Mimico: A Monadic Combinator
Parser Generator

Carlos Camarao

Universidade Federal
de Minas Gerais
31270-010 - Belo Horizonte
MG - Brasil
camarao@dcc.ufmg.br

Abstract

This article describes a compiler generator, called
Mimico, that outputs code based on the use of
monadic combinators. Mimico can parse infinite look-
ahead and left-recursive context free grammars and
defines a scheme for handling the precedence and asso-
ciativity of binary infix operators, and monadic code
in semantic rules. Mimico provides an easy way of
specifying the syntax and semantics of languages, and
generates readable output in the form of Haskell pro-
grams. The article presents Mimico’s general princi-
ples, its formal syntax and semantics, its limitations
and illustrative examples of its behaviour.

Keywords: Compiler generation, monadic parsing

1 Introduction

This article describes a compiler generator, called
Mimico, that outputs code based on monadic combi-
nators. The paper assumes familiarity with Haskell
[2, 15] and monadic programming [18, 17, 6, 7]. A
preliminary and shorter version of this paper, which
does not include, in particular, a formalization of the
semantics of Mimico’s input grammars (Section 2)
and a description of the support for the generation
of monadic code (Section 4), has been published in
the SBLP’2001 Conference Proceedings [3].

The input to Mimico is a grammar specification
where productions have the form A; = r; {| e; |}, for
t=1,...,n, where A4; is a nonterminal symbol, called
the production’s left-hand side (lhs), r; is a sequence
of terminal and nonterminal symbols, called the pro-
duction’s right-hand side (rhs), and e; is a Haskell ex-
pression, called the production’s semantic rule.

The output generated by Mimico is a recursive
descent parser, based on monadic combinators, that

Lucilia Figueiredo

Universidade Federal
de Ouro Preto
35100-000 - Ouro Preto
MG - Brasil
lucilia@decc.ufimg.br

Hermann Rodrigues

Universidade Federal
de Minas Gerais
31270-010 - Belo Horizonte
MG - Brasil
hermann@dcc.ufmg.br

parses strings generated by the input grammar. A
parser is generated for each production, as a combi-
nation of parsers for nonterminal symbols occurring
in the rhs of the production. In fact, Mimico gener-
ates monadic compilers, by simply following monadic
parsers by a (monadic) return action. This return ac-
tion has as parameter the Haskell code that constitutes
the semantic rule (possibly with some adaptations, as
we will see in the sequel).

The clarity of the code written in Haskell, the possi-
bility to work with higher-order functions and, finally,
lazy evaluation, are basic fundamental tools used by
Mimico in order to be able to accept grammars as in-
put and generate as output programs that “mimic” the
input specification. Due to the readability of its input
grammars, which involve the use of Haskell to specify
the semantic rules, we hope that Mimico can become
a useful tool for teaching the formal specification of
the syntax and semantics of languages.

Mimico is also based on the following informal rule:
alternatives for a nonterminal are parsed in their tex-
tual order, called the Pastor rule (“parse as specified
by the textual order”). It means that an automatically
generated parser tries to parse a subsequent alterna-
tive only if the previous ones have failed to produce a
successful parse of the input. Of course, a successful
parse for a given nonterminal may involve parsing not
all but only part of the input.

The Pastor rule removes all sources of ambiguities
in grammar specifications, by considering grammar
productions for each nonterminal as a list, instead of
as a set. For grammars which are ambiguous, consid-
ering productions as a set, the parsing tree implicitly
produced by the parser generated by Mimico is de-
termined by this textual order. This may also have
an impact on the efficiency of the generated parser.
Examples illustrating these aspects are given below.

Informally, the behaviour of Mimico can be de-
scribed as follows: for a list of productions P = [A; =
ri {le;l}], fori=1,...,n, Mimico generates compil-
ers which follow the Pastor rule for all productions in P

27

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

and a compiler for an initial symbol S corresponding to
the following additional production, automatically in-
troduced by Mimico: S = A; eoi {| Ay |} , where
eoi denotes a parser that succeeds if and only if the
end of the input is reached. (and A; is the original ini-
tial symbol of the grammar). An example at the end
of this section illustrates the need of testing the end of
the input in the generated compiler in this additional
production.

Consider, as a first example, the following simple
input grammar for Mimico:

A llyesll |}

{1
{I "yes" 1}

a A
a

In this paper we consider that symbols that appear
in left hand sides (lhs) of input grammar productions
are nonterminals, and the initial nonterminal is the
one at the lhs of the first production. This form of dis-
tinguishing terminals from nonterminals is useful for
small examples and test cases — and can be explicitly
chosen by a command-line flag, when starting Mimico
—, but is not adequate from a software engineering
point of view. This occurs because the inclusion of a
new rule can change the effect of existing rules, if the
nonterminal at the lhs of the new rule appears as a
terminal in an existing rule.

Also, by default alternatives in a production finish
according to a layout rule: a next alternative has the
same indentation as its previous one, or is indented
more (to the right). The first = occurs after the lhs
nonterminal, and symbol | indicates the start of an
alternative. It should occur in the same column as
the first =, or after this column. The layout rule can
be switched off by a flag (-fNoLayout) when starting
Mimico. In this case, a sequence of alternative pro-
ductions must end with symbol ¢;’ (which is, with
-fNoLayout, a reserved symbol). A reserved symbol
or a sequence of reserved symbols must be preceded
by a backslash (?\?), to be written in the rhs of pro-
ductions or in the semantic rule, and a backslash must
itself be written as ‘\\’.

The parser for the first alternative in the grammar
above will try to parse more than one a; if it fails,
the second alternative will be tried. Given this input,
Mimico generates the program shown in Figure 1.

