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The identification and analysis of documentary fraud is always a challenge for forensic science. 
Document analysis has proven to be an important branch of forensics in elucidating the authenticity 
of documents. The development and incorporation of luminescent inks in authentic documents have 
proved to be an excellent security feature. This paper purposes the use of a possible luminescent 
ink marker for anti-counterfeiting applications, aiming to create a document encoding process 
that is simple, robust, sensitive, and non-destructive. Since luminescent inks markers provide a 
visual, chemical, and spectral signature, and can be easily detected by using a UV lamp, the aid 
of unsupervised chemometric tools makes it possible to differentiate the luminescent markers 
inserted in the ink. Unsupervised models of principal component analysis (PCA) and K-mean 
were successful in correctly associating marked inks with their respective pure markers, while 
a supervised classification model based on partial least squares discriminant analysis (PLS-DA) 
correctly classified all samples from the prediction set and the blind test samples. For comparison, a 
soft independent modeling of class analogy (SIMCA) model was also built, which despite showing 
a misclassified sample it is also a strong candidate for future applications.
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Introduction

In the last few decades, the use of scientific knowledge 
not only for supporting but often as a decisive tool in 
the elucidation of crimes has intensified within forensic 
science, with forensic chemistry having an important role. 
Forensic chemistry is the field of forensic science focused 
on the analysis of evidence of judicial interest through the 
application of chemical science knowledge to criminal 
problems.1 Within forensic chemistry, one of the areas 
of great importance today is document analysis, a part of 
criminalistics that studies the authenticity of a document 
and investigates falsification, to determine the perpetrator 
and the means of forgery.2,3

Criminal examination of documents involves a 
wide variety of methods, from visual inspection to 
the use of expensive and sophisticated equipment, 
which must preferably be non-destructive, simple, fast, 

reliable, inexpensive and not require sample preparation.3 
Non-destructive techniques are performed directly on the 
document surface; thus, document integrity is preserved.4 
The preservation of documentary evidence is critical to 
maintaining sample integrity throughout the investigative 
process. For non-destructive methods, which usually 
do not need sample preparation, the study of variations 
in document composition has been combined with 
chemometric models to assist in the interpretation of the 
results obtained.3

In general, spectroscopic analysis, such as UV-Vis, 
infrared, Raman, X-ray fluorescence (XRF), and easy 
ambient sonic-spray ionization mass (EASI-MS) meet 
these requirements.5-9 These analytical techniques are 
usually employed in investigations where a questioned 
document must be identified as authentic or not. These 
techniques can also be particularly useful, however, for 
preventive approaches when security elements such as 
security inks are used to ensure document authenticity or 
to encode documents by means of security seals. Security 
elements are a broad class of structures (e.g., drawings, text, 

https://orcid.org/0000-0003-3840-9162
https://orcid.org/0000-0003-3868-3233
http://orcid.org/0000-0002-5781-393X


Carneiro et al. 125Vol. 34, No. 1, 2023

inks, fibers, and holographs) incorporated in documents 
to provide greater guarantee of authenticity just by simply 
identifying its presence, hampering possible forgeries.2,10 
Among the safety features, safety inks and pigments stand 
out for having many different functions that can be easily 
checked.1,11,12 Due to their versatility, fluorescent inks are 
a widely used and studied class.13-17 Although security 
features are incorporated into some documents, these 
remedies do not exhaust all possible kinds of forgery, 
making solution of these cases a difficult task. This area, 
then, has become a promising field of study, with a growing 
demand for innovations, where fluorescent inks has gained 
prominence in recent years.13-17

Luminescent materials can provide color encoded 
customized patterns for identification or visualization under 
appropriate external activations and a gamut of full color-
encoded patterns can be produced through simultaneous 
use of several luminescent inks with different colors.18,19 
Li and Hu17 have described an easy and robust strategy for 
manufacturing photoluminescent nanofilms for application 
as safety inks, successfully applied to banknote marking. 
High luminescent films were prepared by low-cost synthesis 
by incorporating fluorescent quantum dots into the cellulose 
nanofibers. da Luz et al.14 developed an easy, fast, and cost-
effective strategy for synthesizing photoluminescent metal-
organic networks with terbium, europium, gadolinium, and 
neodymium ions as markers in jet printer inks. The materials 
were printed on flexible substrates with a conventional inkjet 
printer and observed under UV light irradiation. Liang et al.16 
synthesized luminescent inks containing LuVO4:Eu 
nanoparticles with polyacrylic acid as the surfactant. The 
aqueous solution of the nanoparticles was used as a marker 
and was added to pen inks and printer cartridges.

