Acessibilidade / Reportar erro

Kinetic and equilibrium mechanisms of substrate binding to Mycobacterium tuberculosis enoyl reductase: implications to function-based antitubercular agent design

Tuberculosis (TB) remains the leading cause of mortality due to a single bacterial pathogen, Mycobacterium tuberculosis. There is a need for the development of new antimycobacterial agents. M. tuberculosis 2-trans-enoyl-ACP(CoA) reductase (InhA) is the main target of isoniazid, the most prescribed anti-TB agent. Here we present pre-steady state kinetics and equilibrium data of 2-trans-dodecenoyl-CoA substrate binding to InhA. These results indicate both positive homotropic cooperativity upon substrate binding to InhA, and a bimolecular association process followed by a slow isomerization of the enzyme-substrate binary complex. The data here described should help the rational design of new agents against a validated and druggable protein target with potential anti-TB activity.

tuberculosis; enoyl-ACP(CoA) reductase; mycolic acid; fluorescence titration; pre-steady-state kinetics


Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br