In this example, compiler al corresponds to the sec-
ond alternative of the production whose lhs is nonter-
minal A. Compiler a tries the first alternative and, if
parsing fails, the second alternative is tried, by calling
al. The names of each compiler are generated from the
name of the nonterminal at the lhs. If, as in this exam-
ple, the nonterminal starts with an upper case letter,

28

import Parser
compile = apply a

a = do symb "a"
a.l <- a
return "yes"
<|> al

al = do symb "a"

return "yes"

Figure 1: A recognizer for a*

Mimico tests whether there exists a nonterminal with
the same name, but with the first letter changed to
lower case (since function names may not start with
an upper case letter in Haskell); if this new name is
not already used as the name of another nonterminal,
it is chosen as the compiler name; otherwise, character
’_ is introduced before the name of the nonterminal
to form the compiler name. Alternatives after the first
have parser names with a suffix that is a number, from
1 upwards, according to their textual order.

A lexeme is a grammar symbol that may be fol-
lowed by white spaces (i.e. either blanks, newlines or
tabs). The parser for a terminal symbol s is one of
the lexical analyzers string s or symb s, depending
on whether s is a lexeme or not, respectively. The
following conventions is used:

By default, every nonterminal and termi-
nal symbol is not a lexeme. The user can,
however, either explicitly specify a lexemes
section, for listing all (nonterminal or termi-
nal) lexemes. A flag can also be used to allow
the following lezeme convention for distin-
guishing nonterminals and terminals as lex-
emes or not:

e if the name of a nonterminal symbol
starts with a lowercase letter, then it is
a lexeme, otherwise it is not. For exam-
ple, in the rhs e + e, nonterminal sym-
bol e is a lexeme, and in the rhs a A,
nonterminal symbol A is not.

e if a terminal symbol is followed by
another terminal or by a nonterminal
which is a lexeme, then it is a lexeme.

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

For example, in the rhs e + e, terminal
symbol + is a lexeme, and in the rhs a
A, terminal symbol a is not.

In this paper, we write input grammars assuming
the lexeme convention.

Mimico allows predefined parsers to be imported,
by means of an import clause. For example, ‘import
Predef (spaces);’ (orsimply ‘import Predef;’)en-
ables the use of spaces to parse spaces.

Parsers generated for alternative productions of the
same nonterminal symbol are combined by using the
nondeterministic choice parser combinator, denoted
by <[> (see, for example, [2, 14]). p <I> q concate-
nates the results of p and q into a list, considering fail-
ure as an empty list of successes [16] (in other words,
when applied to s, parser p <|> q returns the list of
results of p applied to s followed by the list of results
of q applied to s).

Nondeterministic parsing, which occurs due to the
use of the nondeterministic choice combinator (<|>),
allows as input grammars that are neither LL(k) nor
LR(k), for any k. We illustrate parsing of such a gram-
mar with a simple example at the end of this section.

apply p is defined as

run (p >>= \x -> eoi >> return x)

where run is the monadic deconstructor function; that
is, the result of run (Parser p) s is the first compo-
nent of the resulting list given by p s.

The semantic rules can be used for more interest-
ing purposes, of course, other than merely specifying
a (kind of) language recognizer. The simple exam-
ple in Figure 2 shows the input grammar and gener-
ated program for counting the number of a’s in an
input sequence (import clauses are omitted hereafter,
for brevity).

Compilers a and al correspond to the first and sec-
ond alternative productions of nonterminal A, respec-
tively, and a_1 is used to receive the result of a’s com-
pilation.

Mimico adopts the following simple conventions for
the specification and interpretation of semantic rules:

e if a nonterminal v occurs more than once in a rhs,
each occurrence of v must be distinguished in the
semantic rule by a subscript, numbered from 1
upwards, and interpreted as denoting the nonter-
minal occurrence according to the textual order
in the rhs.

For example, production

e=e+e {lel+e2]}

A =ahr {l1+A]l}
| a

{11}

Input grammar

compile = apply a

a = do string "a"

a_l <- a
return (1 + a_1)
<|> al

al = do string "a"
return 1

Generated output

Figure 2: Counting the number of a’s

specifies e_1 as the result of the compilation of
the first occurrence of e in the rhs, and e_2 as the
result of the compilation of the second occurrence
of e.

e the absence of a semantic rule is considered as a
semantic rule textually identical to the rhs.

In this case, if a nonterminal v occurs more than
once in a rhs, each occurrence is distinguished in
the semantic rule by specifying subscripts v_1, v_2
etc., where subscripts indicate the order of occur-
rence in the rhs.

To illustrate the importance of testing the end of in-
put in the additional production generated by Mimico,
and the influence of the Pastor rule in the efficiency of
generated parsers, consider now the following simple
input grammar:

A = "yes" |}
I I

a {l
a A {| "yes" |}

Given input aa, the program generated by Mimico
for this grammar will, initially, successfully parse a sin-
gle a. The additional production generated by Mimico
then fails, because eoi fails. The parser tries then the
second alternative, obtaining, lazily, the next element
in a list of successful parser results. Both a’s are now
consumed, and eoi thus succeeds.

Without the automatically generated parser for
testing the end of input, the above grammar would

29

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

compile = apply p

p = do char_1 <- sat (const True)

p-1 <-p

char_2 <- sat (const True)

return (char_1 == char 2)
<[> p

pl = do char_l <- sat (const True)
return True
<|> return True

Figure 3: Program for recognizing palindromes

successfully parse all the input only if this input con-
sisted of a single symbol a. The above input leads (due
to following the Pastor rule) to a less efficient parsing
than that of our first example, where the order of the
alternatives is reversed.

