,kb,l,nm1
c
 nm1 = n - 1
 if (job .ne. 0) go to 50
c
c job = 0 , solve a * x = b
c first solve l*y = b
c
 if (nm1 .lt. 1) go to 30
 do 20 k = 1, nm1
 l = ipvt(k)
 t = b(l)
 if (l .eq. k) go to 10
 b(l) = b(k)
 b(k) = t
 10 continue
 call daxpy(n-k,t,a(k+1,k),1,b(k+1),1)
 20 continue
 30 continue
c
c now solve u*x = y
c
 do 40 kb = 1, n
 k = n + 1 - kb
 b(k) = b(k)/a(k,k)
 t = -b(k)
 call daxpy(k-1,t,a(1,k),1,b(1),1)
 40 continue
 go to 100
 50 continue
c
c job = nonzero, solve trans(a) * x = b
c first solve trans(u)*y = b
c
 do 60 k = 1, n
 t = ddot(k-1,a(1,k),1,b(1),1)
 b(k) = (b(k) - t)/a(k,k)
 60 continue
c
c now solve trans(l)*x = y
c

Cadena et al. S63Vol. 24, No. 12, 2013

 if (nm1 .lt. 1) go to 90
 do 80 kb = 1, nm1
 k = n - kb
 b(k) = b(k) + ddot(n-k,a(k+1,k),1,b(k+1),1)
 l = ipvt(k)
 if (l .eq. k) go to 70
 t = b(l)
 b(l) = b(k)
 b(k) = t
 70 continue
 80 continue
 90 continue
 100 continue
 return
 end
 subroutine dgbfa(abd,lda,n,ml,mu,ipvt,info)
 integer lda,n,ml,mu,ipvt(1),info
 double precision abd(lda,1)
c
c dgbfa factors a double precision band matrix by elimination.
c
c dgbfa is usually called by dgbco, but it can be called
c directly with a saving in time if rcond is not needed.
c
c on entry
c
c abd double precision(lda, n)
c contains the matrix in band storage. the columns
c of the matrix are stored in the columns of abd and
c the diagonals of the matrix are stored in rows
c ml+1 through 2*ml+mu+1 of abd .
c see the comments below for details.
c
c lda integer
c the leading dimension of the array abd .
c lda must be .ge. 2*ml + mu + 1 .
c
c n integer
c the order of the original matrix.
c
c ml integer
c number of diagonals below the main diagonal.
c 0 .le. ml .lt. n .
c
c mu integer
c number of diagonals above the main diagonal.
c 0 .le. mu .lt. n .
c more efficient if ml .le. mu .
c on return
c
c abd an upper triangular matrix in band storage and
c the multipliers which were used to obtain it.
c the factorization can be written a = l*u where
c l is a product of permutation and unit lower
c triangular matrices and u is upper triangular.
c
c ipvt integer(n)
c an integer vector of pivot indices.
c
c info integer
c = 0 normal value.
c = k if u(k,k) .eq. 0.0 . this is not an error
c condition for this subroutine, but it does
c indicate that dgbsl will divide by zero if
c called. use rcond in dgbco for a reliable
c indication of singularity.
c

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S64

c band storage
c
c if a is a band matrix, the following program segment
c will set up the input.
c
c ml = (band width below the diagonal)
c mu = (band width above the diagonal)
c m = ml + mu + 1
c do 20 j = 1, n
c i1 = max0(1, j-mu)
c i2 = min0(n, j+ml)
c do 10 i = i1, i2
c k = i - j + m
c abd(k,j) = a(i,j)
c 10 continue
c 20 continue
c
c this uses rows ml+1 through 2*ml+mu+1 of abd .
c in addition, the first ml rows in abd are used for
c elements generated during the triangularization.
c the total number of rows needed in abd is 2*ml+mu+1 .
c the ml+mu by ml+mu upper left triangle and the
c ml by ml lower right triangle are not referenced.
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c blas daxpy,dscal,idamax
c fortran max0,min0
c
c internal variables
c
 double precision t
 integer i,idamax,i0,j,ju,jz,j0,j1,k,kp1,l,lm,m,mm,nm1
c
c
 m = ml + mu + 1
 info = 0
c
c zero initial fill-in columns
c
 j0 = mu + 2
 j1 = min0(n,m) - 1
 if (j1 .lt. j0) go to 30
 do 20 jz = j0, j1
 i0 = m + 1 - jz
 do 10 i = i0, ml
 abd(i,jz) = 0.0d0
 10 continue
 20 continue
 30 continue
 jz = j1
 ju = 0
c
c gaussian elimination with partial pivoting
c
 nm1 = n - 1
 if (nm1 .lt. 1) go to 130
 do 120 k = 1, nm1
 kp1 = k + 1
c
c zero next fill-in column
c
 jz = jz + 1
 if (jz .gt. n) go to 50