The contribution of the present article is not only 
to explore the idea of producing ink markers using 
luminescent metal-organic frameworks (MOF), but also 
of changing ink chemical composition to enable ink 
encoding through its spectral signature. Metal-organic 
frameworks modified with lanthanide ions (L-MOFs) have 
great potential as markers, since they are not naturally 
occurring. The L-MOFs have many advantages such 
as high chemical and thermal stability,20 can be easily 
detected by the visualization, with a UV lamp due to the 
high photoluminescence21 and provide a visual, chemical, 
and spectral signature. Moreover, compared to standard 
fluorescent commercially used dyes, the lanthanide-based 
luminescent inks exhibit several advantages, such as, 
sharper transitions without photobleaching and both, down 
and up-conversion processes, in a single host lattice which 
makes them intrinsically more difficult to be frauded.22 
Then, the use of lanthanide-based materials appears as an 

interesting alternative in situations where a more complex 
encoding system is intended. For example, when only 
the emission color is not considered sufficient, the use of 
MOFs containing lanthanides offers a spectral signature 
(composed of small variations in the spectra and excitation 
and emission, modulated by both the ion and the ligand) as 
well as a chemical signature.

Despite the great advantage of using colors as an 
encoding system they are colorimetrically inaccurate or 
involve utilization of complex half-toning algorithms to 
decipher, due to immense spectral cross-talking between 
emission bands and substantial background interference.18 
Eu- and Tb-based inks are, of course, easily distinguishable 
by their emitting colors. The use of chemometric tools 
become interesting when we distinguish two red emitting 
inks (or green emitting) by combining excitation and 
emission spectra. The chemometric tools used in this work 
are quite easy to handle and offer the possibility of fine tuning 
the encoding system, using a relatively large combination 
of inks/markers (in this case, 4).With that in mind, the aid 
of chemometric tools can be an excellent tool for encoding 
unequivocally, it is possible to classify different MOFs 
inserted in an ink, thus creating a document coding process 
that can be verified by spectroscopy, thus a simple, robust, 
sensitive, and non-destructive method. In a previous study, 
Carneiro et al.20 demonstrated the possibility of using a 
system of encoding markers with MOFs, making used of 
different organic ligands (with europium as emitting center); 
and employing chemometric tools, for the use of marking of 
ammunition. When this idea is applied to document analysis, 
the difference in composition as well as differences in optical 
behavior make marking tasks possible, which may lead to 
the development of an ink encoding system. 

Unsupervised learning models such as principal 
component analysis (PCA) and K-means can be used as 
simple alternative to identify similarity between samples. 
Although unsupervised models do not classify samples, 
they are simple to use and widely accepted by forensic 
experts. While PCA is a popular multivariate statistical 
model for reducing dimensionality, K-means is a simple 
clustering technique, providing robust association of similar 
samples by means of simple distance measurement. PCA 
performs linear combinations of the original variables so 
that the derived variables capture the maximal variance. 
After the decomposition proposed by the PCA, the samples 
become points in a dimension-reduced space defined by 
the principal components (PCs),22 and can be subjected 
to a clustering model to identify meaningful groups of 
similar samples. Those two models can be used to identify 
the presence of the synthesized marker and authenticate a 
questioned document. 
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It is worth clarifying that there is a conceptual 
difference with respect to document authentication 
from the forensic and the chemometric point of view. 
In forensics, authentication relates to the use of security 
elements incorporated in documents that make it possible 
to distinguish the original document from its copies and 
therefore identify counterfeits. The term authentication in 
the context of chemometrics, on the other hand, is related 
to a classification process of determining whether the 
identity of an object is, in fact, what it has been declared 
to be. This problem is often solved using supervised 
classification models, often requiring the use of class-
modeling approaches.23 

