Acessibilidade / Reportar erro

Oxone®-Promoted One-Pot Synthesis of 1-Aryl-4-(organylselanyl)-1H-pyrazoles

Abstract

We describe herein an efficient protocol for the one-pot synthesis of 4-organylselanylpyrazoles by direct cyclocondensation and C-H bond selenylation reactions starting from hydrazines, 1,3-diketones and diorganyl diselenides promoted by Oxone®. The products were obtained through a metal catalyst free methodology, under mild conditions, in short reaction times and moderate to excellent yields.

Keywords:
Oxone®; organoselenium compounds; pyrazoles


Introduction

Pyrazoles have synthetic interest due to its numerous biological activities11 Elguero, J. In Comprehensive Heterocyclic Chemistry, vol. 5; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., eds.; Pergamon Press: Oxford, 1984, p. 273.

2 Elguero, J.; Goya, P.; Jagerovic, N.; Silva, A. M. S.; Targets in Heterocyclic Systems, vol. 6; Attanasi, O. A.; Spinelli, D., eds.; Italian Society of Chemistry: Rome, 2002, p. 52.

3 Huang, Y. R.; Katzenellenbogen, J. A.; J. Org. Lett. 2000, 2, 22833.

4 Chimenti, F.; Fioravanti, R.; Bolasco, A.; Manna, F.; Chimenti, P.; Secci, D.; Befani, O.; Turini, P.; Ortuso, F.; Alcaro, S.; J. Med. Chem. 2007, 50, 425.
-55 Nassar, E.; Abdel-Aziz, H. A.; Ibrahim, H. S.; Mansour, A. M.; Sci. Pharm. 2011, 79, 507. such as, anti-inflammatory properties (celecoxib),66 Kismet, K.; Akay, M. T.; Abbasoglu, O.; Ercan, A.; Cancer Detect. Prev. 2004, 28, 127.,77 Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C.; J. Med. Chem. 1997, 40, 1347. insecticidal effects (fipronil),88 Smith, K. E.; Wall, R.; Howard, J. J.; Strong, L.; Marchiondo, A. A.; Jeannin, P.; Vet. Parasitol. 2000, 88, 261. analgesic effects (metamizole),99 Carlsson, K. H.; Helmreich, J.; Jurna, I.; Pain 1986, 27, 373. treatment of erectile dysfunction (sildenafil)1010 Eardley, I.; Morgan, R.; Dinsmore, W.; Yates, P.; Boolell, M.; Br. J. Psychiatry 2001, 178, 325. and sedative-hypnotic agents (zaleplon).1111 Weitzel, K. W.; Wickman, J. M.; Augustin, S. G.; Strom, J. G.; Clin. Ther. 2000, 22, 1254. Regarding the available methods for the synthesis of pyrazoles, these structures are usually synthesized by the 1,3-dipolar cycloaddition reaction using alkenes or alkynes,1212 Specklin, S.; Decuypere, E.; Plougastel, L.; Aliani, S.; Taran, F.; J. Org. Chem. 2014, 79, 7772.,1313 Li, D. Y.; Mao, X. F.; Chen, H. J.; Chen, G. R.; Liu, P. N.; Org. Lett. 2014, 16, 3476. reacting unsaturated ketones or aldehydes with hydrazines1414 Rao, V. K.; Tiwari, R.; Chhikara, B. S.; Shirazi, A. N.; Parang, K.; Kumar, A.; RSC Adv. 2013, 3, 15396.

15 Jiang, H. J.; Liu, H. L.; Zhang, M.; Yao, W. J.; Zhu, Q. H.; Tang, Z.; Tetrahedron Lett. 2008, 49, 3805.
-1616 Smith, C. D.; Adlington, R. M.; Baldwin, J.; Kirill, T.; Tetrahedron Lett. 2006, 47, 3209. and the condensation reaction of 1,3-dicarbonyl compounds with hydrazines.1717 Vaddula, B. R.; Varma, R. S.; Leazer, J.; Tetrahedron Lett. 2013, 54, 1538.

18 Polshettiwar, V.; Varma, R. S.; Tetrahedron Lett. 2008, 49, 397.
-1919 Chen, X.; She, J.; Shang, Z. C.; Wu, J.; Zhang, P.; Synth. Commun. 2009, 39, 947.

In addition, organoselenium compounds are attractive synthetic targets due to their applicability in organic synthesis in selective reactions,2020 Alberto, E. E.; Braga, A. L. In Selenium and Tellurium Chemistry - From Small Molecules to Biomolecules and Materials; Derek, W. J.; Risto, L., eds.; Springer-Verlag: Berlin Heidelberg, 2011, p. 323.

21 Wirth, T.; Organoselenium Chemistry: Synthesis and Reactions; Wiley-VCH: Weinheim, 2011.

22 Perin, G.; Lenardão, E. J.; Jacob, R. G.; Panatieri, R. B.; Chem. Rev. 2009, 109, 1277.
-2323 Perin, G.; Alves, D.; Jacob, R. G.; Barcellos, A. M.; Soares, L. K.; Lenardão, E. J.; ChemistrySelect 2016, 1, 205. chiral catalysts,2424 Freudendahl, D. M.; Shahzad, S. A.; Wirth, T.; Eur. J. Org. Chem. 2009, 1649.,2525 Godoi, M.; Paixão, M. W.; Braga, A. L.; Dalton Trans. 2011, 40, 11347. photophysical properties2626 Rampon, D. S.; Santos, F. S.; Descalzo, R. R.; Toldo, J. M.; Gonçalves, P. F. B.; Schneider, P. H.; Rodembusch, F. S.; J. Phys. Org. Chem. 2014, 27, 336.

27 Samb, I.; Bell, J.; Toullec, P. Y.; Michelet, V.; Leray, I.; Org. Lett. 2011, 13, 1182.
-2828 Balaguez, R. A.; Ricordi, V. G.; Duarte, R. C.; Toldo, J. M.; Santos, C. M.; Schneider, P. H.; Alves, D.; RSC Adv. 2016, 6, 49613. and pharmacological activities.2929 Nogueira, C. W.; Rocha, J. B. T. In Patai's Chemistry of Functional Groups; Rappoport, Z., ed.; Wiley: Chichester, 2011, p. 1277.

30 Lenardão, E. J.; Santi, C.; Sancineto, L.; New Frontiers in Organoselenium Compounds; Springer: Switzerland, 2018.

31 Petronilho, F.; Michels, M.; Danielski, L. G.; Goldim, M. P.; Florentino, D.; Vieira, A.; Mendonça, M. G.; Tournier, M.; Piacentini, B.; Giustina, A. D.; Leffa, D. D.; Pereira, G. W.; Pereira, V. D.; da Rocha, J. B. T.; Pathol., Res. Pract. 2016, 212, 755.

