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A cigarette brand automatic classification method using near-infrared (NIR) spectroscopy 
and sparse representation classification (SRC) algorithm is put forward by the paper. Comparing 
with the traditional methods, it is more robust to redundancy because it uses non-negative least 
squares (NNLS) sparse coding instead of principal component analysis (PCA) for dimensionality 
reduction of the spectral data. The effectiveness of SRC algorithm is compared with PCA-linear 
discriminant analysis (LDA) and PCA-particle swarm optimization-support vector machine (PSO-
SVM) algorithms. The results show that the classification accuracy of the proposed method is 
higher and is much more efficient.
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Introduction

The applications of spectroscopy in various fields of 
modern science are increasing every year.1-4 Near-infrared 
(NIR) spectroscopy has the advantages of being fast, 
accurate, easy and non-destructive and is becoming a useful 
tool for process analytical chemistry.5 NIR spectroscopy is 
based on the absorption of electromagnetic radiation in the 
region from 780 to 2500 nm. Analysis of NIR spectroscopy 
usually involves a combination of multiple samples, each of 
which has a large number of correlated features. So how to 
reduce the complexity accompanying such large amounts 
of data is meaningful.6

Deep learning is a new area of machine learning 
research, which has been introduced with the objective 
of moving machine learning closer to one of its original 
goals: artificial intelligence. The term deep learning was 
introduced to the machine learning community by Dechter 
and Kleinrock in 1986,7 and artificial neural networks 
by Aizenberg et al.8 in 2000, in the context of Boolean 
threshold neurons. In 2005, Schmidhuber et al.9 published 

a paper on learning deep partially observable Markov 
decision process (POMDP) through neural networks 
for reinforcement learning. In 2006, a publication by 
Hinton et al.10 showed how a many‑layered feed-forward 
neural network could be effectively pre-trained one layer 
at a time,11 treating each layer in turn as an unsupervised 
restricted Boltzmann machine, then fine-tuning it 
using supervised back‑propagation.12 In recent years, 
deep learning architectures have been applied to fields 
including computer vision,13 speech recognition,14 natural 
language processing,15 audio recognition,16 social network 
filtering,17 machine translation and bioinformatics,18 
where they produced results comparable to and in some 
cases superior19 to human experts.20 However, it has not 
been widely used in analytical chemistry and tobacco 
area yet. As one of deep learning methods, sparse 
representation is a parsimonious principle that a sample 
can be approximated by a sparse linear combination of 
basis vectors. It has two advantages: first, it is very robust 
to redundancy,21 because it only selects few among all of 
the basis vectors; second, it is very robust to noise.22 NIR 
spectral data is usually noisy and redundant, so it can be 
represented efficiently by sparse representation. 
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In our paper, a novel spare representation classification 
method based on NIR spectroscopy and deep learning 
algorithm is first investigated to classify cigarette brands. 
In the method, the high-dimensional NIR spectral data 
will be investigated sparse representation for data analysis 
systematically. The large cigarette NIR spectral data is 
made to be sparse and adopt some transformation matrix to 
reduce dimensionality from a Bayesian viewpoint instead of 
principal component analysis (PCA) operation. The method 
has the advantages of denoising and avoiding overfitting 
and is more convenient in practice. In order to verify the 
reliability of the proposed method, the different brands 
of cigarettes have also been classified by the chemical 
index data. The two results are compared and show that 
the combination of NIR spectroscopy and deep learning 
algorithm is a promising tool for discriminating cigarettes 
of different brands in tobacco industry.

Experimental

Equipment

Firstly, the NIR spectrometer was preheated for one 
hour. Next, instrument test was carried out. If the test was 
passed, the samples would be scanned. The spectra in the 
near-infrared range of 1000-2500 nm were recorded in 
triplicate using a Nicolet Nexus 670 Fourier transform 
(FT)-NIR spectrometer with a spectral resolution of 
4 cm-1 and 64 scans co-added. A mean spectrum was 
then calculated for each sample by averaging the 
triplicate spectra. The samples of tobacco were put 
into the rotating sample groove and the spectrum of a 
polytetrafluoroethylene sample was used as background. 
As the result, the NIR spectra reflects only the contribution 
of the tobacco of the cigarette. Examples of the different 
diffuse reflectance spectra of four different brands of 
cigarettes are shown in Figure 1.