In the present study, as a proof of concept, we 
proposed a synthesis and application of non-commercial 
luminescent MOFs containing terbium and europium 
ions, as possible luminescent inks markers for anti-
counterfeiting applications aiming to create a document 
encoding process that is simple, robust, sensitive, and 
non-destructive. We initially aimed to demonstrate the 
feasibility of a low-cost synthesis of a possible marker 
for luminescent inks that could be used as a security 
device for printed documents; then, we proposed to 
attest the feasibility of emission/excitation spectra and 
chemometrics to discriminate between the different 
markers in the encoding system. To do this, four different 
MOF-based luminescent markers were produced by 
microwave-assisted hydrothermal synthesis and inserted 
in common printer inks and painted on vegetable paper. 
The samples were analyzed by X-ray diffraction and 
fluorescence emission and excitation spectroscopy, and 
the results analyzed with chemometric models. Blind 
tests were performed, and the results analyzed with 
chemometric models. With the results of this project, 
we intended to develop luminescent optical markers 
showing the efficiency of use as anti-fraud technology 
and to demonstrate an application to enable the accurate, 
nondestructive classification of luminescence MOFs as 
printer ink markers, using excitation and emission spectra.

Experimental

Samples preparation

A set of four MOFs with potential for use in ink 
markers was synthesized by a microwave-assisted 
hydrothermal method, [Ln(BTC)]n, and [Ln2(BDC)3(H2O)2]n  
(wherein Ln = Eu3+ and Tb3+, BTC = trimesic acid and 
BDC = terephthalic acid). In the rest of this study, these 
will be referred to as Eu(BTC), Tb(BTC), Eu(BDC) and 
Tb(BDC), respectively.

For the syntheses, the oxides Tb4O7 (99.9%, Sigma-
Aldrich, St. Louis, USA) and Eu2O3 (99.5%, Sigma-Aldrich, 
St. Louis, USA) were used to prepare the respective nitrates. 
The ligand BTC (98%, Sigma-Aldrich, St. Louis, USA) 
was used without any treatment, and the ligand BDC (98%, 
Alfa Aesar, Tewksbury, USA) were used to prepare the salt 
Na2BDC, as described by Wanderley et al.24 These reagents 
were used as received without further purification.

All the samples were hydrothermally prepared, using 
a microwave reactor and autogenous pressure (Monowave 
300 Anton Paar, São Paulo, Brazil) with power of 400 W. 
For the [Eu(BTC)]n marker, Eu2O3 (0.175 mmol), trimesic 
acid (H3BTC) (0.35 mmol), and 12 mL of distilled water 
were mixed and placed in a 30 mL quartz reactor, under 
agitation. And for the [Tb(BTC)]n, Tb(NO3)3·6H2O 
(0.175 mmol) and trimesic acid (H3BTC) (0.175 mmol) 
were mixed in 12 mL of distilled water and placed in a 
30  mL quartz reactor, under agitation. Both reactions 
were performed at 150 °C for 20 min. After each reaction, 
the powder obtained was washed with distilled water and 
acetone and dried at 100 °C for 24 h.

For the [Eu2(BDC)3(H2O)2]n, Eu(NO3)3·6H2O (0.7 mmol) 
and terephthalic acid disodium salt (Na2BDC) (0.7 mmol) 
were solubilized in 12 mL of distilled water and placed in 
a 30 mL quartz reactor, under agitation. And finally, for the 
marker [Tb2(BDC)3(H2O)2]n], Tb(NO3)3·6H2O (0.7 mmol), 
terephthalic acid disodium salt (Na2BDC) (0.7 mmol), and 
12 mL of distilled water were mixed and placed in a 30 mL 
quartz reactor, under agitation. The last two reactions were 
performed at 160 °C for 20 min. The salt of the ligand BDC 
(Na2BDC) was synthesized based on a previous method 
as described by Wanderley et al.24 After each reaction, 
the powder obtained was washed with distilled water and 
acetone and dried at 100 °C for 24 h.

Each synthesis was performed five times, resulting 
in 20 samples: five Eu(BTC), five Tb(BTC), five 
[Eu2(BDC)3(H2O)2]n and five [Tb2(BDC)3(H2O)2]n. The 
samples were characterized by X-ray diffraction (Rigaku/
MiniFlex 300, Austin, USA, with the following parameters: 
2θ range from 5 to 50° by 0.01 step and 1.5° min−1 speed) 
and photoluminescence spectroscopy (spectrofluorometer 
Fluorolog Horiba Jobin Yvon FL3-22, Kyoto, Japan, with 
excitation from a xenon lamp).

