
57

Engineering Multi-Agent
Systems with Aspects and Patterns

Alessandro Garcia1 Viviane Silva1 Christina Chavez1,2 Carlos Lucena1

1Depto. de Informática, Grupo SoC+Agents,
TecComm/LES, PUC-Rio
Rua Marquês de São Vicente, 225 – 22451-900
Rio de Janeiro, RJ, Brazil

2Depto. de Ciência da Computação,
UFBA
Av. Ademar de Barros, s/n – 40170-110
Salvador, BA, Brazil

e-mail: {afgarcia, viviane, flach, lucena}@inf.puc-rio.br

Abstract Objects and agents are software engineering abstractions that have many common concerns.
However, agents are more complex entities since they encompass additional concerns: their state is
driven by beliefs, goals, capabilities and plans, and their behavior is composed of a number of
agency properties such as autonomy, adaptation, interaction, learning, mobility, and collaboration. A
multi-agent system usually incorporates multiple objects and types of agents, with each agent type
addressing distinct agency concerns. These agency concerns typically overlap and interact with each
other, and so a disciplined scheme for composition is required. In this context, this paper presents
and compares an aspect-based proposal with a new pattern-based proposal for building multi-agent
software. Both proposals have the following goals: (i) minimize the misalignments between high-level
agent models and object-oriented designs, (ii) promote the separation of agency concerns, (iii)
provide explicit support for disciplined composition of agency concerns in complex software agents,
(iv) incorporate flexible facilities to build different types of software agents, and (v) allow the
production of multi-agent software systems that are easy to understand, maintain and reuse. We
demonstrate the applicability of the two proposals through the Portalware system, a Web-based
environment for the development of e-commerce portals.

Keywords: Multi-agent systems, object-oriented systems, software engineering, design patterns,
aspect-oriented development.

mailto:Joao.Araujo@di.fct.unl.pt

Engineering Multi-agent Alessandro Garcia, Viviane Silva
Systems with Aspects and Patterns Christina Chavez, Carlos Lucena

58

1 Introduction

The advances in networking technology have
revitalized the investigation of the agent notion as an
additional abstraction to engineer complex software
systems. A multi-agent system (MAS) comprises
multiple agents and objects, which are distinct
abstractions used to model different entities from the
problem domain. Agents are tailored to represent active
entities that manipulate objects, which are commonly
applied to reflect passive entities in the software system.
In this context, MAS development is composed of two
major phases: (i) the specification phase; and (ii) the
development phase (i.e., design and implementation). The
specification phase is concerned with finding out and
documenting the agents and objects making up the
system and their relationships. The objective is to
produce an abstract description of the software system,
which is a basis for detailed design and implementation.
Software engineers apply high-level models and
methodologies to identify objects, agents and their
relationships. Nowadays, there are a number of modeling
languages and methodologies for MAS development [9,
18, 31]. The result of this phase is expressed in a set of

high-level agent and object models (Figure 1).

Figure 1: The Phases of MAS Development

The development phase focuses on transforming
those high-level models into detailed design and
implementation. Since object-orientation is the
mainstream development paradigm, it is necessary to
transform the agent models produced in the specification
phase into object-orientated design models (development
phase) for further implementation. However, it is not a
trivial task due to the conceptual differences between
agents and objects. Although objects and agents have

common concerns [5, 28], agents are inherently more
complex and consequently encompass additional
concerns: their state is driven by beliefs, goals,
capabilities and plans and their behavior is composed of a
number of properties such as autonomy, adaptation,
interaction, learning, mobility and collaboration. These
agency concerns are not orthogonal. They present
complex relationships since naturally overlap and interact
with each other. Given such conceptual gaps between
agents and objects, the major challenge in this phase is
the mapping of the agent models into object-oriented
design models. Software engineers should use principled
methods to minimize misalignments between the high-
level agent models and the detailed designs. Ideally such
methods should explore separation of concerns
techniques to encapsulate the agency concerns identified
in the specification phase, leading to the production of
MASs that are easier to understand, maintain and reuse.

