Electrochemical behavior of rhodium acetamidate immobilized on a carbon paste electrode: a hydrazine sensor

The electrochemical behavior of rhodium acetamidate immobilized in carbon paste electrode and the consequences for sensor construction were evaluated. The electrode showed good stability and redox properties. Two reversible redox couples with midpoint potentials between 0.15 and 0.55 V vs SCE were observed. However, peak resolution in voltammetric studies was very dependent on the supporting electrolyte. The correlation between coordinating power of the electrolyte and peak potential suggests that the electrolyte can coordinate through the axial position of the complexes. Furthermore, the axial position may be also the catalytic site, as a catalytical response was observed for hydrazine oxidation. A good linear response range for hydrazine was fit by the equation i = 23.13 (± 0.34) c , where i = current in mA and c = concentration in mol dm-3 in the range of 10-5 up to 10-2 mol dm-3. The low applied potential (<300 mV) indicates a good device for hydrazine sensor, minimizing interference problems. The short response time (~1 s) may be useful in flow injection analysis. Furthermore, this system was very stable presenting good repeatability even after 30 measurements with a variance of 0.5 %.

rhodium acetamidate; electrochemical sensors; hydrazine determination; carbon paste electrode; polyethylenimine


Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br