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ABSTRACT

The classic Douglas-Peucker line-simplification algorithm is recognized as the one that delivers the best
perceptual representations of the original lines. It may, however, produce simplified polyline that is not
topologically equivalent to the original one consisting of all vertex samples. On the basis of properties of
the polyline hulls, Saalfeld devised a simple rule for detecting topological inconsistencies and proposed
to solve them by carrying additional refinements. In this paper, we present an alternative form for the
classic Douglas-Peucker to produce a simplified polyline which is homeomorphic to the original one. Our
modified Douglas-Peucker algorithm is based on two propositions: (1) when an original polyline is
star-shaped, its simplification from the Douglas-Peucker procedure cannot self-intersect; and (2) for
any polyline, two of its star-shaped sub-polylines may only intersect if there is a vertex of one simplified
sub-polyline inside the other’s corresponding region.

Keywords: Topological Consistency; Line Simplification; Douglas-Peucker Algorithm; GIS.

 

1 Introduction

Often the geometric resolution of a polyline is much higher than the resolution supported by the
application, such as visualization of geographic map boundaries or visualization of curves approximated
by sampling a parametric curve at regular small intervals in a raster display. For the sake of efficiency,
we search for algorithms that can extract essential features from detailed data of the original polyline
and represent them on a simple one having fewer vertices, sufficient for the specified resolution. Many
of them have been pursued by the researchers in different contexts [5, 6, 8, 11, 12, 14].

A simple line-simplification algorithm consists in constructing a polyline with line segments larger than
an accepted tolerance. It may be achieved by discarding recursively the subsequent vertices whose
distance from a prior initial vertex is less than some specified maximum distance. The vertex that is
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farther away than that maximum distance is accepted as part of the new simplified polyline, and it
becomes the new initial vertex for further simplification [10].

From detailed study of mathematical similarity and discrepancy measures, the Douglas-Peucker
algorithm is pointed out as the most visually effective line simplification algorithm [1, 7]. Whereas
vertex reduction uses closeness of vertices as a rejection criterion, the Douglas-Peucker algorithm uses
the closeness of a vertex to the simplified polyline. It is a recursive procedure that starts with a line
segment whose extreme vertices coincide with the extreme vertices v

1
 and v

n
 of the polyline given as a

list of n vertices in sorted order. Each segment v
k
v
j
 is split at the farthest vertex v

i
 to it, where k < i <

j, until the distance between the sequence of vertices v
k
⋅⋅⋅v
i
 and v

k
v
i
 and the distance between the

sequence of vertices v
i
⋅⋅⋅v
j
 and v

i
v
j
 are less than a fixed tolerance.

Saalfeld performed a thorough analysis of the Douglas-Peucker algorithm and listed in [9] a set of its
key properties. Besides, on the basis of the hull property of the simplified polyline obtained from the
Douglas-Peucker algorithm, he proposed, with proof, to use a point-on-convex hull test and the
sidedness concept for detecting possible topological conflicts. He used the dynamic convex hull
algorithm presented by Hershberger and Snoeyink [3] to efficiently maintain and access the current
convex hull at each refinement stage.

This paper presents yet three contributions to deal with the self-intersection problem in the Douglas-
Peucker algorithm. The first is a proof for the fact that the simplification of a star-shaped polyline by the
Douglas-Peucker method will never result in a self-intersecting polyline. The second is a procedure for
trivially discarding segments of a simplified polyline that do not intersect. And finally, on the basis of
the first and the second contributions we propose a non-self-intersecting Douglas-Peucker algorithm for
any polyline.

In Section 2, the Douglas-Peucker algorithm is briefly described for completeness. The proof of the
sufficiency conditions for non-self-intersections is presented in Section 3. Section 4 gives a strategy for
eliminating possible conflicts between simplified sub-polylines. In Section 5, we describe our polyline
simplification algorithm that integrates these two properties into the classic Douglas-Peucker to ensure
topological equivalence between the original and the simplified polylines for any specified tolerance.
Section 6 details a complexity analysis of the algorithm. Afterwards, some results are shown in
Section 7. Finally, in Section 8, our future research directions are presented.