In this context, the goal of this paper is threefold: (i)
to present a method for MAS development that explores
the benefits of aspect-oriented development (AOD) [12,
14, 15]; (ii) to propose a pattern-based method for MAS
development; and (iii) to compare these methods by
assessing their relative advantages and disadvantages in
terms of MAS understandability, reusability, and
maintainability. The central aim of both methods is to
achieve improved separation of agency concerns in order
to minimize misalignments with the specification phase.
Both methods are independent from specific
programming environments and languages. However, the
first method [22, 30] uses aspects to capture the agency
concerns identified in the high-level agent models and
master the complexity of integrating agents into the
object-oriented designs. Thus, each agent is represented
by a single object and a set of aspects that modularize its
overlapping and interactive concerns. The composition of
the agency concerns is performed by means of a weaving
process. On the other hand, the pattern-based method
achieves improved separation of agency concerns using
well-known design patterns that provide guidelines for
the appropriate use of object-orientation mechanisms in
the context of MAS development. In our comparative
study, we present some results gathered when applying
the two proposed methods to the MAS Portalware [11], a
Web-based environment for the development of e-
commerce portals. We have concluded that the
composition mechanisms of AOD provides improved
support for dealing with the complexity of agency
concerns and producing MAS, which is easier to
understand, maintain and reuse.

The remainder of this paper is organized as follows.
Section 2 gives a brief description of definitions of multi-

High-Level
Agent Models

Aspect-Oriented
Method

Pattern-Oriented
Method

SoC

High-Level
Object Models

11stst PhasePhase

22ndnd PhasePhase

Alessandro Garcia, Viviane Silva Engineering Multi-agent
Christina Chavez, Carlos Lucena Systems with Aspects and Patterns

59

agent systems. This section also introduces the example
that is used throughout this paper to illustrate our
approach. Section 3 offers an overview of software
engineering approaches for agent systems, and introduces
pattern-oriented development and aspect-oriented
development. Section 4 presents the aspect-based method
for designing MAS, and applies it to the Portalware
system. Section 5 presents the pattern-oriented method
and compares it with the aspect-based approach. Section
6 assesses the relative advantages and disadvantages of
applying both proposals. Section 7 discusses related
work. Finally, Section 8 presents some concluding
remarks.

2. Multi-Agent Systems

2.1. Software Agents and Agency Concerns
Software agents are often viewed as complex objects

with an attitude [6], in the sense of being objects with
additional agency concerns. A software agent is not
usually found completely alone, but often forming
organizations with other agents within a multi-agent
system (MAS). A MAS generally has several agent types
[25], such as information agents, user agents, and
interface agents. Each agent type typically includes
different agent concerns. We can classify the agency
concerns into three categories: (i) the agent state, (ii) the
agency properties, and (iii) the agent roles.

Agent State. In general, the state of an agent is
formalized by knowledge, and is expressed by mental
components such as beliefs, goals, plans and capabilities
[26, 28]. Beliefs model the external environment with
which an agent interacts. A goal may be realized through
different plans. A plan describes a strategy to achieve an
internal goal of the agent, and the selection of plans is
based on an the agent’s beliefs. In this way, the behavior

of agents is driven by the execution of their plans, which
select appropriate capabilities in order to achieve the
stated goals. Each plan is associated with pre-conditions
and post-conditions [9]. Pre-conditions list the beliefs that
should be held in order for the plan to be executed, while
post-conditions describe the effects of executing a
successful plan using an agent’s beliefs.