32 Rosa, S. G.; Quines, C. B.; Stangherlin, E. C.; Nogueira, C. W.; Physiol. Behav. 2016, 155, 1.

33 Oliveira, C. E. S.; Sari, M. H. M.; Zborowski, V. A.; Araujo, P. C. O.; Nogueira, C. W.; Zeni, G.; Pharmacol., Biochem. Behav. 2017, 154, 31.

34 Ribeiro, M. C. P.; Ávila, D. S.; Schiar, V. P. P.; dos Santos, D. B.; Meinerz, D. F.; Duarte, M. M. F.; Monteiro, R.; Puntel, R.; de Bem, A. F.; Hassan, W.; Barbosa, N. B. V.; Rocha, J. B. T.; Chem. Biol. Interact. 2013, 204, 191.

35 Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrine, O.; J. Med. Chem. 2015, 58, 9601.

36 Sancineto, L.; Piccioni, M.; de Marco, S.; Pagiotti, R.; Nascimento, V.; Braga, A. L.; Santi, C.; Pietrella, D.; BMC Microbiol. 2016, 16, 220.
-3737 Lau, Z.; Sheng, J.; Sun, Y.; Lu, C.; Yan, J.; Liu, A.; Lau, H.-B.; Huang, L.; Li, X.; J. Med. Chem. 2013, 56, 9089. Thus, the presence of selenium in the pyrazole ring could result in compounds with new pharmacological and medicinal activities.

In recent years, several methods to synthesize 4-(arylselanyl)pyrazoles were reported.3838 Attanasi, O. A.; de Crescentini, L.; Mantellini, F.; Marini, F.; Nicolini, S.; Sternativo, S.; Tiecco, M.; Synlett 2009, 2, 1118.

39 Wu, P.; Huang, F.; Lou, J.; Wang, Q.; Liu, Z.; Yu, Z.; Tetrahedron Lett. 2015, 56, 2488.

40 Nascimento, J. E. R.; Oliveira, D. H.; Abib, P. B.; Alves, D.; Perin, G.; Jacob, R. G.; J. Braz. Chem. Soc. 2015, 26, 1533.

41 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.
-4242 Zora, M.; Demirci, D.; Kivrak, A.; Kelgokmen, Y.; Tetrahedron Lett. 2016, 57, 993. However, these protocols usually require pre-functionalization of substrates,3838 Attanasi, O. A.; de Crescentini, L.; Mantellini, F.; Marini, F.; Nicolini, S.; Sternativo, S.; Tiecco, M.; Synlett 2009, 2, 1118.

39 Wu, P.; Huang, F.; Lou, J.; Wang, Q.; Liu, Z.; Yu, Z.; Tetrahedron Lett. 2015, 56, 2488.
-4040 Nascimento, J. E. R.; Oliveira, D. H.; Abib, P. B.; Alves, D.; Perin, G.; Jacob, R. G.; J. Braz. Chem. Soc. 2015, 26, 1533. use of transition metals as catalysts,4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041. multi-step synthesis and long reaction times. In 2015, our research group4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041. reported the direct synthesis of 4-(organylselanyl)pyrazoles by copper-catalyzed one-pot cyclocondensation and C-H bond selenylation reactions starting from hydrazines, 1,3-diketones and diorganoyl diselenides (Scheme 1).

Recently, Zora et al.4242 Zora, M.; Demirci, D.; Kivrak, A.; Kelgokmen, Y.; Tetrahedron Lett. 2016, 57, 993. reported the one-pot preparation of 4-phenylselanyl-1H-pyrazoles through electrophilic cyclization of α,β-alkynil hydrazones with phenylselanyl chloride (Scheme 2).

Scheme 1
Synthesis of 4-arylselanylpyrazoles by copper-catalyzed one-pot cyclization.4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.

Scheme 2
Synthesis of 4-(phenylselanyl)pyrazole via electrophilic cyclization.4242 Zora, M.; Demirci, D.; Kivrak, A.; Kelgokmen, Y.; Tetrahedron Lett. 2016, 57, 993.

The potassium peroxymonosulfate exists as a stable triple salt (2KHSO5.KHSO4.K2SO4), it is a white crystallin solid known as trademark Oxone®. In recently years, the use of Oxone® has shown an efficient alternative to traditional oxidants in organic synthesis. As oxidizing agent it has many advantages, such as water solubility, stability under several conditions, simplicity in handling, cheap, not toxic acid, easy-to-handle and environmentally safe (generates nonpolluting by-products).4343 Hussain, H.; Green, I. R.; Ahmed, I.; Chem. Rev. 2013, 113, 3329. Recently, the Oxone® has been used in the preparation of important heterocycles, for example in the synthesis of pyrazoles,4444 Kashiwa, M.; Kuwata, Y.; Sonoda, M.; Tanimori, S.; Tetrahedron 2016, 72, 304. benzoxazoles and benzimidazoles.4545 Daswani, U.; Dubey, N.; Sharma, P.; Kumar, A.; New J. Chem. 2016, 40, 8093.,4646 Hati, S.; Dutta, P. K.; Dutta, S.; Munshi, P.; Sen, S.; Org. Lett. 2016, 18, 3090. Other examples are included, such as synthesis of isoxazolines and isoxazoles,4747 Han, L.; Zhang, B.; Zhu, M.; Yan, J.; Tetrahedron Lett. 2014, 55, 2308. chromene and carbazole,4848 Reddy, K. R.; Kannaboina, P.; Das, P.; Asian J. Org. Chem. 2017, 6, 534. and pyridines and pyrimidines derivatives.4949 Swamy, T.; Raviteja, P.; Srikanth, G.; Reddy, B. V. S.; Ravinder, V.; Tetrahedron Lett. 2016, 57, 5596.

Our research group recently reported the use of Oxone® to generate electrophilic species of selenium evidencing its application in selenylation reactions.5050 Perin, G.; Nobre, P. C.; Silva, M. S.; Barcellos, T.; Jacob, R. G.; Lenardão, E. J.; Santi, C.; Roehrs, J. A.; Synthesis 2019, DOI: 10.1055/s-0037-1611747.
https://doi.org/10.1055/s-0037-1611747...

51 Perin, G.; Duarte, L. F. B.; Neto, J. S. S.; Silva, M. S.; Alves, D.; Synlett 2018, 29, 1479.

52 Perin, G.; Santoni, P.; Barcellos, A. M.; Nobre, P. C.; Jacob, R. G.; Lenardão, E. J.; Santi, C.; Eur. J. Org. Chem. 2018, 1224.