Excitation and emission spectra of all syntheses of the 
four markers were acquired in triplicate, generating a total of 
60 emission and excitation spectra. The excitation spectra, 
for markers of europium, were obtained by monitoring 
the emission at 613 nm, scanning with a range between 
200-400 nm. The emission spectra were acquired exciting 
at 293 nm for the BTC ligand and at 323 nm for de BDC 
ligand, ranging from 400 to 750 nm. On the other hand, 
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for the markers containing the ion terbium, the excitation 
spectra were obtained by monitoring the emission at 
545 nm with range of 200-400 nm, and the emission spectra 
were acquired by exciting at 293 nm for the BTC ligand 
and 323 nm for de BDC ligand and analyzing in the range 
of 400-750 nm. No sample preparation was needed before 
the spectra acquisition.

Testing as ink marker

To evaluate the performance of these MOFs as 
luminescent markers for inks, each marker synthesized 
was individually added to blue and black common 
printer inks at a ratio of 10 mmol L-1, in order to produce 
40 marked samples, 20 containing marked blue inks and 
20 containing marked black inks. The markers were added 
directly to the inks and were maintained under magnetic 
stirring, for 15 min at room temperature. Then, for each 
ink sample, traces were made on sheets of vegetable paper 
(Canson® Vegetal 90, 95 g m-2). When dry, the samples were 
visualized under UV light (λ = 254 nm), to have a visual 
confirmation of the lanthanide ions; then characterized by 
emission and excitation spectra to analyze the chemical 
composition. 

Excitation and emission spectra of all samples of 
the four markers were acquired in triplicate with a 
spectrofluorometer Fluorolog Horiba Jobin Yvon FL3-22, 
with excitation from a xenon lamp. The excitation spectra 
were obtained by monitoring the emission at 545 nm, 
scanning with a range between 200-400 nm. The emission 
spectra were acquired by monitoring the excitation at 
323 nm and analyzing in the range of 400-750 nm. Those 
parameters were selected that presented the best results 
when used for all markers.

Blind tests

For the blind tests, ten inks marked were selected by 
a volunteer unrelated to the study, so that the composition 
of the sample remained unknown, avoiding interference 
in the final result. To keep the composition unknown, 
each sample received a code from S1 to S10, and this 
information was kept in a sealed envelope until the end of 
the experiments. Then, each sample was deposited on the 
surface of a vegetable paper, with its code indicated on the 
other side of the paper. 

When dried, the papers were analyzed by excitation 
and emission spectroscopy to evaluate the chemical 
composition. A manual scanning was performed, where 
spectra of excitation and emission were observed at random 
points of the sample. Each spectrum was acquired in 

triplicate. The same procedure was performed on the other 
nine unknown samples. Based on the results, the analysts 
tried to identify the markers. At the end of the experiments, 
the envelope was opened to confirm the coded results of 
the evaluation of analysts and volunteers.

Chemometric treatment

For chemometric analysis, the PLS Toolbox 8.6.2 
(Eigenvector Research Inc., USA) was used in MATLAB25 
(R2021b, MathWorks Inc., USA). The following 
preprocesses were used: Savitzky-Golay smoothing filter 
using 2-order polynomial and 21-point window width for 
spectral noise removal, automatic weighted least squares 
baseline correction, mean center and normalization by the 
maximum (raw and preprocessed spectral profiles from the 
pure markers and the inks can be seen in the Supplementary 
Information (SI) section, Figure S1). For PCA, a low-level 
data fusion approach was taken in which the data matrices 
containing the excitation (200 to 400 nm) and emission 
(400 to 750 nm) spectra were concatenated. Afterwards, 
K-means was applied to PCA scores using the Mahalanobis 
distance. Unsupervised models are of great importance 
for the analysis of questioned documents; among their 
advantages is the fact that they are simple techniques, 
widely accepted by forensic experts, and do not require 
the use of reference databases. 