Agency Properties and Agenthood. The behavior of an
agent is composed of agency properties. Agency
properties are behavioral features that an agent can have
to achieve its goals. Table 1 summarizes the definitions
for the main agency properties. These definitions are
based on previous studies [20, 25, 26] and our experience
in developing multi-agent applications [11, 13, 27]. In
general, autonomy, interaction and adaptation are
considered to be fundamental properties of software
agents, while learning, mobility and collaboration are
neither a necessary or sufficient condition for agenthood
[26] (Figure 2). Interaction is the agency property that
implements the communication with the external
environment, i.e. the message reception and sending. An
agent has sensors to receive messages, and effectors to
send messages to the environment [20]. Since agents are
autonomous software entities, the agent itself starts its
control thread and decides whether to accept or reject
incoming messages (the autonomy property). If a
message is accepted, the agent may have to adapt its
state. The adaptation property consists of processing an
incoming message and defining which mental component
is to be modified: beliefs can be updated, new goals can
be set, and consequently plans can be selected. Software
agents may have alternative properties, such as: (i) the
learning property, i.e. extend or refine their knowledge
when interacting with their environment, (ii) the mobility
property, i.e. move themselves from one environment in a
network to another, and (iii) the collaboration property,
i.e. join a conversation channel with other agents.

AGENCY PROPERTY DEFINITION

Interaction An agent communicates with the environment and other agents by means of sensors and
effectors

Adaptation An agent adapts/modifies its mental state according to messages received from the
environment

Autonomy An agent is capable of acting without direct external intervention; it has its own control
thread and can accept or refuse a request message

Learning An agent can learn based on previous experience while reacting and interacting with its
environment

Mobility An agent is able to transport itself from one environment in a network to another

Collaboration An agent can cooperate with other agents in order to achieve its goals and the system’s
goals

Table 1: An Overview of Agency Properties

Engineering Multi-agent Alessandro Garcia, Viviane Silva
Systems with Aspects and Patterns Christina Chavez, Carlos Lucena

60

Figure 2: A Definition for Agenthood

Roles. A collaborative agent plays roles to collaborate
with other agents. Roles are application-dependent and
specific for each context. So, since software agents can
collaborate while pursuing their goals in different
situations, a collaborative agent includes different roles in
order to work together in multiple contexts. In order to
perform a collaboration, a plan is instantiated, and it
chooses the eligible roles.

Interacting and Overlapping Properties. By the very
nature of agency properties, these properties are not
orthogonal – they interact with each other (Figure 2). For
instance, adaptation depends on autonomy since it is
necessary to adapt the agent’s state (beliefs and goals)
and behavior when the autonomy property decides to
accept an incoming message. In addition, two agency
properties overlap: interaction and collaboration.
Collaboration is viewed as a more sophisticated kind of
interaction, since the former comprises communication
and coordination. Interaction only is concerned with
communication, i.e. sending and receiving messages.
During a collaboration, messages also are received from
and sent to the participating agents. However, the
collaboration property additionally defines how to
collaborate, i.e. it addresses the coordination protocols. A
simple coordination protocol consists of synchronizing
the agent that is waiting for a response.

2.2. Portalware: A Case Study

 Figure 3 illustrates the software agents in Portalware
[11], a Web-based environment for the construction and
management of e-commerce portals. Portalware
encompasses three agent types: (i) interface agents, (ii)
information agents, and (iii) user agents. Each of them
implements the fundamental aspects defined by
agenthood, but additionally includes specific agency
concerns. Figure 3 summarizes capabilities and agency
properties for Portalware agents. For the sake of brevity,
we discuss in detail only Portalware's information agents.
For a more detailed discussion about this example the
reader can refer to [15]. Portalware users often need to
search for information, which is stored in two different
databases. Each information agent is attached to a
database, and contains plans for searching for
information. The search plan determines the agent’s
searching capability. An information agent can
collaborate with another information agent when it is not
able to find the information in the attached database. The
agent plays the caller role in order to call the other
information agent and ask for this information. Similarly,
the latter performs the answerer role so that it can receive
the request and send the search result back. Notice that
both of them may include the caller and answerer roles
since they can perform these different roles in distinct
situations.