Besides, 19 routine chemical index23 were also 
detected. The contents of total sugar, reducing sugar, 
potassium, total plant alkali, chlorine, total nitrogen in 
tobacco were determined by continuous flow analytical 
method using Skalar SANPWS flow analyzer. The 
contents of glucose and fructose in tobacco were 
determined by high performance liquid chromatography 
(HPLC) using HP-5MS and DB-35MS (30 m × 0.25 mm 
i.d.) capillary column. The contents of malonic acid, 
succinic acid and malic acid in tobacco were determined 
by gas chromatography-mass spectrometry (GC-MS) 
method using Agilent 6890/5973 GC-MS. The content 
of aromatic components in tobacco was determined by 
simultaneous distillation and extraction GC-MS method 

using R-215 rotary evaporator (Büchi). Examples of the 
main chemical index of four different brands of cigarettes 
are shown in Table 1.

Samples

Different brands of cigarettes differ in compositions, 
aroma and retail prices and as well as in the levels of 
potentially hazardous substances. Thus, it is important to 
have appropriate methods to distinguish different types 
of cigarettes. However, distinguishing different types of 
cigarettes mainly depends on human sensory responses, 
which are time consuming, laborious, and subjective, 
and may lead to unreliable results, and so it is necessary 
to develop alternative methods that are faster and more 
objective. In our research, two experimental sets were 
chosen. All samples of the two experimental sets were 
collected from 9 cigarette factories in south and north 
China, respectively. Data set 1 has 200 cigarette samples 
and it contains four different brands: Baisha, Furongwang, 
Guiyan and Huanghelou. Data set 2 has 240 cigarette 
samples and it contains five different brands: Changbaishan, 
Huangjinye, Taishan, Lanzhou and Jiaozi. The NIR spectra 
of two data sets is shown in Figure 2. The chemical index of 
the two data sets are two matrices with the dimensionality 
200 × 19 and 240 × 19.

Theory of classification algorithms

Theory of linear discriminant analysis (LDA) algorithm
Linear discriminant analysis (LDA) is a well-known 

dimension reduction and classification method.24 In the 
algorithm, the data is projected into a low dimension space 
so that the different classes can be well separated. If the 
method is used for binary classification problems, a set of 

Figure 1. Examples of diffuse reflectance NIR spectra for the four different 
cigarette brands: Baisha, Furongwang, Guiyan and Huanghelou.
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n samples which belongs to two classes C1 with n1 samples 
and C2 with n2 samples. If each sample is described by 
q variables, the data forms a matrix X = (Xij), i = 1, …, n; 
j = 1, …, q. We denote by µk the mean of class Ck and by 
µ the mean of all the samples:

	 (1)

	 (2)

Then the between-class scatter matrix SB and the within-
class scatter matrix SW can be defined as:

	 (3)

	 (4)

LDA seeks a linear combination of the initial variables 
on which the means of the two classes are well separated, 

Table 1. Nineteen routine chemical index of Baisha, Furongwang, Guiyan and Huanghelou