53 Perin, G.; Araujo, D. R.; Nobre, P. C.; Lenardão, E. J.; Jacob, R. G.; Silva, M. S.; Roehrs, J. A.; Peer J. 2018, 6, e4706.
-5454 Rodrigues, I.; Barcellos, A. M.; Belladona, A. L.; Roehrs, J. A.; Cargnelutti, R.; Alves, D.; Perin, G.; Schumacher, R. F.; Tetrahedron 2018, 74, 4242. As an example, we reported an alternative metal-free methodology for the synthesis of diorganyl selenides and tellurides mediated by Oxone®.5151 Perin, G.; Duarte, L. F. B.; Neto, J. S. S.; Silva, M. S.; Alves, D.; Synlett 2018, 29, 1479. Other examples include the selenomethoxylation of inactivated alkenes,5252 Perin, G.; Santoni, P.; Barcellos, A. M.; Nobre, P. C.; Jacob, R. G.; Lenardão, E. J.; Santi, C.; Eur. J. Org. Chem. 2018, 1224. the synthesis of 2-organoselanyl-naphthalenes under ultrasonic irradiation,5353 Perin, G.; Araujo, D. R.; Nobre, P. C.; Lenardão, E. J.; Jacob, R. G.; Silva, M. S.; Roehrs, J. A.; Peer J. 2018, 6, e4706. the selective synthesis of 5-arylselanyl-imidazo[2,1-b]thiazoles, 3-arylselanyl-imidazo[1,2-a]pyridines and 4-arylselanyl-1H-pyrazoles derivatives via direct selenylation C-Se coupling reaction mediated by Oxone®.5454 Rodrigues, I.; Barcellos, A. M.; Belladona, A. L.; Roehrs, J. A.; Cargnelutti, R.; Alves, D.; Perin, G.; Schumacher, R. F.; Tetrahedron 2018, 74, 4242.

Thus, based on literature,3838 Attanasi, O. A.; de Crescentini, L.; Mantellini, F.; Marini, F.; Nicolini, S.; Sternativo, S.; Tiecco, M.; Synlett 2009, 2, 1118.

39 Wu, P.; Huang, F.; Lou, J.; Wang, Q.; Liu, Z.; Yu, Z.; Tetrahedron Lett. 2015, 56, 2488.

40 Nascimento, J. E. R.; Oliveira, D. H.; Abib, P. B.; Alves, D.; Perin, G.; Jacob, R. G.; J. Braz. Chem. Soc. 2015, 26, 1533.

41 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.
-4242 Zora, M.; Demirci, D.; Kivrak, A.; Kelgokmen, Y.; Tetrahedron Lett. 2016, 57, 993. our recent report using Oxone® in selenylation reactions5050 Perin, G.; Nobre, P. C.; Silva, M. S.; Barcellos, T.; Jacob, R. G.; Lenardão, E. J.; Santi, C.; Roehrs, J. A.; Synthesis 2019, DOI: 10.1055/s-0037-1611747.
https://doi.org/10.1055/s-0037-1611747...

51 Perin, G.; Duarte, L. F. B.; Neto, J. S. S.; Silva, M. S.; Alves, D.; Synlett 2018, 29, 1479.

52 Perin, G.; Santoni, P.; Barcellos, A. M.; Nobre, P. C.; Jacob, R. G.; Lenardão, E. J.; Santi, C.; Eur. J. Org. Chem. 2018, 1224.

53 Perin, G.; Araujo, D. R.; Nobre, P. C.; Lenardão, E. J.; Jacob, R. G.; Silva, M. S.; Roehrs, J. A.; Peer J. 2018, 6, e4706.
-5454 Rodrigues, I.; Barcellos, A. M.; Belladona, A. L.; Roehrs, J. A.; Cargnelutti, R.; Alves, D.; Perin, G.; Schumacher, R. F.; Tetrahedron 2018, 74, 4242. and due to our continuous interest in the preparation of nitrogen-functionalized organoselenium compounds,5555 Aquino, T. F. B.; Seidel, J. P.; Oliveira, D. H.; Nascimento, J. E. R.; Alves, D.; Perin, G.; Lenardão, E. J.; Schumacher, R. F.; Jacob, R. G.; Tetrahedron Lett. 2018, 59, 4090.

56 Aquino, T. B.; Nascimento, J. E. R.; Dias, I. F.; Oliveira, D. H.; Barcellos, T.; Lenardão, E. J.; Perin, G.; Alves, D.; Jacob, R. G.; Tetrahedron Lett. 2018, 59, 1080.

57 Oliveira, D. H.; Alves, D.; Jacob, R. G.; Xavier, M. C. D. F.; Curr. Org. Synth. 2015, 12, 822.

58 Balaguez, R. A.; Ricordi, V. G.; Duarte, R. C.; Toldo, J. M.; Santos, C. M.; Schneider, P. H.; Gonçalves, P. F. B.; Rodembusch, F. S.; Alves, D.; RSC Adv. 2016, 6, 49613.
-5959 Alves, D.; Goldani, B.; Lenardão, E. J.; Perin, G.; Schumacher, R. F.; Paixão, M. W.; Chem. Rec. 2018, 18, 527. we describe herein our results on the synthesis of a range of 4-(organylselanyl)-1H-pyrazoles 4 by Oxone®-mediated oxidative multicomponent reaction of hydrazines 1, 1,3-diketones 2 and diorganyl diselenides 3 (Scheme 3).

Scheme 3
General scheme for synthesis of 1-aryl-4-(organylselanyl)-1H-pyrazoles.

Results and Discussion

Based in our previous results,4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041. the reaction was peformed using phenylhydrazine 1a (0.250 mmol), 2,4-pentanedione 2a (0.250 mmol) and diphenyl diselenide 3a (0.125 mmol) in CH3CN (1.0 mL). After that we added Oxone® (0.500 mmol) keeping the reaction mixture under stirring at 50 °C for 24.0 h and air atmosphere. The desired product 3,5-dimethyl-1-phenyl-1H-pyrazole 4a was obtained in 50% yield (Table 1, entry 1).

Table 1
Reaction conditions optimizationa a Reactions were performed with substrates 1a (0.250 mmol), 2a (0.250 mmol), 3a and Oxone® in 1.0 mL of solvent in the open atmosphere;

Aiming to improve the yield of the 4a, we examined the influence of different solvents, temperature, reaction time, amount of 3a and Oxone®, as depicted in Table 1, entries 2 to 10. Thus, when the reaction was performed with 0.188 and 0.250 mmol of the 3a an increase in the yield of the product 4a was observed with reduction of the reaction time (Table 1, entries 2 and 3). However, a decrease in the yield of product 4a was observed when the amount of the Oxone® was reduced to 0.250 mmol (Table 1, entry 4). This result is probably due to the incomplete oxidation of diphenyl diselenide 3a in the presence of Oxone®. Next, the reaction was performed at 25 °C and reflux temperature and a decrease in the yield of product 4a was observed (Table 1, entries 5 and 6).