 

2 The Douglas-Peucker Algorithm

Besides its good visual results, the Douglas-Peucker algorithm is very simple to program and works for
any dimension, once it only relies on the distance between points and lines. Several implementations
are available at sites of the Internet [2, 10]. Its basic rule is that the approximation must contain (a
subset of) the original data points and all the original data points must lie within a certain predefined
distance to the approximation.

Given a polyline P and a tolerance ε as depicted in Figure 1.a. The Douglas-Peucker algorithm has a
hierarchical structure starting with the single line segment e joining the first v

1
 and last v

n
 vertices of

the original polyline (Figure 1.b). Then the remaining vertices are tested for closeness to its
approximating segment. If there are vertices farther than some specified tolerance away from the
segment, then the vertex v

i
 farthest from it is added to the previously simplified polyline. This creates a

The Douglas-Peucker Algorithm: Sufficiency Conditions for N... file:///Users/gabi/Biblioteca%20Digital%20SBC/Vol.9%20Nro...

2 of 17 2/4/09 6:41 PM



new approximation for the original polyline (Figure 1.c). Recursively this process continues for each
approximating line segment (Figures 1.d,e) until all vertices of the original polyline satisfy the closeness
condition (Figure 1.f).

(a) (b) (c)

(d) (e) (f)

Figure 1: The basic Douglas-Peucker algorithm.

This algorithm has O(mn) worst-case time complexity and O(nlog n) expected time, where n is the
number of input vertices and m is the number of the vertices of the simplified polyline. This is an output
dependent algorithm and it will be very fast when m is small, that is when the approximation is coarser.

On the other hand, if the tolerance has a larger value, then the simplified polyline may intersect itself.
Figure 2 illustrates a case for which three splittings on the initial segment e were sufficient for satisfying
the tolerance condition, but could not avoid self-intersection. The trivial solution is to reduce the value
of the tolerance, which may lead to a unnecessarily finer approximation.

Figure 2: Self-intersection.

An alternative for solving this problem is to keep on applying the Douglas-Peucker procedure only on
the part of the simplified polyline that presents topological conflicts. More specifically, Saalfeld [9]
proposed the following procedure for detecting and solving topological conflicts in relation to each
segment e

ij
 approximating a sub-polyline P

ij
 which is, in its turn, a subset of the original polyline P:

Identify all vertices v
k
 (Figure 3.a), where k < i or k > j, of the simplified polyline that lie in the

region R
ij
 bordered by the sequence of vertices belonging to the sub-polyline P

ij
 and the

segment e
ij
 (Figure 3.b).

1.

Recursively split e
ij
 until every vertex, such as v

k
, is out the region limited by the simplified and

the original polylines, as shown in Figure 3.c.

2.
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(a) (b) (c)

Figure 3: Further splitting until v
k
 becomes out.

 

3 Sufficiency for Non-Self-Intersections

Before demonstrating the sufficiency conditions for a simplified polyline generated by the Douglas-
Peucker algorithm to be non-self-intersecting, we introduce some definitions.

Definition 3.1 The convex hull H of a set of points S is the smallest set containing S that satisfies the
following convexity property: for any pair of points p,q ∈ H the line segment pq is completely contained
in H.

Definition 3.2 Let P be an open polyline as a list of n vertices v
1
,v
2
,…,v

n
 in sorted order, and r a point on

the segment v
1
v
n
, excluding the extreme vertices. We say that P is star-shaped with respect to r, if, for

any point p ∈P, the ray 

-→rp intersects P only at p (Figure 4).

Figure 4: A star-shaped polyline.

Observe that the line segments rv
i
, where i ∈{1,2,…,n}, build with (n - 1) segments of a star-shaped

polyline a set of edge-adjacent, but non-overlapping, triangles. Based on this, we are able to present
the following proposition.