Chemical index Baisha Furongwang Guiyan Huanghelou

Total sugar / % 22.800 21.400 21.200 20.400

Potassium / % 2.340 2.680 2.170 2.260

Reducing sugar / % 20.600 19.700 19.000 18.700

Total plant alkali / % 2.260 2.170 2.190 2.460

Chlorine / % 0.500 0.660 0.490 0.750

Total nitrogen / % 1.960 2.110 2.120 2.300

Malonic acid / (mg g-1) 0.740 1.030 0.850 1.350

Succinic acid / (mg g-1) 0.280 0.280 0.450 0.270

Malic acid / (mg g-1) 38.530 40.060 37.220 40.810

Glucose / (µg g-1) 7.620 7.540 8.590 7.270

Fructose / (µg g-1) 5.990 5.830 5.770 5.850

Furfural / (µg g-1) 1.644 1.739 1.301 1.737

Furoic acid / (µg g-1) 0.256 0.232 0.235 0.211

Benzaldehyde / (µg g-1) 0.149 0.202 0.179 0.172

6-Methyl-5-heptene-2-ketone / (µg g-1) 0.162 0.189 0.177 0.189

Solanone / (µg g-1) 9.363 9.505 9.084 10.557

β-Damascenone / (µg g-1) 2.148 2.531 2.239 2.452

Geranyl acetone / (µg g-1) 1.605 1.634 2.155 1.675

Megalanone / (µg g-1) 23.782 22.941 29.538 24.373

Figure 2. Two spectral data sets. (a) Original data of data set 1 with 200 samples and (b) original data of data set 2 with 240 samples.
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measured relatively to the sum of the variances of the data 
assigned to each class. For the purpose, LDA determines 
a vector ω such that ωtSBω is maximized while ωtSWω is 
minimized. This double objective is realized by the vector 
ωopt that maximizes the criterion:

	 (5)

It can be proved that the solution ωopt is the eigenvector 
associated with the sole eigenvalue of  if  exists. 
Once ωopt is determined, LDA provides a classifier.

Theory of particle swarm optimization (PSO)-support vector 
machine (SVM) algorithm

SVM is developed by Vapnik.25 It is based on 
some ‘beautifully simple ideas’26 and provides a clear 
demonstration of what learning from examples is all about. 
Details about SVM classifiers can be found in He et al.27 
In computer science, PSO is a computational method 
that optimizes a problem by iteratively trying to improve 
a candidate solution with regard to a given measure of 
quality. Here PSO algorithm uses particles moving in an 
m-dimensional space to search solutions of an optimization 
problem with m variables. In our approach, PSO is used 
to search for the optimal particle. Each particle represents 
a candidate solution. SVM classifier is built for each 
candidate solution to evaluate its performance. Velocity 
and position of particles can be updated by:

	 (6)

where t is evolutionary generation, νij and xij stand for 
the velocity and position of particle i on dimension j, 
respectively, ω is the inertia weight and it is used to 
balance the global exploration and local exploitation, rand 
represents the random function, c1 is the personal learning 
factor and c2 is the social learning factor. In fact, the aim 
of PSO-SVM algorithm is to optimize the accuracy of 
SVM classifier by randomly generating the parameters 
and estimate the best value for regularization of kernel 
parameters for SVM model.

Theory of non-negative least squares (NNLS) spare 
representation classification algorithm

Spare representation (SR) is a principle that a signal 
can be approximated by a sparse linear combination of 
dictionary atoms.21 The SR model can be formulated as:

(b|A, x, k) = x1a1 + … + xkak + ε = Ax + ε	 (7)

where A = [a1, …, ak] is called dictionary, a1 is a dictionary 
atom, x is a sparse coefficient vector, and ε is an error term. 
A, x and k are the model parameters. SR involves sparse 
coding and dictionary learning. The sparse codes can be 
obtained by many regularization methods and constrains. 
If we pool all training instances in a dictionary, and then 
learn the non-negative coefficient vectors of a new instance, 
which is formulated as a one-sided model:

	 (8)

The model is called NNLS sparse coding.22 NNLS 
sparse coding has two advantages: first, the non-negative 
coefficient vector is more easily interpretable than coefficient 
vector of mixed signs, under some circumstances. Second, 
NNLS sparse coding is a non-parametric model which is 
more convenient in practice. As the result, the NNLS sparse 
coding sparse coding algorithm is chosen in the following 
part. The main idea of spare representation classification is to 
represent a given test sample as a sparse linear combination 
of all training samples, then classifies the test sample by 
evaluating which class leads to the minimum residual. The 
spare representation classification algorithmic procedures 
can be summarized as follows: (i)  input: a matrix of 
training samples A = [A1, A2, …, Ak] ∈ ℜm×n for k classes, 
a test  sample y ∈ ℜm×n, (and an optional error tolerance 
ε > 0); (ii) normalize the columns of A to have unit l2 – norm; 
(iii) learn the sparse coefficient matrix X, of the new instances 
by solving equation 8; and (iv) use a sparse interpreter to 
predict the class labels of new instances, such as nearest 
neighbor, K-nearest neighbor, or nearest subspace rule.