Cadena et al. S65Vol. 24, No. 12, 2013

 if (ml .lt. 1) go to 50
 do 40 i = 1, ml
 abd(i,jz) = 0.0d0
 40 continue
 50 continue
c
c find l = pivot index
c
 lm = min0(ml,n-k)
 l = idamax(lm+1,abd(m,k),1) + m - 1
 ipvt(k) = l + k - m
c
c zero pivot implies this column already triangularized
c
 if (abd(l,k) .eq. 0.0d0) go to 100
c
c interchange if necessary
c
 if (l .eq. m) go to 60
 t = abd(l,k)
 abd(l,k) = abd(m,k)
 abd(m,k) = t
 60 continue
c
c compute multipliers
c
 t = -1.0d0/abd(m,k)
 call dscal(lm,t,abd(m+1,k),1)
c
c row elimination with column indexing
c
 ju = min0(max0(ju,mu+ipvt(k)),n)
 mm = m
 if (ju .lt. kp1) go to 90
 do 80 j = kp1, ju
 l = l - 1
 mm = mm - 1
 t = abd(l,j)
 if (l .eq. mm) go to 70
 abd(l,j) = abd(mm,j)
 abd(mm,j) = t
 70 continue
 call daxpy(lm,t,abd(m+1,k),1,abd(mm+1,j),1)
 80 continue
 90 continue
 go to 110
 100 continue
 info = k
 110 continue
 120 continue
 130 continue
 ipvt(n) = n
 if (abd(m,n) .eq. 0.0d0) info = n
 return
 end
 subroutine dgbsl(abd,lda,n,ml,mu,ipvt,b,job)
 integer lda,n,ml,mu,ipvt(1),job
 double precision abd(lda,1),b(1)
c
c dgbsl solves the double precision band system
c a * x = b or trans(a) * x = b
c using the factors computed by dgbco or dgbfa.
c
c on entry
c
c abd double precision(lda, n)
c the output from dgbco or dgbfa.

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S66

c
c lda integer
c the leading dimension of the array abd .
c
c n integer
c the order of the original matrix.
c
c ml integer
c number of diagonals below the main diagonal.
c
c mu integer
c number of diagonals above the main diagonal.
c
c ipvt integer(n)
c the pivot vector from dgbco or dgbfa.
c
c b double precision(n)
c the right hand side vector.
c
c job integer
c = 0 to solve a*x = b ,
c = nonzero to solve trans(a)*x = b , where
c trans(a) is the transpose.
c
c on return
c
c b the solution vector x .
c
c error condition
c
c a division by zero will occur if the input factor contains a
c zero on the diagonal. technically this indicates singularity
c but it is often caused by improper arguments or improper
c setting of lda . it will not occur if the subroutines are
c called correctly and if dgbco has set rcond .gt. 0.0
c or dgbfa has set info .eq. 0 .
c
c to compute inverse(a) * c where c is a matrix
c with p columns
c call dgbco(abd,lda,n,ml,mu,ipvt,rcond,z)
c if (rcond is too small) go to ...
c do 10 j = 1, p
c call dgbsl(abd,lda,n,ml,mu,ipvt,c(1,j),0)
c 10 continue
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c blas daxpy,ddot
c fortran min0
c
c internal variables
c
 double precision ddot,t
 integer k,kb,l,la,lb,lm,m,nm1
c
 m = mu + ml + 1
 nm1 = n - 1
 if (job .ne. 0) go to 50
c
c job = 0 , solve a * x = b
c first solve l*y = b
c
 if (ml .eq. 0) go to 30
 if (nm1 .lt. 1) go to 30

Cadena et al. S67Vol. 24, No. 12, 2013

 do 20 k = 1, nm1
 lm = min0(ml,n-k)
 l = ipvt(k)
 t = b(l)
 if (l .eq. k) go to 10
 b(l) = b(k)
 b(k) = t
 10 continue
 call daxpy(lm,t,abd(m+1,k),1,b(k+1),1)
 20 continue
 30 continue
c
c now solve u*x = y
c
 do 40 kb = 1, n
 k = n + 1 - kb
 b(k) = b(k)/abd(m,k)
 lm = min0(k,m) - 1
 la = m - lm
 lb = k - lm
 t = -b(k)
 call daxpy(lm,t,abd(la,k),1,b(lb),1)
 40 continue
 go to 100
 50 continue
c
c job = nonzero, solve trans(a) * x = b
c first solve trans(u)*y = b
c
 do 60 k = 1, n
 lm = min0(k,m) - 1
 la = m - lm
 lb = k - lm
 t = ddot(lm,abd(la,k),1,b(lb),1)
 b(k) = (b(k) - t)/abd(m,k)
 60 continue
c
c now solve trans(l)*x = y
c
 if (ml .eq. 0) go to 90
 if (nm1 .lt. 1) go to 90
 do 80 kb = 1, nm1
 k = n - kb
 lm = min0(ml,n-k)
 b(k) = b(k) + ddot(lm,abd(m+1,k),1,b(k+1),1)
 l = ipvt(k)
 if (l .eq. k) go to 70
 t = b(l)
 b(l) = b(k)
 b(k) = t
 70 continue
 80 continue
 90 continue
 100 continue
 return
 end
 subroutine daxpy(n,da,dx,incx,dy,incy)
c
c constant times a vector plus a vector.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.
c
 double precision dx(1),dy(1),da
 integer i,incx,incy,ix,iy,m,mp1,n
c
 if(n.le.0)return
 if (da .eq. 0.0d0) return