A final example in this section illustrates the use
of nondeterministic parsing to allow parsing of infi-
nite look-ahead grammars that are neither LL(k) nor
LR(k), for any k. The example is of a simple grammar
for recognizing palindromes:

P = Char P Char {| Char.l == Char 2 |}
| Char {l True |}
| epsilon {l True |}

Char and epsilon are reserved nonterminals, rep-
resenting a single arbitrary terminal symbol and an
empty sequence of grammar symbols, respectively.
The simple program generated by Mimico is shown
in Figure 3.

The use of the nondeterministic choice operator
<|> allows this simple grammar for palindromes to be
given as input to Mimico. Consider as an example the
parsing of input string aa, which involves a backtrack
on the recursive call to pl. The first call to p1l con-
sumes the first input symbol a before calling p1 again.
This recursive call succeeds, returning lazily the list
of successful parses [("a",""), ("","a")]. Of these,
the first does not originate a successful parse for the
first call to p1; but the second does, after a backtrack,
in which no input is consumed on the recursive call.

Next section formalizes the syntax and semantics of
productions. Section 3 describes Mimico’s handling of
left recursion. Section 4 describes the use of monadic
code in semantic rules and Section 5 the treatment of

30

precedence and associativity of binary infix operators.
Section 6 concludes.

2 Syntax and Semantics

We use the following meta-variables and corre-
sponding syntactic domains:

Meta-var. | Domain | Name

G grammar

P list of productions

P production

AB,L,R,X, Y|V nonterminal

S \% initial nonterminal

a,b by terminal

w, v, w * sequence of terminals

r (XUV)* | sequence of grammar symbols

epsilon (XUV)* | empty sequence of grammar
symbols

€ empty sequence (the con-
text determines the type of
elements)

e, code Haskell expression

The syntax of Mimico’s input grammars is given
below, where meta-symbols are written in a gray box
(asin ::= and |), to avoid confusion. We do not
include here the possibility of specifying the associa-
tivity and precedence of binary infix operators, which
is presented in Section 5.

Gu=P | PP
P = A=r{lel |} |

| mnilen|}

The result of processing an input string by a given
grammar G = (X,V, S, P) is defined by a proof system
that defines the meanings of productions and nonter-
minals of this grammar, with respect to a given input
string. The axioms of the proof system are defined
in Figure 4. The proof system includes also inference
rules (omitted for brevity) that define provable equal-
ity as a congruence (i.e. an equivalence relation, pre-
served by substituting “equals for equals” — i.e. by
substituting = by ' if = ' is provable).

P(A) denotes the list of rhs of alternatives for non-
terminal A in GG, and a e u denotes the sequence au
(with head a and tail w). Subscripts G are written
explicitly in the semantic functions, since we compare
meanings given by distinct grammars in Section 3.

parsed ~(u,), used in this Figure, gives a prefix of
u generated from r by successively replacing nonter-
minals by rhs of productions in G. parsed is defined
in Figure 5.

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

[Aleu = [A=rifled} | - | radlenHaw (1)

where ry {J e [} -+ | ra {] en]} = B(8)

[A=r{le}lew = e[[Ai]aw /A1, - [Anlaw, /An]
(2)
where r=wujAjus Ay upAntpyg
u; € X, fori=1..n+1, and
parsed(u, A) = uywiusws - - - Up Wy Upt1
w; € X fori=1.n

[A=r{leaf}] - | ad{lenHow =
([A=ri{lei[Mew if pu,m)
[A=r2{le2 |} ifnotp(u,ri) and p(u,rs)

[A=r,{len|}cwu ifnot p(u,r) and not ...
.m0t p(uU,1p_1)
and p(u,r,)
fail if not p(u, i),
foralli=1..n

‘ (3)

where p(u,r) = (parsed(u, r) # fail)

parsed (€, r) =€

parsed ;(u, €) =€
parsed(au,ar) = a o parsed(u,r)
parsed (au,br) = fail (for a # b)
parsed c(u, Ar) =

tet ri{lerl}| - | rad{lenl} = P(A)
in parsedq(u,r;), where 1 <7 <nis
the least value such that

parsed . (u,r;) does not fail,
if it exists; otherwise fail

Figure 4: Semantics of Mimico’s input

3 Left Recursion

Since monadic parsing is based on a recursive de-
scent technique, one might expect that left-recursive
productions would not be allowed as input, because
they would cause monadic parsers to go into an infi-
nite loop. Furthermore, one could also think that it
would be natural to take into account the argument
that left-recursive grammars can be rewritten to an
equivalent non-left-recursive grammar.

However, a non-left-recursive grammar may not be
so simple to specify as its left-recursive counterpart,
specially with respect to semantic rules. Moreover,
the semantic rules of the non-left-recursive grammar
may turn out to specify a less efficient algorithm.

Mimico allows left-recursive grammars as input, re-
quiring though that they have a certain simple form,
as described below, in order that semantic rules can
still be used. Left-recursive productions can appear in
two forms, defined respectively in this section and in
Section 5.

Let us consider first a simple example of a left-
recursive grammar, describing the language {ab*}:

Figure 5: parsed substring

X =Xb {IlXxX+11}
| a {lo

'}

The semantic rules specify the output to be the num-
ber of b’s in a given input. Given this grammar,
Mimico generates the program shown in Figure 6.

compile = apply x

x = do b1 <- b
x’_1 <- x’
return (let f z x =z + 1
in foldl f b_1 x’_1)

b = do string "a"
return 0O
x’ = do undef_1 <- undef
x’_1 <= x?
return (undef 1 : x’.1)

<|> return []

undef = do string "b"
return undefined

Figure 6: Program for counting b’s in {ab*}

Left-recursion is treated by using essentially the
standard left-recursion elimination algorithm for
context-free grammars [1]. A novel aspect of our treat-
ment of left-recursive productions is the use of an in-
termediate list to handle the results of the parser ob-
tained by the transformation of a left recursive gram-
mar. This is needed because we cannot split produc-
tions, so that we can generate code for the original
semantic rules. In the particular case of the program
above, a list of undefined values is constructed while

31

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

firstg(r) = first(r,0)
firsta(e,S) = {e}US
firstg(au,S) = {a}US
firstg,(Ar,S) =

if A€S then S
else let A=ri{|ei|}| -~ | ru{len]} €P(B)
in {A}USUS'UUL, firstg(ri, {A}US)
where S'=if e¢€S or r; =¢,
for some i € {1,...,n}
then firsts(r)
else

Figure 7: Function first G

each input character b is consumed. Then, folding the
constructed list with the function generated from the
semantic rule gives the desired result (in this case, the
number of elements of the list).