Proposition 3.1 Given a star-shaped polyline P as a list of n vertices v
1
,v
2
,…,v

n
 in sorted order, its

simplification from the Douglas-Peucker procedure cannot self-intersect.

  Proof: We prove the proposition by induction on m output vertices in the simplified polyline. When m
= 3, the simplified polyline consists of the two extreme points, v

1
 and v

n
, and a vertex v

k
, where 1 < k

< n, farthest from the line segment v
1
v
n
. Trivially, the simplified polyline v

1
v
k
v
n
 does not
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self-intersect.

  When m > 3 and assume that the proposition is true for all values less than m. Let v
b
 be the newly

inserted vertex and is farthest from the line segment v
a
v
c
, where a < b < c; the line segments v

a
v
b

and v
b
v
c
 only intersect at v

b
 and cannot intersect the simplified sub-polylines v

1
⋅⋅⋅v
a
 and v

c
⋅⋅⋅v
n
,

because such an intersection implies that the triangle rv
a
v
b
 and/or rv

c
v
b
 overlap another triangle rv

k
v
l
,

where k⁄=l and k,l = 1,…,a,c,…,n, contradicting the star-shapeness property. Hence, the simplified

polyline consisting of m vertices cannot self-intersect.

 

4 Sufficiency for Non-Intersection between Sub-Polylines

The sidedness of a vertex with respect to the simplified and original polylines may not be preserved by
the Douglas-Peucker algorithm. In his work, Saalfeld concluded that topological conflicts always occur
when vertices of the simplified polyline change their sidedness. He also suggested to use the data
structure presented by Hershberger and Snoeyink [3] for reducing the search space of potential
conflicts at each refinement recursion as well.

We showed in Section 3 that, by applying the Douglas-Peucker algorithm on a star-shaped polyline, the
simplified polyline never self-intersects. So a possible approach for simplifying a non-star-shaped
polyline would be to first decompose it into star-shaped sub-polylines and then apply the Douglas-
Peucker algorithm on each sub-polyline. Nevertheless, this approach cannot ensure that non-self-
intersecting piecewise simplified sub-polylines do not cross. In this section, we present a sufficient
condition for non-intersections between two sub-polylines. Before this, let us introduce the following
definition, which is useful to distinguish the two sides of a polyline on a plane.

Definition 4.1 A polyline P = {v
1
,v
2
,…,v

n
} is orientable if there exists a simply-connected region R

whose boundary is the closed sequence v
1
,v
2
,…,v

n
,v
1
. If the sorted order of the vertices is in the

clockwise sense along the boundary of R, P is said to be clockwise oriented with respect to R
(Figure 5.a); otherwise, it is counter-clockwise oriented (Figure 5.b). The region R is called polyline
region.

(a) Clockwise oriented(b) Counter-clockwise oriented

Figure 5: Orientable polylines.

From the spatial relationship between the corresponding regions of two orientable polylines, we may
derive a condition for trivially discarding pairs of sub-polylines that do not self-intersect. It is worth
noting that the results are applicable to the star-shaped polylines, once a star-shaped polyline is an
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orientable polyline. This is because that the union of a set of edge-adjacent and non-overlapping
triangles with a common vertex is a simply-connected region and a star-shaped polyline is the
boundary of this set of triangles.

Proposition 4.1 Let P and Q be two orientable polylines that have at most some points in common. Let R
and S be the respective polyline regions that have only these points in common. Let P

s
 and Q

s
 be the

corresponding simplifications of P and Q. If P
s
 ∈ R, where Q

s
 ∈ S, then P

s
 and Q

s
 have at most those

points in common.

  Proof: If P
s
 and Q

s
 have other points in common, then R and S must have more common points,

because P
s
 ∈R and Q

s
 ∈S. This contradicts the supposition. Hence, P

s
 and Q

s
 can share at most the

common points of P and Q.