Therefore, the main idea of the algorithm can be 
concluded as: first, training instances are collected in a 
dictionary. Then, a new instance is regressed by NNLS 
sparse coding. Thus, its corresponding sparse coefficient 
vector is obtained. Next, the regression residual of this 
instance to each class is computed, and finally this instance 
is assigned to the class with the minimum residual.

Results and Discussion

Three different multivariate data analysis techniques will 
be used to solve the problem, including LDA, PSO-SVM 
and sparse representation classification (SRC) algorithms 
and the results are shown in the following part. Twenty five 
samples of each class (the total is 100) are chosen as the 
training set and the other 100 samples are chosen as the 
testing set for data set 1. For data set 2, 24 samples of each 
class (the total is 120) are chosen as the training set and 
the other 120 samples are chosen as the testing set. Here 
accuracy and elapsed execution time are used to measure 
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the classification performance. For LDA and PSO-SVM 
algorithms, the spectral data is a high-dimensional data. 
If it is directly used in the two classification algorithms, it 
will lead to high computational-complexity. As the result, 
principal component analysis is used for outlier detection 
and dimensionality reduction of NIR spectral data. Tables 2 
and 3 are the first four and five principal components and 
total variance contribution rates of the principal component 
analysis results of data sets 1 and 2, respectively. It can be 
seen from the two tables that the first four and five principal 
components can be a good description of the two original 
spectral data sets. After PCA operation, the dimensionality 
of the two data sets have been reduced from 200 × 1550 to 
200 × 4 and 240 × 1550 to 240 × 5.

We employed two-fold cross-validation to partition 
a data set into training sets and test sets. It means half 
of the samples are chosen randomly as the training set 
and the other half are chosen randomly as the test set for 
both data sets 1 and 2. All the classifiers ran on the same 
training and test splits for fair comparison. We defined the 
accuracy of a given classifier as the ratio of the number of 
correctly predicted test samples to the total number of test 
samples. For each data set, two-fold cross-validation was 
10 times, and the average classification accuracy over the 
10 runs were computed. The correct classification number 
and accuracy of each class and the average accuracy of all 
classifiers on the two data sets are compared in Tables 4 
and 5, respectively. It can be seen from Tables 4 and 5 

that the correct classification number and accuracy of 
spare representation classification algorithm based on 
NNLS sparse coding is comparable with that of other two 
algorithms. This is because PCA-LDA and PCA‑PSO‑SVM 
algorithms use the minimum Euclidean distance of the 
feature space between the training samples and test 
samples to classify. It will lead to ineffective classification 
results. However, the spare representation classification 
algorithm can capture the essential feature of the data 
by means of using the redundancy characteristic of the 
dictionary and has the strong robustness. Besides, as there 
is no pre-processing operation on the two data sets and 
the non-negative least squares spare coding representation 
classification algorithm is robust to noise, it has better 
classification results than that of the other algorithms. 
This convinces us that sparse coding spare representation 
classification classifiers can be very effective for classifying 
high-dimensional spectroscopy data.

In order to verify the accuracy of the method using 
NIR spectral data, different brands of cigarettes were also 
classified by using chemical index data. The classifiers 
and the cross-validation method were the same with the 
above method. The results for data sets 1 and 2 are shown 
in Tables 6 and 7, respectively. The results show that the 
classification accuracy is roughly the same with Tables 4 
and 5. However, the detection of the chemical index of the 
cigarette is much more expensive and time-consuming than 
NIR method. Considering the above factor and results, the 

Table 3. First five principal components and total variance contribution rates of data set 2

Principal component 1 2 3 4 5

Total variance contribution 84.158 99.321 99.706 99.856 99.924

Table 2. First four principal components and total variance contribution rates of data set 1

Principal component 1 2 3 4

Total variance contribution 82.847 99.206 99.558 99.865

Table 4. Classification results by PCA-LDA, PCA-PSO-SVM and SRC algorithms of data set 1 using NIR spectral data

Brand (test No.)
Classification accuracy No., percentage / %

PCA-LDA PCA-PSO-SVM SRC

Baisha (239) 191, 79.91 197, 82.43 228, 95.40

Furongwang (257) 188, 73.15 195, 75.87 207, 80.54

Guiyan (261) 211, 80.84 218, 83.52 221, 84.67

Huanghelou (243) 201, 82.72 225, 92.60 227, 93.42

Average accuracy 791, 79.10 835, 83.50 883, 88.30

PCA-LDA: principal component analysis-linear discriminant analysis; PCA-PSO-SVM: principal component analysis-particle swarm optimization-support 
vector machine; SRC: sparse representation classification.
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NIR technology combination with SRC algorithm could 
be an effective tool for discriminating different brands of 
cigarettes.