The general scheme of transformation of left-
recursive productions is explained next. We consider
first direct left-recursive productions, and then gen-
eralize the translation scheme to handle indirect left-
recursion.

For any sequence of grammar symbols r, firsts(r)
gives the set of first (terminal or nonterminal) symbols
that can be generated from r, by successively replacing
a nonterminal occurring in r by the rhs of a production
in G for that nonterminal. Function first., is defined
in Figure 7.

A production A = r {| e |} is left-recursive if A €
firsto(r). A nonterminal is left-recursive if it has a
left-recursive production.

The scheme of eliminating left-recursive produc-
tions in this section requires left-recursive productions
to have the form shown in Figure 8, apart from the
possibility of handling indirect left recursion, discussed
at the end of this section, and from the fact that left-
recursive alternatives need not appear all before non-
left-recursive ones, as shown in Figure 8 (this form is
chosen for the sake of readability).

The restriction to this form is used to enforce that
semantic rule e; be written with respect to A and R;
(ifR; € V), fori = 1,...,n (see the scheme of elimi-
nation of left-recursive productions in Figure 9). It is
significantly easier, though, to transform left-recursive
productions into this form, than to eliminate left-
recursion altogether (this is illustrated below by an
example that specifies the transformation of integer
literals from binary to decimal notation).

Figure 9 shows the transformed grammar, obtained

32

A = ARy {lel}
| AR, {[enl}
I i Alerl}
| rm {len |}
where, for j = 1,...,m, r; is not left-recursive and,
for i = 1,...,n, R; is restricted to denote a single
nonterminal symbol or a sequence of terminal symbols
(i.e. R; € V—{A} or R; = w, where w € TT).

Figure 8: Form of directly left-recursive productions

from the left-recursive productions in the form of Fig-
ure 8.

A') B and Y, for each ¢ = 1,...,n, are fresh non-
terminal symbols. Letting e[e’/A] denote (as usual)
the string obtained from e by substituting e’ for each

A = BA {| code; |}

BN, (e}
B Trl {ler [}

e Al l}
A = YN {lYi:a"]}

| epsilon {|] |}
N U Ry

| epsilon {| 1 |}
Y, = R {1 X [}
Y, = R, {1 % |} ,
fori=1,....n X = iildefined gt}l?érew?s[e
A=A {1ay 1}

| ...

| A {5 1}

Figure 9: Direct left-recursion elimination

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

occurrence of A in e, we have, fori =1,...,n:

foldl f; B A’ where f;z x = e;[z/A, x/R;]

ifR; €V
foldl f; B A’ where f; z x = e;[z/A]
otherwise

code; =

where we assume that x and z are fresh variables
(i.e. they do not occur in any e;, fori =1,...,n).

The following also holds: i) if, for 1 > j > m, r;
is a single nonterminal, then production B = r; is not
needed; ii) when R; is a single nonterminal, production
Y; = R; is not needed and every occurrence of Y; can
be replace by R; (for i =1,...,n).

The following example illustrates that left-recursion
may indeed simplify the specification of the semantic
rules. The following grammar transforms binary into
decimal notation:

L=LB {|B+2xL |}
| B
B =0
|1

Left recursion not only simplifies the semantic rule
in this case; it also leads to the generation of more
efficient code. Compare with the following (right-
recursive) alternative:

L=BL {(B*Q’\(SndL)+fStL,
snd L + 1) }

| B { ®, 1)}

B =

Based on the left-recursion elimination scheme,
Mimico generates, for the left-recursive input gram-
mar, the program shown in Figure 10.

We now prove the following:

Theorem 1 Let Gy be a left-recursive grammar in
the form required by the transformation scheme above,
and let GG; be the grammar obtained as a result of
applying the left-recursion elimination scheme. For
any nonterminal A of Gy,

[[A]]Goﬂt = [[A]]Ghu

compile = apply 1

1l =do b1l <- bl
1.1 <- 1
return (let f z x = X + 2%z
in foldl f b1 1°_.1)

1’ = do bl <-Db
1.1 <=1
return (b_1 :1°_1)
<|> return []

b = do string "0"
return 0O
<> b1

bl = do string "1"
return 1

Figure 10: Generated binary to decimal converter

Proof: Since 1 only alters Gy with respect to the
transformation of left-recursive productions, we con-
sider in the proof only left-recursive nonterminals in
Go. We prove only the case for n = m = 1. The
generalization for n > 1 and m > 1 can be obtained
straightforwardly by induction on n and m, respec-
tively (note that, because of the use of the Pastor
rule, we need not consider problems of ambiguity, that
would otherwise arise when the set of first symbols
does not determine the alternative to be used). We
omit, the subscripts in Ry, 71, e1, €, A}, codey, Y1 and X,
and consider, for brevity, that R € V, since the case
for R = w,w € ¥*, is similar. We also assume that
14 = {|¢' Heow = [Blo,.u and [Rlo.u = Rl s for
any u € ¥* (since Gy only differs from Gy by the trans-
formation of left-recursive productions), and use the
following straightforward lemma (which can be seen
as an alternative definition of foldl, that would lead,
though, with the usual implementation of lists, to an
inefficient implementation):

Lemma 1 If x is not null then foldl f z x is equal
to f (last x) (foldl f z (init x)), otherwise z.