Proposition 4.1 tells us that if a polyline is partitioned into a set of orientable sub-polylines, such that
their regions have at most the extreme or the boundary points in common, then we may restrict the
search space for potential topological conflicts to the simplified sub-polylines that do not lie entirely in
the region of their corresponding original sub-polylines. Figure 6 presents two cases: (a) P

s
 ∈R, Q

s
 ∈S;

and (b) P
s
∈⁄R, Q

s
∈⁄S. Conflicts may only occur in the second case.

(a) (b)

Figure 6: Potential topological conflicts.

Let us introduce one more definition before presenting a practical corollary.

Definition 4.2 Two orientable polylines are called separable, if their polyline regions have at most the
extreme or boundary points in common (Figure 7).

(a) Separable polylines (b) Non-separable polylines

Figure 7: Separability of two polylines.

Corollary 4.1 The simplified polylines of two separable polylines cannot intersect at their interior points
if the simplified polylines lie entirely in the corresponding polyline regions.
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  Proof: If the simplified polylines intersect at their interior points, the corresponding polyline regions
must intersect at some interior points, which violates the definition of separable polylines.

 

5 A Non-Self-Intersecting Douglas-Peucker Algorithm

Based on the properties presented in Sections 3 and 4, we present a modified Douglas-Peucker
simplification method that may avoid self-intersections along the recursive refinements of a polyline P
with n input vertices v

1
,v
2
,…,v

n
 and that can detect the potential topological conflicts with a simple

sidedness test. The algorithm comprises three steps:

Partition P into a set C of separable star-shaped sub-polylines.1.
Apply the Douglas-Peucker algorithm for every sub-polyline C

i
 ∈C.2.

Beside topological conflicts between the sub-polylines.3.

5.1 Partition into separable star-shaped polylines

According to Corollary 4.1, the simplified polylines of two separable star-shaped polylines cannot
intersect except at the boundary vertices of their polyline regions, if they lie entirely in the
corresponding polyline regions. Moreover, Proposition 3.1 tells us that the simplified polyline of any
star-shaped polyline cannot self-intersect. This motivates us to decompose an input polyline P into a set
of separable star-shaped polylines before carrying out the Douglas-Peucker procedure at each one.

We devised a two-step procedure for partitioning any open polyline P. In the first step, P is partitioned
into a set of separable sub-polylines; and, in the second step, we apply a visibility algorithm to
decompose each orientable sub-polyline into non-overlapping star-shaped pieces.

5.1.1 First Step

The support line of the vector 

--→ v1vn divides P in two parts: its left side and its right side (Figure 8.a). We determine the
intersection points u

1
,u
2
,…,u

r
. Then, they are sorted along the direction of the vector 

--→ v1vn , and P is split at them into subsequences of vertices, as shown in Figure 8.b. For instance,
u
1
⋅⋅⋅u
2
 and u

5
⋅⋅⋅u
6
 are two distinct subsequences of P.

(a) (b) (c) (d)

Figure 8: Partition into a set of separable sub-polylines.

We can determine all regions, R
1
,R
2
…R
l
, by simply tracing along the support line twice: one turn in the

direction
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-v-1→vn and another turn in the direction

-v-n→v1 . This is because the side of a region alternates between in (I) and out (O) at each intersection
point, as depicted in Figure 8.c. Hence, we may link the intersection points in sorted order to build the
separable polylines on the left side, in the case P

2
, and, analogously on the right side, to obtain P

1
 and

P
3
 (Figure 8.d).

5.1.2 Second Step

To determine a star-shaped sub-polyline of a polyline with respect to a point r is similar to the classic
problem of computing a visibility polygon from r. Our implementation is based on the Hipke’s linear time
algorithm [4]. For decomposing a polyline with n vertices P = {v

1
,v
2
,…,v

n
} into a set of star-shaped

polylines, we apply the algorithm on P to obtain a visibility polygon V; then we replace P by P-V and
apply the algorithm recursively until no vertex remains.