Supervised approaches of this application can be 
employed for proposing an encoding system based on 
the identification of a specific spectral signature. Figure 1 
shows the scheme of a possible 2-step protocol to be 
followed. The protocol consists in a detection fraud step and 
an encoding step. Questioned documents without security 
markers do not show luminescence under the UV-light, 
making fraud easily identifiable as early as in the first step 
(fraud detection). If luminescence is observed, there are 
two scenarios: the first one being the case of luminescence 
resulting from another luminescent material; the second 
scenario is the case of it being a controlled security marker 
(encoding step). The first scenario is related to another type 
of fraud and is currently out of the scope of this article. 
The second scenario, the encoding step, was the object of 
the present study. As an example of application, a general 
QR code produced with marked inks can provide different 
information once parts of the code have different markers. 
In this scenario, a classification task is needed to expedite 
the readness and since the proposed markers have a known 
spectral profile (with no possibility of unknown markers 
that have not been modelled) and can be initially identified 
by UV light, discriminant analysis approaches can be 
employed instead of class-modeling to identify the specific 
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chemical profile of the marker in the document. In this 
case, the partial least squares discriminant analysis model 
(PLS-DA) was proposed as a classification model. The pure 
marker samples (60 samples) and 12 samples containing 
the marker in inks (3 per marker) were employed as the 
training set while the remaining marked inks (28 samples) 
and the blind test samples (10 samples) were used as the 
prediction set. The PLS-DA model was also built using only 
the pure markers as training set (60 samples) and all the 
marked inks and the blind test samples used as prediction 
set (50 samples). Random subsets cross-validation (10 data 
splits and 5 iterations) was employed, the figures of merit 
rates of true positive (TPR) and true negative (TRN), as 
well as sensitivity (Sn) and specificity (Sp) were assessed as 
well as the variable importance in projection (VIP scores). 
For the sake of comparison, a class-modelling approach 
was also considered and the soft independent modelling 
by class analogy (SIMCA) model was build.

Results and Discussion

Figures 2a and 2b shows the average excitation and 
emission spectra acquired for pure Eu-based markers 

and Figures 3a and 3b shows the average excitation and 
emission spectra acquired for pure Tb-based markers. In 
both cases of the excitation spectrum (200 to 400 nm), it is 
possible to see the ligand band π→π*, which refers to the 
antenna effect; for markers with BDC ligands, however, 
this band is shifted to longer wavelengths. In the emission 
spectra, which brings information about the central metal, 
the characteristic bands of each lanthanide are observed. 
In Figures 2a and 2b, it is possible to observe the Eu3+ 
characteristic bands, related to 5D0→7FJ (as J  =  0-4) 
transitions. With respect to the emission spectra of the 
markers based on Tb3+, in Figures 3a and 3b, 5D4→7FJ 
(as J = 6-2) transitions are noted. The markers were also 
analyzed by X-ray diffraction and compared to CIF to 
confirm the phase obtained; the diffractograms can be seen 
in the SI section (Figures S2, S3, S4 and S5).

The spectral differences of each marker became more 
prominent when the excitation and emission spectral 
profiles overlap and are fused in a low-level data fusion 
approach after normalization to provide the complete 
luminescence profile (since the information from the 
excitation and emission spectra are complementary once 
excitation spectrum brings information about the ligand 

Figure 1. Scheme for a suggested protocol. As example, a QR code is produced with different markers and each one provides a different information. 
Possible frauds regarding the markers are not included within the scope of the present work.
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and the emission spectrum about lanthanide by itself); the 
mean spectra acquired can be seen in Figure 4. 

For an exploratory analysis of the data, PCA was 
performed to evaluate the four chemical markers under 
study. It was possible to observe a 2-component model, 
explaining 89.02% of data variation, showing a clear 
difference between the four markers in the scores scatter 
plot using the PC1 and PC2 as illustrated in Figure 5. Note 
that samples are coded as follows: same color for the same 
Ln (red for Eu and green for Tb), same symbol for the same 
organic ligand (diamond for BDC, circles for BTC) and 
edges for the inks according to the ink color (blue edge 
for blue ink and black edge for black ink) and grey circles 
for the blind test samples. The PCA model was built using 
only the synthesized pure markers, while the samples of 
markers incorporated in the inks and the blind test samples 

Figure 2. Average excitation (200-400 nm) and emission (400-750 nm) spectra with the correspondent transitions for (a) EuBDC marker and (b) EuBTC 
marker. 

Figure 3. Average excitation (200-400 nm) and emission (400-750 nm) spectra with the correspondent transitions for (a) TbBDC marker and (b) TbBTC 
marker. 

Figure 4. Mean normalized luminescence spectra concatenated of 
excitation and emission spectra from EuBDC, EuBTC, TbBDC and 
TbBDC (low-level data fusion).
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were only projected in the model as prediction set. The 
corresponding loadings plot can be seen in Figure 6 and 
the residuals can be seen in Figure S6 (SI section).