Let B = [A = r{]€'|}]co,u, for brevity, and consider:
e [A]g,,u = fail. Then [A]q, . = fail.

e u is such that parsedg (u,AR) = fail and
parsed g, (u,r) = u.

33

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

Then [Algow =[A=AR{ e[} | 7 {¢ oy
—[a=r{|¢ou=B

and: [A]g,» =[A = B A’ {| code |}] G, » where

code =foldl f ([Blay,u) ([Alcy,e)
f z x =e[z/A x/R]

Since [A'], . = [1, we have that

[AlG, . = foldl £ B [1 =B

e otherwise, let u be such that parsedg, (u,A) = u.
We have that u must be then of the form vw (for
some v,w € ¥*) where w = wiws ... wy is such

that
parsed g, (wi,R) = wy, for alli = 1,... K,

parsed g, (v, AR) fails and parsed g, (v,r) = v (oth-
erwise we would have [A]¢,.u = [AlGy,« = fail).
For all i = 1,...,k, parsedg, (w;,R) = w;. Let
also B = [B]g,,» and R; = [R]gqw,, for i =
1,...,k, as abbreviations. We proceed by induc-

tion on k:

— Base case: £k = 1. Then:

[AlGow =[A=AR{[el} | r{[€e [Haoww

[A=AR{|e[}ao,ow
= e[[Alao,o/A Ry /R]

Thus [A]Go,vw = €[B/A, Ry /R]. We have also

that
[AlGy 0w = [A =BA {| code |}] ¢, vw, Where

code =foldl f ([Blg,,») ([A]cy,w)
f z x =e[z/A x/R]

Now:

[Mleiw =[N = YA {]Y: 2 Mo w
=Y A [[Y]e: w/Y: [A]Gr.e/A]

= [[Y]]th : (1
=[Ri]

[AlG,,e =[A"=epsilon {I [1 IHa,.
=1

and thus

[Alc, wo = foldl £ ([Blc, v) [Ri]
=foldl £ (f B Ry) []
=fB R
= e[B/A, R, /R]

34

— Inductive case. We have:

[Alaoww =[A=AR{|e|} | r{le [Haoww
=[A=AR{|e[Hao.vw

= e[[[A]]Gowwr“wk—l/Aa [[R']]Go,wk /R']
= e[[[A]]Gowwr“wk—l /Aa Ry, /R]

and [Alg,vw =[A=BA {| code|}cy.ow
= code
where: code = foldl f ([B]a,,v) ([A Gy .w)
f z x =e[z/A, x/R]
By the induction hypothesis,

[[A]]Go7vw1"'wkf1 = IIA]]le'U'wl"'wk—l and
[[R]]Go,wk = HR]]G17wk.
Thus:
6[IIA]]GOWUJI'”U%—] /A7 [[R']]Goﬂﬂk /R] =
6[[[A]]Glﬂ)wl'“wk—l /A7 [[R']]thk /R]
Since [AlG, vwi-wr_y =

foldl f (I[B]]Gl,v) (l[A’]]Glywl""wk—l)
we obtain:

[[A]]Go,vw

:e[fOldl f ([[B]]Glﬂl) (IIA,]]GLUJI""U/k—l)/A?
[[R']]thk/R]

=1 (fOldl f ([[B]]Glﬂ)) ([[AI]]thl"'wk_l)) (]Rk)

Then, by lemma 1, [A]Gy,vw = [Alcs vw

To extend the left-recursion elimination scheme to
handle indirect left-recursion, we need to modify, in
Figure 8, the rhs of productions which start with non-
terminal A, in a very simple way, to allow nontermi-
nals to be not only directly but also indirectly left-
recursive. The form of left-recursive productions be-
comes the one shown in Figure 11.

A = L1 Rl {| €1 |}
| LnBn {lenl}
I 1 {lei [}
| A{len |}
where, for j = 1,...,m, r; is not left-recursive and, for
1 =1,...,n, L; is left-recursive and R; is restricted to
denote a single nonterminal symbol or a sequence of
terminal symbols (i.e. R; € V — {A} or R; = w, where
we XT).

Figure 11: Left-recursive productions (required form)

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

B o= {lef}
[
Lo e [}
where (r{,¢€7),..., (r}, e}) = nlrg(8)

Figure 12: Handling indirect left-recursion

Figure 9 is modified only with respect to the pro-
ductions for B, which are shown in Figure 12 and are
given by function nlrg. nlrg(A) gives a list of pairs of
rhs and semantic rules, of productions of nonterminals
in first(A) for which the rhs is not left-recursive:

nirg(A) = nlrg(A,0)
nlra(A,S)=1if A€ Sthen € else sjosy0...8,
where 1y {|ex [} | - | o {l en [} = B(A)
o denotes sequence concatenation
for i = 1..n,
€ if r; = Br, for some B, r
st. BES
si=1< mnlrg(B,SUA) if r; =Br, for some B, r
s.t. BEZS,A€ first(B)
(ri,e;) otherwise

4 Monadic code

Two distinct approaches are provided for using
monadic code in semantic rules, explained in the next
subsections. The general approach can be used in
a wide range of situations and is the default process
adopted by Mimico. The strict parsing approach al-
lows semantic rules to use context-sensitive conditions
to control the parsing process. It is assumed upon the
use of a flag when starting Mimico.

4.1 General approach

The general approach constructs a chain of user de-
fined monadic semantic rules, with the monadic bind
operator. The monadic code is not executed immedi-
ately after a successful parse of the corresponding pro-
duction; it is returned, instead, as the overall parser
result.

The usual substitutions and adaptations in the se-
mantic rule are performed, to allow references in the
monadic semantic rule to the production right hand
side.