For the sake of completeness, an outline of Hipke’s algorithm is given in this section. The algorithm
scans the n vertices of the polyline P in sorted order and chooses the visible ones on the basis of the
tracking sense at each vertex and on the mode of operation, which depends only on the current and
previous tracking senses.

According to the signal of the turn angle φ, that is the angle between the segments rv
i-1

 and rv
i
, two

senses are distinguished: forward or positive (Figure 9.a), and backward or negative (Figure 9.b).

(a) Forward tracking(b) Backward tracking

Figure 9: Tracking senses.

Backward trackings are further subdivided into inward (the segment v
i-1

v
i
 lies between the

segment v
i-2

v
i-1

 and the point r, as shows Figure 10.a) and outward (the segment v
i-2

v
i-1

 lies between

the segment v
i-1

v
i
 and the point r, as illustrates Figure 10.b).

(a) Inward tracking(b) Outward tracking

Figure 10: Backward trackings subdivision.
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Three modes are distinguished: normal, skip and curl. In the normal mode, the current vertex is inside
the scanned star-shaped polyline V. In both skip and curl modes, the current vertex is not visible and
the algorithm waits to come back into the area of V. Switching from the normal mode to one of these
two modes depends on the way how the tracking tends to progress when it passes from a visible to a
non-visible vertex: when it seems to advance spirally, as shown in Figure 11.a, the vertices will be
further scanned in the curl mode; otherwise, we enter the skip mode (Figure 11.b).

(a) Curl mode(b) Skip mode

Figure 11: Modes for handling non-visible vertices.

For distinguishing correctly the visible from non-visible vertices, the algorithm demands a stack of skip
segments that grows, whenever the skip mode is activated, or shrinks, if any skip segment becomes
obscured. Each skip segment is represented by its first point s and its end point q. The points at which
the polyline starts curling are also represented as curl points.

The procedure starts at v
i
 = v

2
 in the normal operation mode. It also considers that the previous

tracking sense was forward. The vertices are scanned sequentially from i = 2 to n. We may be in one of
the three modes of operation at each vertex v

i
:

normal mode: if the tracking sense is
forward: if the previous sense was in-backward and rv

i
 intersects the support line

of v
i-2

v
i-1

, set v
i-1

 as the curl point, skip v
i
 and switch to the curl mode; otherwise, v

i
 is

inserted in the output list V.
out-backward: pile v

i-1
 as the initial point of a skip segment, skip v

i
, and switch to the skip

mode.
in-backward: if the segment v

i-1
v
i
 crosses any skip segment, remove from the output

list V all vertices v
j
, with j < i, until v

k
 (the first visible vertex after the skip segment), pop

out all skip segments with end points v
l
, where l > k, and switch to the skip mode;

otherwise, remove from the output list V all vertices v
j
, with j < i, until a segment in V

intersects the ray beginning at r and passing through v
i
, and insert vertex v

i
 in V.

1.

skip mode: if the segment v
i-1

v
i
 intersects the ray beginning at r and passing through s (the first

point of the current skip segment), then determine the intersection point q, set it as the end
point of the current skip segment, add v

i
 in the output list V, and switch to the normal mode;

otherwise, skip vertex v
i
 and keep on the skip mode.

2.

curl mode: if the segment v
i-1

v
i
 intersects the ray beginning at r and passing through c (the curl

point), then add v
i
 in the output list V and switch to the normal mode; otherwise, skip v

i
, and

keep on the curl mode.

3.
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Figure 12 illustrates an application of this procedure to the polyline P in Figure 12.a. In the figure, the
current vertex is highlighted with a black square, the intersection points are indicated by the white
circles, and the current tracking sense is pointed out by a curved arrow.

The algorithm starts in the normal mode at the vertex v
2
. The (current) tracking sense from v

1
 to v

2
 is

forward (Figure 12.b). It continues moving forward, until it finds the out-backward tracking from v
6

to v
7
 (Figure 12.c). It then sets v

6
 as the current skip point s and enters the skip mode. It begins

skipping vertices, until it reaches the end point q – the intersection between the ray rs and the segment
v
11

v
12

 – of the current skip segment (Figure 12.d). In consequence, it returns to the normal mode.