Next, the reaction was performed using different solvents (Table 1, entries 7 to 10). When acetic acid was used as a solvent the yield was increased to 98% and the reaction time was reduced to only 0.5 h (Table 1, entry 7). However, when it was used other solvents including EtOH, H2O or PEG-400, lower yields of 4a (Table 1, entries 8, 9 and 10 vs. 7) was obtained.

In order to verify the scope and limitations of this protocol, the generality of our method was explored by extending the optimized reaction conditions (Table 1, entry 7) to other substituted reagents, and the results are shown in Table 2. Firstly, 1,3-diketones 2a-c were reacted with phenylhydrazine 1a and diphenyl diselenide 3a (Table 2, entries 1 to 3). Thus, when the reactions were performed with 3,5-heptanedione 2b the desired product 4b was obtained in 90% yield (Table 2, entry 2). When unsymmetrical 1-phenyl-1,3-butanedione 2c was used, two regioisomers were obtained providing the corresponding 4-selanylpyrazoles 4c and 4c’ in the ratio (96:4) determined by gas chromatography mass spectrometry (GC-MS) analysis in 89% yield (Table 2, entry 3). We believe that steric hinderance of 2c associated to the conjugative effect of aromatic ring can contribute to stabilize the enol tautomer increasing the regioselectivity of this cyclization towards the formation of product 4c as major isomer.

Table 2
Reaction scope for the synthesis of 4-organylselanylpyrazoles 4a-la a Reactions were performed with substrates 1a-d (0.250 mmol), 2a-c (0.250 mmol), 3a-g (0.250 mmol), Oxone® (0.500 mmol) in acetic acid (1.0 mL) as solvent at 50 ºC in air atmosphere for 0.5 h;

Subsequently, the reactions were performed with arylhydrazines 1b and 1c containing electron-donating group (EDG) and electron-withdrawing groups (EWG), to give the corresponding 4-arylselanylpyrazoles 4d and 4e in 69 and 44% yields, respectively (Table 2, entries 4 and 5). These results reveal that the reactions are sensitive to the electronic effect of the aromatic ring in the arylhydrazine. On the other hand, when hydrazine hydrochloride 1d was used as a starting substrate, the desired product 4f was obtained in 75% yield (Table 2, entry 6).

Furthermore, varying substituted diaryl diselenides 3 was evaluated to determine the influence of electron-donating (-Me, -OMe) and electron-withdrawing groups (-Cl, -F) in this reaction. The corresponding 4-selanylpyrazoles 4g-j were obtained in good yields (Table 2, entries 7-10). The reaction of substituted diaryl diselenides is well tolerated and the results reveal that yields are not sensitive to the electronic effects in the diaryl diselenides containing EDG (3b and 3c) and EWG (3d and 3e).

The reaction also worked well with dibutyl diselenide 3f, and the corresponding 4-butylselanyl-3,5-dimethyl-1-phenyl-1H-pyrazole 4k was obtained in good yield (Table 2, entry 11). Moreover, 2,2’-dipyridyl diselenide 3g also gives the desired 2-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)selanyl]pyridine 4l in a moderate yield of 58% (Table 2, entry 12). In this case the respective pyrazole containig a selanyl-pyridine group showed a decrease in yield probably due to the decrease of the electrophilic character of the selenium species, reducing their reactivity, caused by the conjugation of the electrons of the pyridine ring.

To extend the reaction scope, the multicomponent reaction (MCR) was evaluated in presence of (E)-chalcone 5 using optimized reaction conditions. Under this reaction condition the desired 1,3,5-triaryl-4-(phenylselanyl)-1H-pyrazoles 4m was obtained in only 15% yield. Based on this result, a mixture of phenylhydrazine 2a and chalcone 5 in acetic acid was stirred at reflux temperature for 2.0 h to afford in situ the pyrazolyl nucleus A. After this, diphenyl diselenide 3a and Oxone® were added at 50 °C for 0.5 h and the desired product 1,3,5-triphenyl-4-(phenylselanyl)-1H-pyrazoles 4m was obtained in 81% yield (Scheme 4).

Scheme 4
General scheme for synthesis of 1,3,5-triphenyl-4-(phenylselanyl)-1H-pyrazole, 4m.

Conclusions

In summary, we developed an efficient method for the synthesis of 4-organylselanylpyrazoles through the multicomponent reaction of 1,3-diketones, hydrazine and diaryl selenides. The reaction was Oxone®-promoted in acetic acid at 50 °C under air atmosphere and in short reaction times, a range of substituted 4-organylselanylpyrazoles was obtained in good to excellent yields.

Experimental

General information

The reactions were monitored by thin layer chromatography (TLC) carried out on Merck silica gel (60 F254) by using UV light as visualization agent and the mixture between of vanillin 5% and of H2SO4 10% under heating conditions as developing agents. Merck silica gel (particle size 0.040-0.063 mm) was used for flash chromatography. Hydrogen nuclear magnetic resonance spectra (1H NMR) were obtained on Bruker Ascend 400 spectrometer at 400 MHz. The spectra were recorded in CDCl3 solutions. The chemical shifts are reported in ppm, referenced to tetramethylsilane (TMS) as the internal reference. Coupling constants (J) are reported in hertz. Abbreviations to denote the multiplicity of a particular signal are s (singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublet of doublets), dt (doublet of triplets), t (triplet), q (quartet), quint (quintet), sext (sextet), and m (multiplet). Carbon-13 nuclear magnetic resonance spectra (13C NMR) were obtained on Bruker Ascend 400 spectrometer at 100 MHz. The chemical shifts are reported in ppm, referenced to the solvent peak of CDCl3. Low-resolution mass spectra were obtained with a Shimadzu GC-MS-QP2010 mass spectrometer. The high-resolution electrospray ionization mass spectrometry (QTOF) analysis were performed on a Bruker Daltonics micrOTOF-Q II instrument in operating positive mode. The samples were solubilized in high-performance liquid chromatography (HPLC)-grade acetonitrile and injected into the atmospheric pressure chemical ionization (APCI) source by means of a syringe pump at a flow rate of 5.0 µL min-1. The follow instrument parameters were applied: capillary and cone voltages were set to +3500 and -500 V, respectively, with a desolvation temperature of 180 ºC. For data acquisition and processing and isotopes simulations, Compass 1.3 for micrOTOF-Q II software (Bruker Daltonics) was used. Melting point (mp) values were measured in a Marte PFD III instrument with a 0.1 ºC precision.