Module = DecL ExpL {Il O |}
Decl. = Dec DecL {1 O I}
| Dec
Dec = id : type [l id ’hasType’ type []
ExpL = Exp ExpL {I O 1}
| Exp
Exp = id = value [I

type0f value >>= \tvalue ->

type0Of ident >>= \tident ->

if tvalue ’isCompatibleWith’ tident
then ident ’hasValue’ value
else error "Wrong type" |]

Figure 13: Grammar sketch for ‘define-before-use’

It is possible for some semantic rules to be monadic
and others not. To properly sequence monadic actions,
every non-monadic action that has a non-terminal
with a monadic semantic rule in its rhs is promoted
to monadic. For example, consider Figure 13, where
part of a tiny imperative language is defined, where an
identifier must be declared before used. Definitions of
ident, value, type and expressions other than assign-
ment are omitted for brevity.

A semantic rule between ‘[|" and ‘|]’ is assumed to
contain monadic code. Semantic rules of productions
depending on productions having monadic rules must
be promoted to monadic ones. This imposes a slight
overhead in Mimico’s generated parsers, because only
the directly or indirectly dependent semantic rules
have to be handled as monadic.

The implementation of the general approach divides
nonterminals in two groups, called monadic and non-
monadic. The monadic group M is defined inductively
by the subset of nonterminals whose productions have
a monadic semantic rule, or nonterminals which have
a rhs in which there is a nonterminal in M. The non-
monadic group is M’s complement. For example, in
the grammar of Figure 13, the monadic group contains
the nonterminals in {Decl, Exp, DeclL, Module, ExpL}.

The generated parser is shown in Figure 14.

In the general approach, the introduction of a
monadic semantic rule in a production for A changes
the code of parsers generated for other nonterminals if
and only if they have a production whose rhs uses A.
Thus, the generated program does not change due to
the introduction of a few “localized” monadic seman-
tic rules. Also, the monad defined by the user is com-

35

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

pletely independent from Mimico’s monad. Mimico
needs to know only the bind and return operators of
the user monad. The definitions of these operators can
be supplied in the input grammar by a special direc-
tive. If no such directive is defined, the user monad
is assumed to be an instance of the Monad class, and
>>=and return are used. Finally, this approach works
well in the presence of nondeterminism. Since monadic
actions are only performed at the end of the parsing
process, backtracking does not cause any problem or
inconsistency in the state of the user’s monad, even if
the semantic rules specify 10 operations.

compile = apply module

module =
do mdecL_1 <- decL
mexpL_1 <- expL
return (mdecL_1 >>= \dec_1 ->
mexpL_1 >>= \expL.1 ->
return ())

decl. =
do mdec_1 <- dec
mdecL_1 <- decL
return (mdec_1 >>= \dec_l ->
mdecL_1 >>= \decL.1 ->
return ())
<|> decL1

decLl =
do mdec 1 <- dec
return (mdec_1 >>= \dec_l ->
return ())

dec =
do ident_1 <- ident
token ":"
type-1 <- type
return (ident_1 ’hasType’ type-1)
expL = .

... further code omitted for brevity ...

4.2 Strict parsing approach

The strict parsing approach allows the use of
monadic semantic rules to control the parsing process,
allowing context-sensitive conditions to be checked
during parsing.

The fail primitive can be used in semantic rules
to stop parsing for the current alternative and start
parsing of the next alternative, if it exists, otherwise
causing failure.

Consider for example the distinction between func-
tion calls and array references in Fortran, which can
both be denoted by an identifier followed by arguments
between left and right parentheses. The grammar frag-
ment shown in Figure 15 illustrates Mimico’s way of
handling context-sensitivity.

Exp = Array (ExpL) {I ...I}

| Func (ExpL) {l| ...I}

Array = ident [| isArray ident >>= \is ->
unless is fail >>
return ident |]

Func = ident [| isFunc ident >>= \is ->

unless is fail >>
return ident |]

Figure 14: Compiler for tiny language

As a drawback, semantic rules cannot be used to
control the parsing process (cf. e.g. [13, 12]). This is
enabled by the strict parsing approach described in
the following section.

36

Figure 15: Grammar fragment for function calls and array
references in Fortran

This grammar fragment is translated to the pro-
gram fragment shown in Figure 16.

In the strict parsing approach, grammars must be
written carefully in order to avoid inconsistencies, due
to the incompatibility of strict with nondeterminis-
tic parsing. As an example, a parser using 10 opera-
tions could produce a strange output in the presence
of backtracking.

To provide isolation from Mimico’s internal state,
the user monadic actions must be defined by means
of the predefined set of operations read, write, and
trans, used to read, write and transform the user de-
fined state, respectively.

The definition used in Mimico is customized accord-
ing to the definitions of bind and return provided by
the user. As explained before, Mimico does not require
the user state transformer to be an instance of class
Monad; it only requires an explicit indication of which
functions must be used as bind and return functions
in the generated code.

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

exp = do array.l <- array
token ’(?
expL_1 <- expL
token ’)°
return (...)

<|> expl

expl = do func.1l <- func
token ’(?
expL_1 <- expL
token ’)°
return (...)

array = do ident_1 <- ident
(isArray ident. 1 >>=
\is-> unless is fail >>
return ident_1)

fanddent_1 <- ident
(isFunc ident_1 >>=
\is-> unless is fail >>
return ident_1)

form as input. Informally, the left-recursive alterna-
tives must have, between a left-recursive nonterminal
and another nonterminal, a single terminal or nonter-
minal — the latter required to consist of alternatives
consisting of a single terminal. Formally, left-recursive
productions in this section are required to have the
form shown in Figure 17.