Overlapping Features
Relationship between Properties
Alternative Features
Agenthood

Autonomy

Collaboration

Adaptation

LearningMobility

Interaction

Beliefs

Goals

Plans

Capabilities

Roles
LEGEND:

Agency Properties

Alessandro Garcia, Viviane Silva Engineering Multi-agent
Christina Chavez, Carlos Lucena Systems with Aspects and Patterns

3 Software Engineering for MA
The inherent complexity in the organiz

introduction of software agents into obje
designs requires the use of principled
engineering methods. Modularity and sep
concerns are two well-established principles i
engineering, which use high-level abstraction
complexity by decomposing a software sy
modules and concerns, respectively [30]. The i
of these principles increases as new techno
introduced and software applications such as m
applications, become more complex.

Types of Software Decomposition. From the
of modular decomposition, complex problem
divided into smaller abstractions (modules), su
functions, objects, and agents. The common
these abstractions is that the decomposed
disjoint [24]. From the viewpoint of
decomposition, complex problems can be di
different abstractions, such as aspects [21] an
[18]. What distinguishes this concern deco
from the module decomposition is the fac
decomposed parts are not disjointed. In
decomposition, any entity from the proble
appears in only one of the pieces after decom
no entity appears in more than one piece. By c
entity may appear in any number of concerns [
modules are used to encapsulate concerns

• monitoring
• memorizing

• searching • performing time-
consuming collaborations

Autonomy

Interaction

Adaptation

Learning

Environment

Interaction

Adaptation

Collaboration

Sensors
Effectors

InteractionS

Autonomy

Caller

Answerer Adaptation

Autonomy
Collaboration

Editor

Reviewer

Content Supplier

INTERFACEINTERFACE
AGENTSAGENTS

INFORMATIONINFORMATION
AGENTSAGENTS USERUSER

AGENTSAGENTS

LEGEND:

behavioral property
role

S state
capability

S
S

Figure 3: Portalware Agents
61

S
ation and
ct-oriented

software
aration of
n software
s to hide
stem into
mportance
logies are
ulti-agent

 viewpoint
s can be

ch as data,
feature of
parts are

 concern
vided into
d subjects
mposition

t that the
 modular
m domain
position –
ontrast, an
24]. While
 into the

software system, nevertheless some concerns naturally
cut across different application modules; such concerns
are termed crosscutting concerns. As a consequence,
modular decomposition and concern decomposition are
complementary software engineering principles since
module decomposition is not enough to encapsulate every
relevant concern in a given software system.

Decomposition Approaches for MAS. We can classify
current software engineering approaches for MAS
development into two categories: (i) agent-based
software engineering; and (ii) object-oriented software
engineering for agent systems (see [15] for details). Both
approaches concentrate on modular decomposition;
however, the first approach proposes agents as the central
unit of modular decomposition, and the second one
realizes objects as the decomposition unit. Our proposal
follows (ii) and additionally extends it with the
application of recent advances in separation of concerns
techniques (in particular, those provided by aspect-
oriented software development [8, 21, 30]), exploring the
benefits of both modular and concern decompositions to
deal with the complexity of integrating software agents in
the object model. To be able to evaluate our proposal
against others, we propose a pattern-based object-
oriented software engineering approach for agent
systems, that also follows (ii). In the remainder of this
section, we describe some characteristics of the selected
development techniques — that is, pattern-based
development and aspect-oriented development.

Engineering Multi-agent Alessandro Garcia, Viviane Silva
Systems with Aspects and Patterns Christina Chavez, Carlos Lucena

62

3.1. Pattern-Oriented Development
Design patterns are descriptions of communicating

objects and classes that are customized to solve a general
design problem in a particular context [10]. Each design
pattern describes a flexible and elegant solution to a
recurring object-oriented design problem. Design patterns
advocates reusability, flexibility and understandability in
object-oriented software development. Object-oriented
design patterns use the hierarchical modularity
mechanisms of the object paradigm to provide good

module decomposition, i.e. good object decomposition.
Nevertheless, while hierarchical modularity mechanisms
of an object-oriented paradigm are extremely useful and
patterns offer a wide range of flexible ways to combine
classes and objects, nevertheless they inherently are
unable to modularize all concerns of interest in software
engineering, mainly because some of them naturally cut
across modules. Our pattern-oriented method (Section 5)
shows how well known patterns can be used to design
MAS.