It is important to bear in mind that excitation and 
emission profiles are being used as spectral signatures. 
These analytical signals have a particular behavior in 
this particular scenario, given that the presence of the 
ink chemical matrix does not affect the spectral profile of 
the marker. The clear presence of specific emission and 
excitation bands related to the Ln-based markers do not 

carry information superimposed on any other constituent 
present in the inks. This can be seen in the scores scatter 
plot depicted in Figure 5, where no significant differences 
between the pure markers and the inks is observed. 
This, along with the fact that 89.02% of data variation 
is explained by the 2 first components, provides an 
important consequence for further data analysis. PCA 
loadings interpretation is straightforward, and it provided 
unambiguous chemical interpretation in this particular case.

The loading plot shows interesting features regarding 
the simplicity of the PCA model. It can be observed that 
PC1 clarifies the differences between the markers Tb(BTC), 
Tb(BDC) and Eu(BTC), Eu(BDC), since the first principal 
component differentiated markers from two distinct metal 
centers: Eu and Tb. This is also observed in the loadings 
plot, since the PC1 profile shows that relevant contributions 
were mainly related to the emission profile (from 400 to 
750 nm). The Eu-based and Tb-based markers can be 
distinguished visually by emissions in different colors: 
orange for Eu and green for the Tb. Moreover, looking 
at the loadings plot, this difference is mainly due to the 
fact that the markers containing Tb have transitions in 
regions of shorter wavelengths, which does not occur for 
markers with Eu. Note for markers Tb(BTC) and Tb(BDC) 
the transitions 5D4→7F6 (at approximately 490 nm) and 
5D4→7F5 (at approximately 545 nm), whereas for the Eu 
markers, no transition can be observed in this region, the 
first transitions appear only after 550 nm. The specific 
spectral transitions for Tb have positive loading values in 
PC1 and are associated with samples in the scores plot with 
positive scores, which are the samples containing the Tb 
marker. In contrast, the spectral regions associated to Eu 
transitions (7F0→5D3 at approximately 400 nm; 5D0→7F2 
at approximately 620 nm; and 5D0→7F4 at approximately 
700 nm) have negative values for PC1 loadings and are 
associated with samples with negative scores in PC1, which 
are all markers containing Eu in their composition.

As is well known, the aggregation of lanthanides as the 
metallic center in MOFs produces luminescent materials, 
with narrow and well-defined spectral lines. As well, the 
relative intensities of the transitions in the luminescence 
spectra can be used to probe the local environment of 
the ion, in the case of europium.26 So, by altering the 
lanthanide ion, it is possible to differentiate markers by 
the color of the emitted light. If the same ion is fixed, 
it is possible to distinguish the MOFs by analyzing the 
organic ligands. This is observed in PC2 scores and 
loadings. The second principal component clarifies the 
difference between markers regarding the organic ligand 
used. The scores scatter plot (Figure 5) shows that both 
Eu(BDC) and Tb(BDC), represented by diamonds, have 

Figure 5. Scores scatter plot of PC1 and PC2 from a 2-component PCA 
model for the concatenated luminescence spectrum of MOFs Tb(BDC), 
Tb(BTC), Eu(BTC) and Eu(BDC). MOFs with the same metallic center 
were represented by the same color: red for Eu and green for Tb; MOFs 
with the same ligand are represented by the same symbol: circles for BTC 
and diamonds for BDC; ink color used are represented by the color in the 
edge of the symbol: black for black ink and blue for blue ink.

Figure 6. Loadings plot of PC1 and PC2 from the PCA model built with 
the concatenated luminescence spectra of excitation and emission profiles 
of MOFs Tb(BDC), Tb(BTC), Eu(BTC) and Eu(BDC).
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positive scores for PC2, whereas Eu(BTC) and Tb(BTC) 
have negative values of PC2, represented by circles in 
Figure 5. PC2 loadings plot shows that both excitation and 
emission profiles made important contributions towards 
that differentiation. 

The main contribution observed in PC2 (orange line in 
Figure 6) is observed at approximately 300-330 nm, which 
is related to the ligand band π→π*. The loadings of PC2 
shows a characteristic profile of a shift related to the spectral 
profiles in that region, in which BDC appears, displacing 
the profiles to longer wavelengths for the Eu(BDC) and 
Tb(BDC), at 330 and 323 nm, respectively. In contrast, 
Eu(BTC) and Tb(BTC) shows the π→π* transition at 
smaller wavelengths, 300 and 297 nm, respectively. 