Synthesis

General procedure for synthesis of 4-arylselanyl-1H-pyrazoles (4a-l)

In a reaction tube of 10.0 mL it was added a mixture of the respectives hydrazines 1a-d (0.25 mmol), 1,3-diketones 2a-c (0.25 mmol), diselenides 3a-g (0.25 mmol) and Oxone® 0.5 mmol in CH3COOH (1.0 mL). The mixture was stirred at 50 °C for the time indicated in Table 2. The aqueous sodium bicarbonate solution 5% (10.0 mL) and ethyl acetate (15.0 mL) were added. The organic phase was washed with water (2 × 10.0 mL), separated, dried over MgSO4, and the solvent was evaporated under reduced pressure. The product was isolated by column chromatography using hexane/ethyl acetate (98/2% v/v) as eluent.

3,5-Dimethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (4a)4040 Nascimento, J. E. R.; Oliveira, D. H.; Abib, P. B.; Alves, D.; Perin, G.; Jacob, R. G.; J. Braz. Chem. Soc. 2015, 26, 1533.,4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.

Yield: 0.080 g (98%); orange solid; mp 82-84 °C; 1H NMR (400 MHz, CDCl3) ẟ 2.33 (s, 3H, CH3), 2.37 (s, 3H, CH3), 7.11-7.16 (m, 1H, Ar-H), 7.19-7.20 (m, 4H, Ar-H), 7.34-7.40 (m, 1H, Ar-H), 7.44-7.48 (m, 4H, Ar-H);13C NMR (100 MHz, CDCl3) ẟ 12.4, 12.9, 102.5, 124.6, 125.7, 127.7, 128.2, 129.0, 129.1, 132.9, 139.7, 144.0, 153.2; MS (relative intensity / %) m/z: 77 (96.2), 118 (55.0), 157 (3.8), 171 (5.2), 248 (100.0), 328 (75.4).

3,5-Diethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (4b)4040 Nascimento, J. E. R.; Oliveira, D. H.; Abib, P. B.; Alves, D.; Perin, G.; Jacob, R. G.; J. Braz. Chem. Soc. 2015, 26, 1533.,4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.

Yield: 0.080 g (90%); orange oil; 1H NMR (400 MHz, CDCl3) ẟ 1.00 (t, 3H, J 7.6 Hz, CH3), 1.23 (t, 3H, J 7.6 Hz, CH3), 2.72 (q, 2H, J 7.6 Hz, CH2), 2.78 (q, 2H, J 7.6 Hz, CH2), 7.10-7.15 (m, 1H, Ar-H), 7.19-7.20 (m, 4H, Ar-H), 7.37-7.42 (m, 1H, Ar-H), 7.47-4.48 (m, 4H, Ar-H); 13C NMR (100 MHz, CDCl3) ẟ 13.7, 13.9, 19.1, 20.8, 100.3, 125.3, 125.6, 128.0, 129.0, 129.1, 133.6, 140.0, 149.7, 158.3; MS (relative intensity / %) m/z: 77 (48.4), 132 (17.0), 157 (2.1), 199 (3.2), 275 (100.0), 356 (36.8).

3-Methyl-1,5-diphenyl-4-(phenylselanyl)-1H-pyrazole (4c)4040 Nascimento, J. E. R.; Oliveira, D. H.; Abib, P. B.; Alves, D.; Perin, G.; Jacob, R. G.; J. Braz. Chem. Soc. 2015, 26, 1533.,4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.

Yield: 0.087 g (89%); beige solid; mp 68-69 °C; 1H NMR (400 MHz, CDCl3) ẟ 2.39 (s, 3H, CH3), 7.11-7.22 (m, 7H, Ar-H), 7.23-7.32 (m, 8H, Ar-H);13C NMR (100 MHz, CDCl3) ẟ 13.0, 103.5, 124.8, 125.8, 127.2, 128.2, 128.5, 128.7, 128.8, 129.1, 129.9, 130.1, 133.3, 139.9, 147.0, 154.0; MS (relative intensity / %) m/z: 77 (71.6), 157 (0.9), 180 (18.8), 233 (5.3), 310 (100.0), 390 (69.5).

1-(2,4-Dimethylphenyl)-3,5-dimethyl-4-phenylselanyl-1H-pyrazole (4d)

Yield: 0.061 g (69%); yellowish solid; mp 84-86 °C; 1H NMR (400 MHz, CDCl3) ẟ 2.03 (s, 3H, Ar-CH3), 2.11 (s, 3H, Ar-CH3), 2.31 (s, 3H, CH3), 2.38 (s, 3H, CH3), 7.07-7.22 (m, 8H, Ar-H); 13C NMR (100 MHz, CDCl3) ẟ 11.3, 12.9, 17.1, 21.1, 100.4, 125.6, 127.2, 127.4, 128.0, 129.1, 131.5, 133.3, 135.5, 136.2, 139.2, 145.2, 152.7; MS (relative intensity / %) m/z: 77 (45.0), 105 (28.4), 118 (4.5), 157 (12.9), 199 (11.0), 275 (66.4), 356 (100.0). HRMS (APCI-QTOF) m/z, calcd. for C19H20N2Se [M + H]­+: 357.0870, found: 357.0865.

1-(2,4-Dichlorophenyl)-3,5-dimethyl-4-phenylselanyl-1H-pyrazole (4e)

Yield: 0.044 g (44%); orange solid; mp 80-82 °C; 1H NMR (400 MHz, CDCl3) ẟ 2.17 (s, 3H, CH3), 2.31 (s, 3H, CH3), 7.12-7.23 (m, 5H, Ar-H), 7.39 (d, 2H, J 1.2 Hz, Ar-H), 7.56 (t, 1H, J 1.2 Hz, Ar-H);13C NMR (100 MHz, CDCl3) ẟ 11.3, 13.0, 101.7, 125.7, 128.0, 128.1, 129.2, 130.1, 130.4, 132.8, 133.3, 135.9, 136.1, 146.2, 154.0; MS (relative intensity / %) m/z: 77 (24.7), 118 (4.4), 144 (57.8), 157 (5.7), 239 (5.7), 361 (100.0), 396 (75.4); HRMS (APCI-QTOF) m/z, calcd. for C17H14Cl2N2Se [M + H]+: 396.9778, found: 396.9767.

3,5-Dimethyl-4-(phenylselanyl)-1H-pyrazole (4f)4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.

Yield: 0.047 g (75%); white solid; mp 104-105 °C; 1H NMR (400 MHz, CDCl3) ẟ 2.25 (s, 6H, 2CH3), 7.03-7.12 (m, 5H, Ar-H);13C NMR (100 MHz, CDCl3) ẟ 11.9, 100.1, 125.6, 128.2, 129.1, 133.1, 149.0; MS (relative intensity / %) m/z: 77 (16.3), 95 (13.2), 118 (1.6), 157 (10.6), 172 (100.0), 252 (58.9).

3,5-Dimethyl-1-phenyl-4-(4-tolylselanyl)-1H-pyrazole (4g)4040 Nascimento, J. E. R.; Oliveira, D. H.; Abib, P. B.; Alves, D.; Perin, G.; Jacob, R. G.; J. Braz. Chem. Soc. 2015, 26, 1533.,4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.