Figure 4: Mechanisms for Dealing with Crosscutting Aspects.

3.2. Aspect-Oriented Development
Aspect-oriented development (AOD) [8, 21] has

been proposed as a foundation for improving separation
of concerns in software construction. The central idea is
that while hierarchical modularity mechanisms of object-
oriented design and implementation languages are
extremely useful, they inherently are unable to
modularize all concerns of interest in complex systems.
Thus, the goal of AOD is to support the developer in
cleanly separating components (objects) and aspects
(concerns) from each other, by providing mechanisms
that make it possible to abstract and compose them to
produce the overall system. Aspects are defined as
system concerns that crosscut (i.e., cut across)
components in the design and implementation of a
system. Separating aspects (i.e. crosscutting concerns)
from components requires a mechanism for composing –
or weaving – them later. Central to the process of
composing aspects and components is the concept of join
points, the elements of the component language
semantics with which the aspect programs coordinate.
Join points are well-defined points in the dynamic
execution of the program (Figure 4). Examples of join
points are method calls, method executions, and field sets
and reads.

Aspects are modular units of crosscutting concerns
that are associated with one or more objects, comprised
of pointcuts, advices, and introduction. Pointcuts are

collections of join points. Advice is a special method-like
construct that can be attached to pointcuts. In this way,
pointcuts are used in the definition of advices. There are
different kinds of advices: (i) before advice runs
whenever a join point is reached and before the actual
computation proceeds; (ii) after advice runs after the
computation “under the join point” finishes, i.e. after the
method body has run, and just before control is returned
to the caller; (iii) around advice runs whenever a join
point is reached, and has explicit control whether the
computation under the join point is allowed to run at all.
Introduction is a construct that defines new declarations
of attributes and methods to the object to which the
aspect is attached. Weaver is the mechanism responsible
for composing the original base computation under a join
point to the computation defined by one or more advices
(Figure 4). AspectJ [22] is a practical aspect-oriented
extension to the Java programming language. Up to the
current version of AspectJ, almost all of the weaving
process is realized as a pre-processing step at compile-
time [22]. The next section presents our aspect-oriented
method for MAS development.

4 The Aspect-Oriented Method

In this section, our aspect-oriented method is
discussed in terms of: (i) agent state, (ii) agent types, (iii)
agency properties and agenthood, (iv) alternative agency

Object

dispatch
join point

ASPECTASPECT

attribute1
attribute2
method1()
method2()

advice1()
advice2()
advice3()

<<crosscuts>>

join point
introduction

advices
WEAVER WEAVER

Alessandro Garcia, Viviane Silva Engineering Multi-agent
Christina Chavez, Carlos Lucena Systems with Aspects and Patterns

63

properties, (v) roles, (vi) composition of agency
concerns, and (vii) agent evolution. We adopt UML
diagrams [4] as the modeling language throughout this
paper. The design notation for aspects is based on [8]:
aspects are represented as diamonds, the first part of an
aspect represents introductions, and the second one
represents pointcuts and their attached advices. Each
advice is declared as: adviceKind (pointcut):
adviceName, where adviceKind may be a before
advice, an after advice, or an around advice.

4.1. Agent State
In our method, classes represent agents as well as

their beliefs, goals and plans. The Agent class specifies
the core state and behavior of an agent (Figure 5), and
should be instantiated in order to create application’s
agents.

Figure 5: Agent State and Agent Types

Methods defined in the interface of the Agent class are
used to query and update its state and to implement an
agent’s capabilities. Application designers must subclass
the Belief, Goal and Plan classes to define beliefs, goals
and the kinds of plans of their agents according the
application requirements. The Plan class and its
subclasses also define methods to check pre-conditions
and set post-conditions (Section 2.1). A Goal object can
be decomposed in subgoals. A Goal may have more than
one associated Plan object.