The averaged elapsed execution time in seconds of 
each method is also recorded as a measure of performance. 
All experiments are performed on an Intel machine 
(Core i5-4590s, 3.00 GHz, central processing unit (CPU) 
with 8 GB random access memory (RAM), with 64-bit 
Windows 7 Professional operating system). All methods 
are implemented in the language MATLAB, 64-bit version 
2010b. Figure 3 shows the computing times of the methods 
for the two data sets. It can be clearly seen that spare 
representation classification is much more efficient than 
the other two methods.

Table 7. Classification results by LDA, PSO-SVM and SRC algorithms of data set 2 using chemical index data

Brand (test No.)
Classification accuracy No., percentage / %

LDA PSO-SVM SRC

Changbaishan (239) 212, 88.70 227, 94.98 224, 93.72

Huangjinye (245) 191, 77.96 188, 77.96 231, 94.28

Taishan (247) 203, 82.19 207, 83.81 230, 93.12

Lanzhou (232) 188, 81.03 209, 90.09 222, 95.69

Jiaozi (237) 213, 89.87 221, 93.25 219, 92.41

Average accuracy 1007, 83.92 1052, 87.67 1126, 93.83

LDA: linear discriminant analysis; PSO-SVM: particle swarm optimization-support vector machine; SRC: sparse representation classification.

Table 6. Classification results by LDA, PSO-SVM and SRC algorithms of data set 1 using chemical index data

Brand (test No.)
Classification accuracy No., percentage / %

LDA PSO-SVM SRC

Baisha (256) 207, 80.85 209, 81.64 238, 92.97

Furongwang (248) 192, 77.42 192, 77.42 219, 88.31

Guiyan (239) 205, 85.77 210, 87.87 211, 88.28

Huanghelou (257) 197, 76.65 232, 90.27 235, 91.44

Average accuracy 801, 80.10 843, 84.30 903, 90.30

LDA: linear discriminant analysis; PSO-SVM: particle swarm optimization-support vector machine; SRC: sparse representation classification.

Table 5. Classification results by PCA-LDA, PCA-PSO-SVM and SRC algorithms of data set 2 using NIR spectral data

Brand (test No.)
Classification accuracy No., percentage / %

PCA-LDA PCA-PSO-SVM SRC

Changbaishan (248) 212, 85.48 224, 90.30 237, 95.56

Huangjinye (242) 187, 77.27 192, 79.33 220, 90.91

Taishan (237) 213, 89.87 198, 83.54 224, 94.51

Lanzhou (235) 191, 81.27 223, 94.89 228, 97.02

Jiaozi (238) 211, 88.66 214, 89.92 211, 88.66

Average accuracy 1014, 84.50 1051, 87.58 1120, 93.33

PCA-LDA: principal component analysis-linear discriminant analysis; PCA-PSO-SVM: principal component analysis-particle swarm optimization-support 
vector machine; SRC: sparse representation classification.

Figure 3. Computing times of the two data sets.
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Therefore, it can be concluded that spare representation 
classification works better than PCA-LDA and 
PCA‑PSO‑SVM algorithms. Comparing with the two 
algorithms, the spare representation classification algorithm 
is robust to noise and has the higher classification accuracy 
and less computation time. As the result, it could be an 
effective method for discriminating different brands of 
cigarettes.

Conclusions

In this study, an effective spare representation classification 
method is proposed to classify high dimensional spectroscopy 
data. Comparing with the traditional algorithms, the method 
does not need any principal component analysis to reduce the 
dimensionality of the data and has the higher classification 
accuracy and less computation time. The results suggest 
that NIR spectroscopy technology together with sparse 
representation classification algorithm could be an alternative 
to traditional methods for discriminating different brands of 
cigarettes.
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