Yield: 0.066 g (77%); slightly orange solid; mp 96-97 °C; 1H NMR (400 MHz, CDCl3) ẟ 2.27 (s, 3H, Ar-CH3), 2.33 (s, 3H, CH3), 2.38 (s, 3H, CH3), 7.01-7.03 (m, 2H, Ar-H), 7.10-7.13 (m, 2H, Ar-H), 7.34-7.40 (m, 1H, Ar-H), 7.44-7.47 (m, 4H, Ar-H); 13C NMR (100 MHz, CDCl3) ẟ 12.4, 12.9, 20.9, 103.0, 124.7, 127.6, 128.7, 128.97, 129.04, 129.9, 135.6, 139.9, 143.8, 153.1; MS (relative intensity / %) m/z: 77 (55.1), 118 (32.1), 170 (3.9), 171 (5.7), 262 (100.0), 342 (46.7).

4-[(4-Methoxyphenyl)selanyl]-3,5-dimethyl-1-phenyl-1H-pyrazole (4h)4040 Nascimento, J. E. R.; Oliveira, D. H.; Abib, P. B.; Alves, D.; Perin, G.; Jacob, R. G.; J. Braz. Chem. Soc. 2015, 26, 1533.,4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.

Yield: 0.075 g (84%); red oil; 1H NMR (400 MHz, CDCl3) d 2.34 (s, 3H, CH3), 2.39 (s, 3H, CH3), 3.75 (s, 3H, OCH3), 6.76-6.80 (m, 2H, Ar-H), 7.19-7.22 (m, 2H, Ar-H), 7.34-7.38 (m, 1H, Ar-H), 7.43-7.48 (m, 4H, Ar-H); 13C NMR (100 MHz, CDCl3) ẟ 12.4, 12.9, 55.2, 103.9, 114.9, 122.6, 124.7, 127.6, 129.0, 131.1, 139.9, 143.6, 152.9, 158.5; MS (relative intensity / %) m/z: 77 (39.7), 118 (22.1), 171 (2.0), 187 (1.5), 278 (100.0), 358 (32.2).

4-[(4-Chlorophenyl)selanyl]-3,5-dimethyl-1-phenyl-1H-pyrazole (4i)4040 Nascimento, J. E. R.; Oliveira, D. H.; Abib, P. B.; Alves, D.; Perin, G.; Jacob, R. G.; J. Braz. Chem. Soc. 2015, 26, 1533.,4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.

Yield: 0.073 g (81%); yellowish solid; mp 124-125 °C; 1H NMR (400 MHz, CDCl3) ẟ 2.32 (s, 3H, CH3), 2.37 (s, 3H, CH3), 7.10-7.13 (m, 2H, Ar-H), 7.15-7.18 (m, 2H, Ar-H), 7.35-7.42 (m, 1H, Ar-H), 7.45-7.50 (m, 4H, Ar-H); 13C NMR (100 MHz, CDCl3) ẟ 12.4, 12.8, 102.3, 124.7, 127.8, 129.1, 129.2, 129.6, 131.2, 131.8, 139.7, 144.0, 153.1; MS (relative intensity / %) m/z: 77 (100.0), 118 (59.5), 171 (3.9), 191 (2.3), 282 (83.9), 362 (66.3).

4-[(4-Fluorophenyl)selanyl]-3,5-dimethyl-1-phenyl-1H-pyrazole (4j)

Yield: 0.078 g (90%); orange oil; 1H NMR (400 MHz, CDCl3) ẟ 2.33 (s, 3H, CH3), 2.38 (s, 3H, CH3), 6.89-6.95 (m, 2H, Ar-H), 7.16-7.21 (m, 2H, Ar-H), 7.36-7.40 (m, 1H, Ar-H), 7.44-7.50 (m, 4H, Ar-H); 13C NMR (100 MHz, CDCl3) ẟ 12.4, 12.9, 103.1, 116.2 (d, J 21.7 Hz), 124.7, 127.2 (d, J 3.4 Hz), 127.8, 129.1, 130.5 (d, J 7.4 Hz), 139.8, 143.9, 153.0, 161.6 (d, J 243.6 Hz); MS (relative intensity / %) m/z: 77 (94.1), 118 (55.3), 171 (4.7), 175 (3.6), 266 (100.0), 346 (74.7); HRMS (APCI-QTOF) m/z, calcd. for C17H15FN2Se [M + H]­+: 347.0463, found: 347.0459.

4-(Butylselanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (4k)4141 Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal. 2015, 357, 4041.

Yield: 0.069 g (90%); yellowish oil; 1H NMR (400 MHz, CDCl3) ẟ 0.90 (t, 3H, J 7.5 Hz, CH3), 1.41 (sext, 2H, J 7.5 Hz, CH2), 1.58 (quint, 2H, J 7.5 Hz, CH2), 2.39 (s, 3H, CH3), 2.40 (s, 3H, CH3), 2.58 (t, 2H, J 7.5 Hz, CH2), 7.33-7.37 (m, 1H, Ar-H), 7.41-7.47 (m, 4H, Ar-H); 13C NMR (100 MHz, CDCl3) ẟ 12.5, 13.0, 13.5, 22.7, 28.3, 32.3, 103.2, 124.6, 127.4, 129.0, 140.0, 143.2, 152.8; MS (relative intensity / %) m/z: 57 (6.1), 77 (72.3), 118 (75.4), 171 (100.0), 251 (24.3), 308 (43.9).

2-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)selanyl]pyridine (4l)

Yield: 0.048 g (58%); colorless oil; 1H NMR (400 MHz, CDCl3) ẟ 2.35 (s, 3H, CH3), 2.40 (s, 3H, CH3), 6.88 (dt, 1H, J 8.0, 0.9 Hz, Ar-H), 7.02 (ddd, 1H, J 7.4, 4.8, 0.9 Hz, Ar-H), 7.37-7.44 (m, 2H, Ar-H), 7.48-7.50 (m, 4H, Ar-H), 8.43 (ddd, 1H, J 4.8, 1.9, 0.9 Hz, Ar-H); 13C NMR (100 MHz, CDCl3) ẟ 12.4, 12.9, 102.2, 120.0, 121.9, 124.7, 127.8, 129.1, 136.6, 139.8, 144.3, 149.9, 153.2, 158.7; MS (relative intensity / %) m/z: 77 (53.5), 118 (31.9), 156 (11.0), 171 (100.0), 248 (54.9), 329 (31.5); HRMS (APCI-QTOF) m/z calcd. for C16H15N3Se [M + H]­+: 330.0509, found: 330.0520.