Moreover, contributions to emission profiles can also 
be observed. It can be seen that the differentiation of 
the Tb(BTC) and Tb(BDC) MOFs is based on the small 
spectral profile differences of both markers. For Tb(BTC), 
in general, transitions appear with greater multiplicity than 
observed for Tb(BDC). For the europium-based markers, 
the differentiation is mainly due to the characteristic spectral 
profile, 5D0→7F1 and 5D0→7F2 transitions, at approximately 
590 and 615 nm, respectively, and have negative values for 
PC2. These two transitions in the Eu(BTC) profile appear 
with relatively similar intensity, as this MOF experiences 
a high symmetry chemical environment, which is not the 
case for Eu(BDC), where transition 5D0→7F2 shows up with 
higher relative intensity. 

After this exploratory analysis, the complete spectra 
acquired for the MOFs incorporated in the blue and black 
inks on the vegetal paper and the spectra were projected 
onto the PCA model previously built. Results can be seen 
in the scores scatter plot in Figure 5, where the blue and 
black inks are coded as the symbols with blue and black 
edges, respectively. As can be seen, all spectra acquired on 
vegetal paper for both blue and black ink show similarities 
with their corresponding marker. Small variations in the 
samples with black and blue inks were apparently caused by 
the reduction of the signal to noise ratio observed for these 
samples. Possibly the high spectral noise observed is due 
to interference caused by some chemical component in the 
inks. Despite this, no sample deviated from the respective 
pure MOF to the point of causing data interpretation by 
exploratory analysis to be vague. However, to ensure correct 
association of the inks with their respective pure markers, 
a cluster analysis was performed with the data.

A model based on K-means using the marked inks and 
pure markers was built and all ink samples were clustered 
according to their respective marker. The dendrogram in 
Figure 7 shows the four groups, each related to a particular 
marker. To simplify data visualization, the sample labels 

from the inks with known markers and the pure markers 
were removed and only the blind test samples can be seen.

Finally, a blind test was performed, in which one 
volunteer randomly selected 10 samples for the acquisition 
of luminescence spectra and subsequent projection in the 
PCA and K-means models proposed in order to reaffirm 
the methodology. The scores scatter plot in Figure 5 shows 
the blind test samples in grey circles projected on the PCA 
model, whereas Figure 7 shows to which marker the blind 
test samples were associated using the K-means clustering. 
The results obtained using the two unsupervised models 
are summarized in Table 1.

As shown, all 10 samples analyzed in this test were 
correctly associated to their corresponding MOF; even 
taking into account the sample dispersion caused by 
the noisy profiles obtained with the marked inks, the 
K-means correctly associated the samples with the 

Table 1. Results of blind test summarized. 10 samples and the 
corresponding MOF association after PCA performed

Sample MOF association Answer

S1 EuBDC EuBDC 

S2 TbBDC TbBDC 

S3 TbBDC TbBDC 

S4 EuBTC EuBTC 

S5 TbBTC TbBTC 

S6 EuBDC EuBDC 

S7 EuBTC EuBTC 

S8 TbBTC TbBTC 

S9 TbBDC TbBDC 

S10 EuBDC EuBDC 

S1-S10: samples 1 to 10 from blind test; MOF: metal-organic frameworks; 
BTC: trimesic acid; BDC: terephthalic acid.

Figure 7. K-means dendrogram with 4 clusters. Blind test samples are 
highlighted in the insert.
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corresponding MOF. It is important to remember that PCA 
is an exploratory data model, therefore does not provide a 
classification itself. 

To implement a classification model, it is important 
to notice another important consequence of the emission/
excitation profiles. The documents without specific markers 
will not provide a spectral signal if there is no luminescent 
constituent inserted. Possible samples with forgeries (i.e., 
documents without the luminescent markers) that lack 
spectral signature for these particular analytical techniques 
do not need to be included in either the training or the 
prediction sets. Moreover, the spectral signal is exclusively 
related to the specific marker without any other constituent 
interference. This makes PLS-DA a perfect candidate as 
classification model for this authentication issue, since this 
is, in fact, an encoding problem. 