The algorithm moves further forward until the in-backward tracking is detected at v
15

 (Figure 12.e). It

begins removing vertices previously inserted in the output list, until it finds the intersection between
the segment v

12
v
13

 and the ray rv
15

 (Figure 12.f). As the movement from v
15

 to v
16

 is in-backward

(Figure 12.g), it pops out the skip segment sq and discards all vertices from the output list, until it finds
an intersection between the ray rv

16
 and the segment v

5
v
6
 (Figure 12.h). At v

17
 the spiral movement is

identified, then v
16

 is assigned as the curl point c and the procedure enters the curl mode (Figure 12.i).

In consequence, all subsequent vertices are ignored, until the intersection between rc and v
18

v
19

 is

reached. The normal mode is then restored.

The procedure reevaluates the state of the output list with regard to v
19

. As the tracking from v
18

to v
19

 is in-backward, it have to remove all the vertices from the output list till the intersection

between rv
19

 and v
4
v
5
 (Figure 12.k). Further forward progress until the end vertex v

21
 results in the

star-shaped polyline V (Figure 12.l).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 12: Determination of a star-shaped polyline.

5.2 Beside Topological Conflicts

As already stated, the intersections may only occur among the simplified sub-polylines belonging to the
distinct polyline regions. Hence, we propose to include in the Douglas-Peucker algorithm the test
whether a simplified polyline is outside of the corresponding polyline regions.
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If we consider that each star-shaped polyline is clockwise oriented, this sidedness test is equivalent to
the condition that there is a sample v

j
 between v

i
 and v

k
, where i < j < k, for which the third coordinate

(z-coordinate) of the cross product (v
k
v
j
 × v

j
v
i
) is equal to or greater than zero

z(vkvj × vjvi) ≥ 0. (1)

This allows us to reduce the search space for the topological conflicts and to carry out the intersection
test only between the star-shaped polylines that violate Eq. 1.

Figure 13 illustrates the proposed procedure. Figure 13.a presents three segments (d
1
, d
2
 and d

3
) that

do not lie in the corresponding polyline region. There is only a vertex that violates Eq. 1 with regard
to d

1
. Hence, d

1
 is further refined until Eq. 1 is satisfied (Figure 13.b).

(a) (b)

Figure 13: Besiding topological conflicts.

 

6 Complexity Analysis

There is a variety of ways to implement our algorithm, since a number of algorithms is available for
solving each subproblem. In this section we present a time complexity analysis of our algorithm as we
implemented it.

For partitioning an input polyline with n vertices into a set of separable polylines, we first find all points
that intersect the support line. This is performed in O(n) time. After then, we sort r intersection points
in O(r log r) time. We finally join the pieces to build a set of separable simple polylines with O(r) time.
Therefore, the worst-case time complexity of this step is O(n + r log r + r), or simply O(n + r log r).

The worst case for partitioning any polyline with n vertices into a set of l star-shaped ones occurs when
it is already separable, that is r = 1. Since the algorithm for determining a star-shaped polyline we used
is linear, the worst-case complexity of the whole partitioning is O(ln). However, the number of
star-shaped polylines l is always less than the number of output vertices m. So, we can upperbound its
complexity to O(mn).

We know as well that the algorithm for finding the farthest vertex of a sequence, used exhaustively in
Douglas-Peucker simplification, is linear. Then, the Douglas-Peucker algorithm runs for each
star-shaped polyline in O(kj) time, where k and j are, respectively, the number of input and output
vertices. Since the worst case happens whenever we have a unique star-shaped polyline with n
vertices, the worst-case complexity of this step is also O(mn).
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For handling the topological conflicts between the star-shaped polylines, we have to verify every
external segment of a simplified polyline against all segments of the others. In the worst case, this

check is performed in O(m2) time.