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S68

 if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dy(iy) = dy(iy) + da*dx(ix)
 ix = ix + incx
 iy = iy + incy
 10 continue
 return
c
c code for both increments equal to 1
c
c
c clean-up loop
c
 20 m = mod(n,4)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dy(i) = dy(i) + da*dx(i)
 30 continue
 if(n .lt. 4) return
 40 mp1 = m + 1
 do 50 i = mp1,n,4
 dy(i) = dy(i) + da*dx(i)
 dy(i + 1) = dy(i + 1) + da*dx(i + 1)
 dy(i + 2) = dy(i + 2) + da*dx(i + 2)
 dy(i + 3) = dy(i + 3) + da*dx(i + 3)
 50 continue
 return
 end
 subroutine dscal(n,da,dx,incx)
c
c scales a vector by a constant.
c uses unrolled loops for increment equal to one.
c jack dongarra, linpack, 3/11/78.
c
 double precision da,dx(1)
 integer i,incx,m,mp1,n,nincx
c
 if(n.le.0)return
 if(incx.eq.1)go to 20
c
c code for increment not equal to 1
c
 nincx = n*incx
 do 10 i = 1,nincx,incx
 dx(i) = da*dx(i)
 10 continue
 return
c
c code for increment equal to 1
c
c
c clean-up loop
c
 20 m = mod(n,5)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dx(i) = da*dx(i)
 30 continue
 if(n .lt. 5) return

Cadena et al. S69Vol. 24, No. 12, 2013

 40 mp1 = m + 1
 do 50 i = mp1,n,5
 dx(i) = da*dx(i)
 dx(i + 1) = da*dx(i + 1)
 dx(i + 2) = da*dx(i + 2)
 dx(i + 3) = da*dx(i + 3)
 dx(i + 4) = da*dx(i + 4)
 50 continue
 return
 end
 double precision function ddot(n,dx,incx,dy,incy)
c
c forms the dot product of two vectors.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.
c
 double precision dx(1),dy(1),dtemp
 integer i,incx,incy,ix,iy,m,mp1,n
c
 ddot = 0.0d0
 dtemp = 0.0d0
 if(n.le.0)return
 if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dtemp = dtemp + dx(ix)*dy(iy)
 ix = ix + incx
 iy = iy + incy
 10 continue
 ddot = dtemp
 return
c
c code for both increments equal to 1
c
c
c clean-up loop
c
 20 m = mod(n,5)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dtemp = dtemp + dx(i)*dy(i)
 30 continue
 if(n .lt. 5) go to 60
 40 mp1 = m + 1
 do 50 i = mp1,n,5
 dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
 * dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
 50 continue
 60 ddot = dtemp
 return
 end
 integer function idamax(n,dx,incx)
c
c finds the index of element having max. absolute value.
c jack dongarra, linpack, 3/11/78.
c
 double precision dx(1),dmax
 integer i,incx,ix,n
c
 idamax = 0

Bursting in the Belousov-Zhabotinsky Reaction Added with Phenol in a Batch Reactor J. Braz. Chem. Soc.S70

 if(n .lt. 1) return
 idamax = 1
 if(n.eq.1)return
 if(incx.eq.1)go to 20
c
c code for increment not equal to 1
c
 ix = 1
 dmax = dabs(dx(1))
 ix = ix + incx
 do 10 i = 2,n
 if(dabs(dx(ix)).le.dmax) go to 5
 idamax = i
 dmax = dabs(dx(ix))
 5 ix = ix + incx
 10 continue
 return
c
c code for increment equal to 1
c
 20 dmax = dabs(dx(1))
 do 30 i = 2,n
 if(dabs(dx(i)).le.dmax) go to 30
 idamax = i
 dmax = dabs(dx(i))
 30 continue
 return
 end
 subroutine dcopy(n,sx,incx,sy,incy)
c
c copies a vector, x, to a vector, y.
c uses unrolled loops for increments equal to 1.
c jack dongarra, linpack, 3/11/78.
c
 double precision sx(1),sy(1)
 integer i,incx,incy,ix,iy,m,mp1,n
c
 if(n.le.0)return
 if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 sy(iy) = sx(ix)
 ix = ix + incx
 iy = iy + incy
 10 continue
 return
c
c code for both increments equal to 1
c
c
c clean-up loop
c
 20 m = mod(n,7)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 sy(i) = sx(i)
 30 continue
 if(n .lt. 7) return
 40 mp1 = m + 1
 do 50 i = mp1,n,7

Cadena et al. S71Vol. 24, No. 12, 2013

 sy(i) = sx(i)
 sy(i + 1) = sx(i + 1)
 sy(i + 2) = sx(i + 2)
 sy(i + 3) = sx(i + 3)
 sy(i + 4) = sx(i + 4)
 sy(i + 5) = sx(i + 5)
 sy(i + 6) = sx(i + 6)
 50 continue
 return
 end