A = Liop; A& {le |}

| Lnop,An {lenl}

I T {lei [}

| Tm {lem [}
where, for i = 1,...,n, L; is left-recursive, op, € £* or
op; =ra{lea |} | --- | rip, {l€ip; |} € P, wherer;; €

Y, forall j=1,...,p;, A; € Vand, for j=1,...,m,
r; is not left-recursive.

Figure 16: Strict parsing and the use of context sensitive
conditions for parsing control

5 Precedence and Associativity

This section considers Mimico’s handling of binary
infix operators. Consider, for example, the archetyp-
ical left-recursive grammar for arithmetic expressions
shown below (we consider only operators +, - and *,
for brevity).

~B 0o © @
*
o

n is the name of a parser defined in Parser. It
parses an integer numeral lexeme, returning the cor-
responding value. Note the abscence of semantic rules
(as already mentioned, when a semantic rule is not
explicitly specified, Mimico considers the production’s
rhs as the semantic rule).

This input grammar is not in the form required by
the left-recursion elimination scheme of the previous
section. However, Mimico will accept grammars in this

Figure 17: Required form of left-recursive productions
with binary infix operators

Given the simplified grammar for arithmetic expres-
sions above, Mimico generates as output the expres-
sion evaluator shown in Figure 18. We will look at
this program shortly; before doing so, let us examine
a simpler expression evaluator program, generated for
the following similar input:

—_ — — — 1
/\33.

0]

*

The dots inserted in this grammar specification in-
dicate right-associativity of binary operators. This
grammar specifies also, according to the Pastor rule,
that + has the lowest precedence, then - and finally *.
The program generated is shown in Figure 19. Parser
token is such that token p applies parser p and then
just removes trailing spaces; zerop is a parser that
fails on any input.

The little compilers e and el to e4 correspond to
alternative productions of nonterminal e. Compilers
e, el and e2 are parameterized, to control operator
precedence. The parameter denotes a list of termi-
nals that should not be parsed successfully, because

37

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

they should be parsed using a parser of lower prece-
dence level. Right-associativity follows: a parameter-
ized parser performs the longest possible parsing of the
input not containing a string that is a member of the
list of strings specified as arguments for this parser.

For example, parsers generated in the program
of Figure 19 consider the binary infix operators of
the input grammar as right-associative; the result of
compile "2 - 3 - 4" for example, is 3, since the pa-
rameter in the call to €2 in the body of el contains
"-" " and the longest possible parsing of e2 not con-
taining "-" is 2. Symbol "-" is then consumed after
this parsing of €2, and e parses the rest of the input.

Left-associativity, the default, is based on a simple
extension of this scheme, based on left factoring. This
is illustrated by the program shown in Figure 18. The
first operand of a binary infix operator is simply saved
until the second operand is obtained by using again
the parameterization scheme.

It is possible to “override” the Pastor rule and spec-
ify that infix operators should have the same prece-
dence. In this case, their associativity is the same as
that of the symbol(s) with which they have the same
precedence. For example:

e=e+e e=. e+e
|=e - e |=e - e
| e x e |. e *x e
[n | n

I Ce) | (e)

Symbol |=means “same precedence, with respect to
the operator in the previous alternative”. The gram-
mars on the left and right specify left and right asso-
ciativity, respectively.

The programs generated in these cases (omitted for
space reasons) differ only slightly from the correspond-
ing ones above (for left and right associativity, respec-
tively). Compilers for alternatives with same prece-
dence are coalesced into a single one, and the argu-
ments passed to compilers for the next alternative are
the union of the current list with the list of terminals
with same precedence. Similar programs are generated
if a nonterminal is used in the place of infix operators.

38

‘ Journal - Edig4o 3 - 29 a 42 - A4 - Camardo.pm@8

e s = do el <- token $§ el(["+"] ‘union‘ s)
op <- if "+" ‘elem‘ s then zerop
else do {symb "+"; return (+)}
restl s e_1l op
<|> el s

rest s el op0 =

do e2 <- token $ el(["+"] ‘union‘ s)

op <- if "+" ‘elem‘ s then zerop
else do {symb "+"; return (+)}

let opnd = op0 e_1 e 2
rest s opnd op

<|> do e2 <- token $ e s

return (op0 el e 2)

el s = do e_1 <- token $ e2(["-"] ‘union‘ s)

op <- if "-" ‘elem‘ s then zerop
else do {symb "-"; return (-)}
restl s e_1l op
<[> e2 s

restl s e_1 op0 =

do e 2 <- token $ e3(["-"] ‘union‘ s)

op <- if "-" ‘elem‘ s then zerop
else do {symb "-"; return (-)}

let opnd = op0 el e 2
restl s opnd op

<|> do e 2 <- token $ e s

return (op0 el e2)

e2 s = do e_1 <- token $ e3
if"x" ‘elem‘ s then zerop
else string "x*"
e 2 <- token $ e s
return (el * e 2)

<|> e3
e3 = do n_1 <- token (some (sat isDigit))
return (read n_1)
<|> e4
e4 = do string "("

el <- token $ e []
string ")"
return e_1

Figure 18: Left factoring for left associativity

$ 08/03/04, 20:44

| NN T 1]

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

[T T 11 ||

Mimico: A Monadic Combinator
Parser Generator

compile = apply (el[l)

e s = do el <- token $ el (["+"] ‘union® s)
if "+" ‘elem‘ s then zerop
else symb "+"
e 2 <- token $ e s
return (e.l + e 2)
<[> el s

el s = do e_1 <- token $ e2(["-"] ‘union‘ s)
if "-" ‘elem‘ s then zerop
else symb "-"
e 2 <- token $ e s
return (el - e 2)
<|> e2 s

e3 s = do e_1 <- token $ e3
if "x" ‘elem‘ s then zerop
else string "x"
e 2 <- token $ e s
return (e_l *x e2)
<|> e3

e3 = do n_1 <- token (some (sat isDigit))
return (read n 1)
<[> e4

e4 = do string "("
e_l <- token $ e []
string ")"
return e_1

Figure 19: Program for expression grammar with right
associative binary infix operatorsx

6 Conclusion

We have described an approach to parser genera-
tion based on monadic combinators. A prototype is

available at the URL

http://www.dcc.ufmg.br/ " camarao/mimico

Work is going on in order to make the implementa-
tion more robust and user-friendly.