In a recent study, Sharma et al.27 also implemented a 
multivariate analysis (using linear discriminant analysis 
(LDA) model) for discrimination and classification of marker 
pen inks, achieving a discriminative power of 98.21% for 
permanent marker inks and 100% of discrimination power 
for whiteboard marker inks. This method has provided better 
results compared to the visual examination, showing the 
importance of this type of analysis.

A PLS-DA model was proposed and, using 3 latent 
variables, made it possible to achieve 100% specificity and 

sensitivity for both training and prediction sets. Figure 8 
shows the Y predicted values for all samples (training and 
prediction) while Figure 9 shows the original variables that 
were meaningful for the classification model proposed. It 
is possible to visualize that PLS-DA results for blind test 
samples correspond to the association made when using the 
simple K-means. It is important to mention that the PLS-DA 
model built using only the pure markers as the training set 
showed the same performance of the model using both pure 
and marked inks samples in the training set. Additionally, 
the VIP scores plot shows that the original variables that 
are significant for the classification are the same as those 
discussed in the loadings plot of PCA models, corresponding 
to important ligand bands and metal transition.

For comparison reasons between a discriminant analysis 
approach and a class-modelling, SIMCA model was also 
built for the  fused data (Table 2). For all classes, 2 PCs were 
necessary to build each one of the independent models. 
SIMCA models shows advantages and disadvantages in 
comparison to PLS-DA model. One misclassified sample 
was observed in the prediction set, reflecting into a 
decrease of TNR and TPR of EuBDC and EuBTC classes, 
respectively. The residuals plots for the SIMCA models can 
be found in the Figure S9 (SI section). Although the results 
seem to be outperformed by PLS-DA, SIMCA models has 
the advantage of being independent from the non-target 

Figure 8. PLS-DA results with the Y-predicted values for all samples (training and prediction sets) for each class: (a) Eu(BDC); (b) Eu(BTC); (c) Tb(BDC); 
(d) Tb(BTC).
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samples. The models are built using only the information 
of the target class to define the decision boundaries, which 
is not affected by the presence of non-target samples, in 
contrast to PLS-DA. On the other hand, to build a more 
robust SIMCA model, more samples need to be included, 
especially the pure markers with inks, in the training set. 
Nevertheless, SIMCA also showed a correct classification 
for all the blind test samples.

Conclusions

The purpose of the study was to propose new MOF-
based markers for anti-fraud inks that could be employed to 
create a document encoding process using simple, robust, 
sensitive and non-destructive method that acts like a safety 
feature to assist in the authentication of documents. The 
chemometric tools of principal component analysis and 
K-means were used as unsupervised models in order to 
differentiate four marked luminescent inks, based on Eu and 
Tb. These were associated to the known pure marker profiles 
through their luminescence spectral profiles. Even using a 
spectroscopic luminescence technique that, fundamentally, 
provides molecular information, it was possible to obtain 

information that was associated with the ligand (excitation 
spectrum) and with lanthanide (emission spectrum). With 
this complementary information, with low-level data fusion 
approach, it was possible to observe clear differences 
between the Tb(BDC), Tb(BTC), Eu(BTC) and Eu(BDC) 
using a simple 2-component PCA model for both pure 
MOFs and after their incorporation in blue and black inks 
and painted on the vegetal paper. The K-means dendrogram 
corroborated with that observed in the PCA and also made 
a correct association between the inks and their respective 
pure markers. The blind test performed was also effective, 
confirming the robustness of the proposed method. All 10 
samples analyzed in this step were correctly associated with 
their correspondent marker, using only unsupervised models. 

In addition, two classification approaches were 
employed. Using a PLS-DA model, with only pure markers 
as the training set, it was possible to achieve 100% of 
specificity and sensitivity for both training and prediction 
sets. PLS-DA results for blind test samples corresponded 
to the association made using simple K-means. Although 
SIMCA models showed a misclassified sample for EuBTC 
class, it has the advantage of class-modelling approaches 
that do not depend on non-target samples to define the 
decision boundaries, being also a strong candidate for future 
applications. For future work and improvement of the current 
methodology, the association of variable selection with 
classification models and hyperspectral images can make the 
acquisition of spectral profiles simpler, due to the selection 
of few spectral channels, thereby providing more accuracy to 
the decision to implement a confidence limit for each class.

Supplementary Information

Supplementary information, which contains the analysis 
and comparison of the X-ray diffraction of the synthesized 
samples with the CIF, is available free of charge at  
http://jbcs.sbq.org.br as PDF file.
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