4.2. Agent Types
Different types of agents are organized

hierarchically as subclasses that derive from the root
Agent class. The methods of these subclasses implement

the capabilities of each agent type. Figure 5 illustrates the
subclasses representing the different kinds of agents of
our case study (Section 2.2): the InterfaceAgent class,
the InformationAgent class, and the UserAgent class.
The InformationAgent class, for example, defines the
method search(Keyword), that provides the information
agent’s capability to search for information according to
a specified keyword.

4.3. Agency Properties and Agenthood
Aspects should be used to implement the agency

properties an agent incorporates. These aspects are
termed agency aspects. Each agency aspect is responsible
for providing the appropriate behavior for an agent’s
agency property. Figure 6 depicts the aspects, which

Agent
beliefList
goalList
planList

setBelief()
addGoal()
setGoal()
addPlan()
setPlan()

InterfaceAgent
receiveInstruction()
monitor()
memorize()

InformationAgent
search(Keyword)
search(KWList)

UserAgent
getUser()
checkPreference()

Capabilities

Belief

Plan

Goal

<< subgoals >>

<<pre/pos-conditions>>

<< achieves >>

checkPreConditions()
execute()
checkPosConditions()

Agent State

Engineering Multi-agent Alessandro Garcia, Viviane Silva
Systems with Aspects and Patterns Christina Chavez, Carlos Lucena

64

define essential agency properties for agenthood: (i)
interaction, (ii) adaptation, and (iii) autonomy. These
agency aspects affect both core states and behaviors of
agents (Section 2.1).

For example, when the Interaction aspect is
associated with the Agent class, it makes any Agent
instance interactive. In other words, the Interaction
aspect extends the Agent class’s behavior to send and
receive messages. This aspect updates messages and
senses changes in the environment by means of sensors
and effectors. The introduction part is used to add the
new functionality related to the interaction property. The
Sensor and Effector classes represent sensors and
effectors respectively, and cooperate with domain-
specific environment classes. When a message is received
by means of a sensor, the Interaction aspect needs to
update its inbox. So, the executions of the receiveMsg()
method are defined as a pointcut (Figure 6), and the

InboxUpdate() after advice is associated with this
pointcut. Similarly, the OutboxUpdate() after advice is
attached to the sendMsg() method in order to update the
agent outbox. Since the process of sending and receiving
messages is quite pervasive in multi-agent systems and
cuts across the agent’s basic capabilities, the
implementation of this process as an aspect is a design
decision that avoids code duplication and improves reuse.

The Autonomy aspect makes an Agent object
autonomous, it encapsulates and manages one or more
independent threads of control, implements the
acceptance or refusal of a capability request for acting
without direct external intervention (Section 2.1). For
example, the Decision() around advice implements the
decision-making process by invoking specified decision
plans when a message is received. This advice is attached
to a pointcut that represents a collection of executions of
the receiveMsg() method.

Figure 6: Agency Aspects and the Design for Agenthood.

The ProactiveAction() after advice implements the agent
ability to act without direct external intervention
(proactive behavior); for each method invocation where
the method name matches the expression set* (i.e., to
each state change), this advice checks if a new plan must
be started.

The Adaptation aspect makes an Agent object
adaptive, adapting an agent’s state (beliefs and goals) and
behavior (plans) according to message receptions. As a
consequence, this aspect crosscuts the Agent class and
the Interaction aspect so that it is possible to perform
state and behavior adaptations based on messages
received from the environment by means of the
receiveMsg() method. The Verification after advice

Agent
beliefList
goalList
planList

setBelief ()
addGoal()
setGoal()
addPlan()
setPlan()

INTERACTION

inbox
outbox
receiveMsg()
sendMsg()

after(receiveMsg): InboxUpdate()
after(sendMsg): OutboxUpdate()

<<crosscuts>>
<<crosscuts>> after(receiveMsg): Verification()

after(setGoal): PlanStart()
after(executePlan): AchievedGoal()