As far as we know, this is the first compiler genera-
tor based on monadic parsing. We have presented the
general principle (the Pastor rule) and the ideas on
which this work has been based: the scheme for sup-
porting left-recursive input grammars, parameteriza-
tion of compilers as a way of handling operator prece-

dence and associativity, and the use of nondeterminis-
tic parsing to allow as input grammars that are neither
LL(k) nor LR(k), for any k.

Among noticeable characteristics of Mimico are the
clarity and readability of Mimico’s input grammars
and output programs and the fact that Mimico can
handle input grammars that are neither LL(k) nor
LR(k), for any k. For example, the simple gram-
mar of palindromes presented in the introduction of
this article would not be accepted by Yacc or Happy.
The cost of this is, of course, efficiency, but that is re-
lated to Mimico’s foundational work, monadic parsing,
and in particular nondeterministic monadic parsing.
Mimico’s efficiency and further development depends
thus on the efficiency and development of monadic
parsing itself (see e.g. [14]).

Despite the readability of hand-written code of
translators based on monadic parsing (in comparison
to code produced by using other parsing techniques),
the input for Mimico is significantly more readable,
as can be seen by comparing Mimico’s inputs with
monadic parsers shown in this paper. Due to the read-
ability of its input grammars, we expect Mimico to
serve also as a useful tool for teaching formal specifica-
tion of programming language syntax and semantics.

A lot of work has been done on the subject of com-
piler generators (see, for example, [10, 8, 11, 5]). We
have not yet done performance comparisons with other
compiler generators, like for example Yacc [10] and
Happy [5], and discussions concerning the efficiency
of generated compilers are left for further work (see
e.g. [14, 9, 4] for discussions concerning the efficiency
of monadic parsers and lexers). Our motivation up to
now has centered on showing that it is possible and
worthwhile to generate simple and readable monadic
compilers automatically, from a still more readable
and simple input grammar.

In the current implementation, if the input to
Mimico or the input to the program generated by
Mimico is syntactically wrong, the program simply
halts, issuing a simple error message. A lot of work has
to be done in order that parsers generated by Mimico
provide good error reporting and recovery, which are
fundamental tasks of a parser.

Further work includes the support of: i) concurrent
parsing, with synchronization for termination of the
concurrently initiated parsers when appropriate, ii)
use of monadic code in the middle of productions, for
passing information collected during parsing, through
nonterminals, and iii) user controlled “local pruning”,
i.e. the option to control and avoid parser backtrack-

ing.

39

Carlos Camarao,
Lucilia Figueiredo and Hermann Rodrigues

Mimico: A Monadic Combinator
Parser Generator

References

[1] Ravi Sethi Alfred V. Aho and Jeffrey D. Ull-
man. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.

[2] Richard Bird. Introduction to Functional Program-
ming using Haskell. Prentice-Hall, 1998. 2nd ed.

[3] Carlos Camardo and Lucilia Figueiredo. A
Monadic Combinator Compiler Compiler. In Proc.
SBLP’2001 (V Brazilian Symposium on Program-
ming Languages), pages 64-79, 2001.

[4] M.T. Chakravarty. Lazy Lexing is Fast. In
Fourth Fuji International Symposium on Func-
tional and Logic Programming (LNCS 1722,
Springer-Verlag), 1999.

[5] Andy Gill and Simon Marlow. Happy: The Parser
Generator for Haskell. http://haskell.org/happy/,
2000.

[6] Graham Hutton. Higher-order functions for pars-
ing. Journal of Functional Programming, 2:232—
343, 1992.

[7] Graham Hutton and Erik Meijer. Monadic parser
combinators. Tech. rep. NOTTCS-TR-96-4, 1996.

[8] P. Lee. Realistic Compiler Generation. MIT Press,
1989.

[9] Daan Leijen. Parsec.
http://www.cs.ruu.nl/~daan/parsec.html.

[10] John R. Levine, Tony Mason, and Doug Brown.
Lex & Yace. O'Reilly & Associates, 1992.

[11] Alexandre Macedo and Hermano Moura. Inves-
tigating Compiler Generation Systems. In Proc.
SBLP’2000 (IV Brazilian Symposium on Program-
ming Languages), pages 259266, 2000.

[12] Terence Parr and Russell Quong. Adding seman-
tic and syntactic predicates to ll(k): pred-ll(k).
In Proceeding of the International Conference on
Compiler Construction, 1994.

[13] Terence Parr and Russell Quong. Antlr: A
predictive-1l(k) parser generator. Software —
Practice and Ezperience, 25(7):789-810, 1995.

[14] S.D. Swierstra. Parser Combinators, from Toys
to Tools. In ACM SIGPLAN Haskell Workshop,
pages 113-128, 2000.

40

[15] Simon Thompson. Haskell: The Craft of Func-
tional Programming. Addison-Wesley, 1999. sec-
ond edition.

[16] Philip Wadler. How to replace a failure with a
list of successes. In Functional Programming Lan-
guages and Architecture, LNCS 201, pages 113-
128, 1985.

[17] Philip Wadler. Comprehending Monads. Mathe-
matical Structures in Computer Science, 2(4):461-
493, 1990.

[18] Philip Wadler. Monads for Functional Program-
ming. Computer and Systems Sciences, 118, 1992.