General procedure for synthesis of 1,3,5-triphenyl-4-(phenylselanyl)-1H-pyrazole (4m)

In a reaction flask of 25.0 mL has added a mixture of the chalcone 5 (0.25 mmol) and phenylhydrazine 1a (0.25 mmol) in CH3COOH (1.0 mL). The mixture was stirred for 2 h under reflux, then the temperature was lowered to 50 °C and the diphenyl diselenide 3a (0.25 mmol) and Oxone® (0.5 mmol) were added. The mixture was stirred for 0.5 h. The aqueous sodium bicarbonate solution 5% (10.0 mL) and ethyl acetate (15.0 mL) were added. The organic phase was washed with water (2 × 10.0 mL), separated, dried over MgSO4, and the solvent was evaporated under reduced pressure. The product was isolated by column chromatography using hexane/ethyl acetate (98/2% v/v) as eluent.

1,3,5-Triphenyl-4-(phenylselanyl)-1H-pyrazole (4m)

Yield: 0.092 g (81%); yellowish solid; mp 127-129 °C; 1H NMR (400 MHz, CDCl3) ẟ 7.09-7.22 (m, 7H, Ar-H), 7.23-7.39 (m, 11H, Ar-H), 7.96-7.99 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3) ẟ 101.7, 124.9, 125.8, 127.4, 128.1, 128.2, 128.3, 128.4, 128.6, 128.78, 128.82, 129.1, 129.9, 130.3, 132.8, 134.1, 139.9, 148.4, 155.0; MS (relative intensity / %) m/z: 157 (0.9), 180 (49.7), 372 (100.0), 452 (60.2).

Supplementary Information

Supplementary information is available free of charge at http://jbcs.sbq.org.br as PDF file.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES), finance code 001. We thank CNPq, CAPES, FAPERGS (PqG 17/2551-0000987-8) for the financial support.