Finally, for regrouping the separable polylines, built in preprocessing, into one sequence as the output,
we have just to pass through every output vertex sequentially, what takes O(m) time.

For computing the whole complexity, we add together the worst-case complexity of each step, that
results in

O(n+ rlogr +mn + m2 +m) (2)

Since the number of input vertices n is always greater than or equal to the number of output
vertices m, the three last terms of the sum in Eq. 2 fulfills the inequality

2 mn +m + m ≤ mn + mn + mn.

In addition, once the preceding vertex and the subsequent vertex of the intersection points are always
included in the simplified polyline, the number of output vertices m is greater than the number of
intersection points r. Thus, for the first two terms of the sum in Eq. 2, we have

n+ r logr < n+ m logm < n + mn ≤ mn + mn.

Summarizing, the worst-case complexity of our algorithm is O(mn), which is equivalent to the time
complexity of the original Douglas-Peucker algorithm we used in our implementation.

 

7 Results

To evaluate the algorithm we implemented, we present in this section some results we obtained on the
simplification of the outlines of the continents from the atlas data available at [13]. Comparisons with
the results from the original Douglas-Peucker algorithm [1] are also provided.

Figure 14.a illustrates a Europe’s outline with 53,626 vertices. Its Douglas-Peucker simplification with a
tolerance of 4.0 contains 18 vertices and two self-intersections, which are encircled by the dashed line
in Figure 14.b. The reduced outline from our algorithm (Figure 14.c) has no self-intersections, although
it possesses much more vertices (46), 22 of which were inserted during the partition into separable
polylines and 24 were added for splitting them into star-shaped ones. It is worth noting that in
Figure 14.c the shape of Scandinavian Peninsula is much more distorted than in Figure 14.b. It is due to
the partition of the original outline into star-shaped polylines before performing the Douglas-Peucker
algorithm.

(a) (b) (c)

Figure 14: Comparison between Douglas-Peucker and our approach simplifications of Europe’s map
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with tolerance of 4.0.

Figure 15.a shows an Asia’s outline with 87,337 vertices. Figures 15.b and 15.c are respectively the
simplified outlines, with tolerance of 8.6, from the Douglas-Peucker and our algorithm. Because of high
tolerance and wavy outline, the original Douglas-Peucker algorithm delivers self-intersections (encircled
by the dashed line) in a very reduced outline, with only 13 vertices. As expected, the result of our
algorithm is self-intersection free, at cost of more vertices (35) in the output: 15 of them were inserted
while the original polyline was splitted into star-shaped sub-polylines.

(a)

(b) (c)

Figure 15: Comparison between Douglas-Peucker and our approach simplifications of Asia’s map with
tolerance of 8.6.

Figures 16.a and 16.b present, respectively, the simplifications with tolerance of 0.3 of the North
America’s outline from the Douglas-Peucker and our proposal. The number of vertices in the original
outline is 105,499. The Douglas-Peucker algorithm reduces it to 993 vertices, but because of highly
wavy borderline 54 self-intersections were resulted. Although our algorithm delivers much more
number of vertices in the output (1,717), it contains no self-intersections. Visually, the results are much
alike.

(a) (b)

Figure 16: Simplifications of the North America’s outline with tolerance of 0.3.

Figure 17.a illustrates an Oceania’s outline with 27,577 vertices. The tolerance of 4.2 was used for
simplifications. From the Douglas-Peucker algorithm 9 vertices were yielded, two of which are very

The Douglas-Peucker Algorithm: Sufficiency Conditions for N... file:///Users/gabi/Biblioteca%20Digital%20SBC/Vol.9%20Nro...

13 of 17 2/4/09 6:41 PM



closely laid in the position pointed in Figure 17.b. Figure 17.c shows our simplification with 27 vertices,
where 16 vertices introduced in preprocessing are laid closely in the position indicated by the arrow in
Figure 17.c. As expected, for avoiding self-intersections, low tolerance may lead to an excessive
number of star-shaped sub-polylines in the protruding polyline.

(a) (b) (c)

Figure 17: Simplifications of the Oceania’s outline with tolerance of 4.2.

Figure 18.a illustrates an Africa’s outline with 28,653 vertices. Its Douglas-Peucker simplification, with
tolerance of 4.5, contains 11 vertices, as depicted in Figure 18.b. Because its undulations are relatively
larger with respect to the specified tolerance, the number of vertices in the output of our algorithm is
almost the same: 19. Moreover, the reduced outlines in Figure 18.b and Figure 18.c are very similar.

(a) (b) (c)

Figure 18: Simplifications of the Africa’s outline with tolerance of 4.5.

Table 1 summarizes the results obtained with the use of the Douglas-Peucker algorithm and our
algorithm. The column “Input” contains the number of input vertices. The simplification tolerance is
given in the column “ε”. The output is recorded in the column “Output”. The number of occurrences of
self-intersections is in the column “S-I”. We also show the number of inserted vertices in the
preprocessing (“Pre”) and during the partition into the star-shaped polylines and the elimination of
topological conflicts (“Post”). Additionally, the processing time for each simplification is given in seconds
in the column “t(s)”.

Data DP algorithm Our algorithm

Map Input ε OutputS-I t(s) Output Pre Post t(s)
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Oceania 27,5774.2 9 01.010 27 16 111.390

Africa 28,6534.5 11 01.070 19 6 131.450

Europe 53,6264.0 18 21.990 46 22 242.690

Asia 87,3378.6 13 13.260 35 15 204.400

North America105,4990.3 993 544.170 1,7171031,6147.510

Table 1: Summary of maps simplification results.

Observe that our procedure has a simplification ratio comparable to the Douglas-Peucker procedure
with the advantage that no self-intersection appears. We did not perform detailed measurements for
analyzing the visual effect of our algorithm. However, the simplified polylines we obtained are fair from
our subjective judgment, once most of extra vertices that our procedure introduced are in the portion of
the simplified polyline that has a large variation in the curvature.

 

8 Concluding Remarks

In this paper, we present yet an improvement to the classic Douglas-Peucker line simplification
algorithm in terms of preventing self-intersections. We derive, with proof, two sufficient conditions. On
the basis of these conditions, we also propose a way to integrate them into the Douglas-Peucker
algorithm and to reduce the search space for the topological violations. The concept of polyline region
was not only useful for trivially discarding star-shaped sub-polylines that cannot cause any topological
conflicts, but also for controlling further local refinements as well.

Another contribution of our work is the decomposition of the problem into a set of sub-problems whose
solutions are well-known. This facilitated the implementation of our algorithm and the validation of our
idea. From the experiments we carried out, the results of our algorithm are similar to the ones
produced by the classic Douglas-Peucker algorithm, except in the vicinity of the connecting vertices of
the star-shaped polylines.

Our algorithm tends to refine much more. The focus of this work is the robustness of simplification, and
not the efficiency. Hence, we did not investigate its performance thoroughly. From a quick analysis, our
implemented algorithm has, like the classic Douglas-Peucker algorithm, O(mn) worst-case time,
where m is the number of output vertices, and n the number of input vertices. This performance is
output dependent.

As further work, we may improve the performance of our algorithm by optimizing the decomposition of
the input polyline into a set of separable polylines. It is also interesting to compare the performance of
the optimized algorithm with the existing ones.

Another point of our interest is to reduce the unnecessary refinements in the vicinity of connecting
vertices of the star-shaped polylines. Finally, we would like to extend our algorithm to a multiresolution
version that enables a fast description of an object at different levels of details.
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Notes

1Based on "A non-self-intersection Douglas-Peucker Algorithm", by Wu, Shin-Ting and Márquez,
Mercedes R. G. which appeared in Proceedings of Sibgrapi 2003. © 2004 IEEE.
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