References

  • 1
    Elguero, J. In Comprehensive Heterocyclic Chemistry, vol. 5; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., eds.; Pergamon Press: Oxford, 1984, p. 273.
  • 2
    Elguero, J.; Goya, P.; Jagerovic, N.; Silva, A. M. S.; Targets in Heterocyclic Systems, vol. 6; Attanasi, O. A.; Spinelli, D., eds.; Italian Society of Chemistry: Rome, 2002, p. 52.
  • 3
    Huang, Y. R.; Katzenellenbogen, J. A.; J. Org. Lett. 2000, 2, 22833.
  • 4
    Chimenti, F.; Fioravanti, R.; Bolasco, A.; Manna, F.; Chimenti, P.; Secci, D.; Befani, O.; Turini, P.; Ortuso, F.; Alcaro, S.; J. Med. Chem. 2007, 50, 425.
  • 5
    Nassar, E.; Abdel-Aziz, H. A.; Ibrahim, H. S.; Mansour, A. M.; Sci. Pharm. 2011, 79, 507.
  • 6
    Kismet, K.; Akay, M. T.; Abbasoglu, O.; Ercan, A.; Cancer Detect. Prev. 2004, 28, 127.
  • 7
    Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C.; J. Med. Chem 1997, 40, 1347.
  • 8
    Smith, K. E.; Wall, R.; Howard, J. J.; Strong, L.; Marchiondo, A. A.; Jeannin, P.; Vet. Parasitol 2000, 88, 261.
  • 9
    Carlsson, K. H.; Helmreich, J.; Jurna, I.; Pain 1986, 27, 373.
  • 10
    Eardley, I.; Morgan, R.; Dinsmore, W.; Yates, P.; Boolell, M.; Br. J. Psychiatry 2001, 178, 325.
  • 11
    Weitzel, K. W.; Wickman, J. M.; Augustin, S. G.; Strom, J. G.; Clin. Ther 2000, 22, 1254.
  • 12
    Specklin, S.; Decuypere, E.; Plougastel, L.; Aliani, S.; Taran, F.; J. Org. Chem 2014, 79, 7772.
  • 13
    Li, D. Y.; Mao, X. F.; Chen, H. J.; Chen, G. R.; Liu, P. N.; Org. Lett. 2014, 16, 3476.
  • 14
    Rao, V. K.; Tiwari, R.; Chhikara, B. S.; Shirazi, A. N.; Parang, K.; Kumar, A.; RSC Adv. 2013, 3, 15396.
  • 15
    Jiang, H. J.; Liu, H. L.; Zhang, M.; Yao, W. J.; Zhu, Q. H.; Tang, Z.; Tetrahedron Lett. 2008, 49, 3805.
  • 16
    Smith, C. D.; Adlington, R. M.; Baldwin, J.; Kirill, T.; Tetrahedron Lett. 2006, 47, 3209.
  • 17
    Vaddula, B. R.; Varma, R. S.; Leazer, J.; Tetrahedron Lett. 2013, 54, 1538.
  • 18
    Polshettiwar, V.; Varma, R. S.; Tetrahedron Lett. 2008, 49, 397.
  • 19
    Chen, X.; She, J.; Shang, Z. C.; Wu, J.; Zhang, P.; Synth. Commun. 2009, 39, 947.
  • 20
    Alberto, E. E.; Braga, A. L. In Selenium and Tellurium Chemistry - From Small Molecules to Biomolecules and Materials; Derek, W. J.; Risto, L., eds.; Springer-Verlag: Berlin Heidelberg, 2011, p. 323.
  • 21
    Wirth, T.; Organoselenium Chemistry: Synthesis and Reactions; Wiley-VCH: Weinheim, 2011.
  • 22
    Perin, G.; Lenardão, E. J.; Jacob, R. G.; Panatieri, R. B.; Chem. Rev. 2009, 109, 1277.
  • 23
    Perin, G.; Alves, D.; Jacob, R. G.; Barcellos, A. M.; Soares, L. K.; Lenardão, E. J.; ChemistrySelect 2016, 1, 205.
  • 24
    Freudendahl, D. M.; Shahzad, S. A.; Wirth, T.; Eur. J. Org. Chem. 2009, 1649.
  • 25
    Godoi, M.; Paixão, M. W.; Braga, A. L.; Dalton Trans. 2011, 40, 11347.
  • 26
    Rampon, D. S.; Santos, F. S.; Descalzo, R. R.; Toldo, J. M.; Gonçalves, P. F. B.; Schneider, P. H.; Rodembusch, F. S.; J. Phys. Org. Chem. 2014, 27, 336.
  • 27
    Samb, I.; Bell, J.; Toullec, P. Y.; Michelet, V.; Leray, I.; Org. Lett. 2011, 13, 1182.
  • 28
    Balaguez, R. A.; Ricordi, V. G.; Duarte, R. C.; Toldo, J. M.; Santos, C. M.; Schneider, P. H.; Alves, D.; RSC Adv. 2016, 6, 49613.
  • 29
    Nogueira, C. W.; Rocha, J. B. T. In Patai's Chemistry of Functional Groups; Rappoport, Z., ed.; Wiley: Chichester, 2011, p. 1277.
  • 30
    Lenardão, E. J.; Santi, C.; Sancineto, L.; New Frontiers in Organoselenium Compounds; Springer: Switzerland, 2018.
  • 31
    Petronilho, F.; Michels, M.; Danielski, L. G.; Goldim, M. P.; Florentino, D.; Vieira, A.; Mendonça, M. G.; Tournier, M.; Piacentini, B.; Giustina, A. D.; Leffa, D. D.; Pereira, G. W.; Pereira, V. D.; da Rocha, J. B. T.; Pathol., Res. Pract 2016, 212, 755.
  • 32
    Rosa, S. G.; Quines, C. B.; Stangherlin, E. C.; Nogueira, C. W.; Physiol. Behav 2016, 155, 1.
  • 33
    Oliveira, C. E. S.; Sari, M. H. M.; Zborowski, V. A.; Araujo, P. C. O.; Nogueira, C. W.; Zeni, G.; Pharmacol., Biochem. Behav 2017, 154, 31.
  • 34
    Ribeiro, M. C. P.; Ávila, D. S.; Schiar, V. P. P.; dos Santos, D. B.; Meinerz, D. F.; Duarte, M. M. F.; Monteiro, R.; Puntel, R.; de Bem, A. F.; Hassan, W.; Barbosa, N. B. V.; Rocha, J. B. T.; Chem. Biol. Interact 2013, 204, 191.
  • 35
    Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrine, O.; J. Med. Chem. 2015, 58, 9601.
  • 36
    Sancineto, L.; Piccioni, M.; de Marco, S.; Pagiotti, R.; Nascimento, V.; Braga, A. L.; Santi, C.; Pietrella, D.; BMC Microbiol. 2016, 16, 220.
  • 37
    Lau, Z.; Sheng, J.; Sun, Y.; Lu, C.; Yan, J.; Liu, A.; Lau, H.-B.; Huang, L.; Li, X.; J. Med. Chem. 2013, 56, 9089.
  • 38
    Attanasi, O. A.; de Crescentini, L.; Mantellini, F.; Marini, F.; Nicolini, S.; Sternativo, S.; Tiecco, M.; Synlett 2009, 2, 1118.
  • 39
    Wu, P.; Huang, F.; Lou, J.; Wang, Q.; Liu, Z.; Yu, Z.; Tetrahedron Lett. 2015, 56, 2488.
  • 40
    Nascimento, J. E. R.; Oliveira, D. H.; Abib, P. B.; Alves, D.; Perin, G.; Jacob, R. G.; J. Braz. Chem. Soc. 2015, 26, 1533.
  • 41
    Oliveira, D. H.; Aquino, T. B.; Nascimento, J. R. R.; Perin, G.; Jacob, R. G.; Alves, D.; Adv. Synth. Catal 2015, 357, 4041.
  • 42
    Zora, M.; Demirci, D.; Kivrak, A.; Kelgokmen, Y.; Tetrahedron Lett. 2016, 57, 993.
  • 43
    Hussain, H.; Green, I. R.; Ahmed, I.; Chem. Rev. 2013, 113, 3329.
  • 44
    Kashiwa, M.; Kuwata, Y.; Sonoda, M.; Tanimori, S.; Tetrahedron 2016, 72, 304.
  • 45
    Daswani, U.; Dubey, N.; Sharma, P.; Kumar, A.; New J. Chem 2016, 40, 8093.
  • 46
    Hati, S.; Dutta, P. K.; Dutta, S.; Munshi, P.; Sen, S.; Org. Lett. 2016, 18, 3090.
  • 47
    Han, L.; Zhang, B.; Zhu, M.; Yan, J.; Tetrahedron Lett. 2014, 55, 2308.
  • 48
    Reddy, K. R.; Kannaboina, P.; Das, P.; Asian J. Org. Chem. 2017, 6, 534.
  • 49
    Swamy, T.; Raviteja, P.; Srikanth, G.; Reddy, B. V. S.; Ravinder, V.; Tetrahedron Lett 2016, 57, 5596.
  • 50
    Perin, G.; Nobre, P. C.; Silva, M. S.; Barcellos, T.; Jacob, R. G.; Lenardão, E. J.; Santi, C.; Roehrs, J. A.; Synthesis 2019, DOI: 10.1055/s-0037-1611747.
    » https://doi.org/10.1055/s-0037-1611747
  • 51
    Perin, G.; Duarte, L. F. B.; Neto, J. S. S.; Silva, M. S.; Alves, D.; Synlett 2018, 29, 1479.
  • 52
    Perin, G.; Santoni, P.; Barcellos, A. M.; Nobre, P. C.; Jacob, R. G.; Lenardão, E. J.; Santi, C.; Eur. J. Org. Chem. 2018, 1224.
  • 53
    Perin, G.; Araujo, D. R.; Nobre, P. C.; Lenardão, E. J.; Jacob, R. G.; Silva, M. S.; Roehrs, J. A.; Peer J. 2018, 6, e4706.
  • 54
    Rodrigues, I.; Barcellos, A. M.; Belladona, A. L.; Roehrs, J. A.; Cargnelutti, R.; Alves, D.; Perin, G.; Schumacher, R. F.; Tetrahedron 2018, 74, 4242.
  • 55
    Aquino, T. F. B.; Seidel, J. P.; Oliveira, D. H.; Nascimento, J. E. R.; Alves, D.; Perin, G.; Lenardão, E. J.; Schumacher, R. F.; Jacob, R. G.; Tetrahedron Lett. 2018, 59, 4090.
  • 56
    Aquino, T. B.; Nascimento, J. E. R.; Dias, I. F.; Oliveira, D. H.; Barcellos, T.; Lenardão, E. J.; Perin, G.; Alves, D.; Jacob, R. G.; Tetrahedron Lett. 2018, 59, 1080.
  • 57
    Oliveira, D. H.; Alves, D.; Jacob, R. G.; Xavier, M. C. D. F.; Curr. Org. Synth. 2015, 12, 822.
  • 58
    Balaguez, R. A.; Ricordi, V. G.; Duarte, R. C.; Toldo, J. M.; Santos, C. M.; Schneider, P. H.; Gonçalves, P. F. B.; Rodembusch, F. S.; Alves, D.; RSC Adv. 2016, 6, 49613.
  • 59
    Alves, D.; Goldani, B.; Lenardão, E. J.; Perin, G.; Schumacher, R. F.; Paixão, M. W.; Chem. Rec. 2018, 18, 527.

Publication Dates

  • Publication in this collection
    21 Oct 2019
  • Date of issue
    Oct 2019

History

  • Received
    31 Jan 2019
  • Accepted
    15 May 2019
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br