<<crosscuts>>

AUTONOMY

around(receiveMsg): Decision()
after(set*): ProactiveAction()

controlThreadList
startsControlThread()
howManyThreads()

Introduction
Part

Pointcuts & Advices
Part

adaptBelief()
adaptGoal()
adaptPlan()
suspendedPlanList

ADAPTATION

Sensor
senseMsg()

Effector
putMsg()

executePlan()

<<crosscuts>>

Alessandro Garcia, Viviane Silva Engineering Multi-agent
Christina Chavez, Carlos Lucena Systems with Aspects and Patterns

65

verifies if state change is needed and which state
component must be adapted. The AdaptBelief(),
AdaptGoal() and AdaptPlan() methods, defined in the
introduction part, are responsible for updating beliefs,
goals and plans, respectively. The Adaptation aspect also
implements the following behaviors: (i) adapts the agent
behavior by starting appropriate plans whenever new
goals are set (PlanStart() after advice); and (ii) adapts
the agent’s goal list by removing a goal when this goal is
achieved, i.e. when the execution of the corresponding
plan is finished successfully (AchievedGoal() after
advice).

4.4. Alternative Agency Properties
The agency concerns that are specific to each agent

type are associated with the corresponding subclasses
(Figure 7). Note that the different types of software
agents inherit the agency aspects attached to the Agent
superclass. As a consequence, the three agent types reuse
the agenthood features and only define their specific

capabilities and aspects. For example, the
InformationAgent and UserAgent classes are associated
with the Collaboration aspect, while the InterfaceAgent
class is attached to the Learning aspect. The
Collaboration aspect extends the Interaction aspect by
implementing the synchronization of the agents
participating in a collaboration (coordination protocol). It
locks the agent sending a message as well as unlocks it
when receiving the response. The Learning aspect
introduces the behavior responsible for processing a new
information when the agent state is updated.

4.5. Roles

Aspects are also used to implement the roles an agent
may eventually play whenever they need to collaborate.
These aspects are termed role aspects. Each role aspect
defines the agent’s activity within a particular
collaboration.

Figure 7: Alternative Agency Aspects.

Since an Agent object often needs to perform multiple
roles, different role aspects can be used and easily
associated with each object. As a result, role aspects
decouple multiple roles from the agent’s basic
capabilities, which in turn improves understandability,
evolution and reuse.

Figure 8 illustrates this situation for the information
agents of Portalware (Section 2.2). An information agent
needs to support the caller and answerer roles in order to
cooperate with other information agents in different
contexts. It must be able to receive or make calls. Thus,

the Caller and Answerer role aspects are attached to the
InformationAgent class. The Caller aspect introduces
the ability to send the search request to the answering
agent as well as the ability to receive the search result.
Similarly, the Answerer aspect introduces the ability to
receive the search request and to send the search result to
the caller agent. The startsCaller() after advice is
associated with executions of searching methods
(search(*)) and is responsible for sending the search
request when the agent itself is not able to find the
required information. This advice checks results of

Agent
beliefList
goalList
planList

setBelief()
addGoal()
setGoal()
addPlan()
setPlan()
executePlan()

InterfaceAgent
receiveInstruction()
monitor()
memorize()

InformationAgent
search(Keyword)
search(KWList)

UserAgent
getUser()
checkPreference()

LEARNING

after(set*):UpdatesKnowledge()

insertInformation()
removeInformation()
processInformation()

COLLABORATION

after(sendMsg):Lock()
after(receiveMsg):Unlock()

sharedObject
get()
put()
sendMsg()
receiveMsg()

Engineering Multi-agent Alessandro Garcia, Viviane Silva
Systems with Aspects and Patterns Christina Chavez, Carlos Lucena

66

searching methods so that the caller is activated whenever
the information is not found. Notice that these roles are

introduced in a way that is transparent and non-intrusive.

Figure 8: Agent Roles

4.6. Composition of Agency Concerns
Our approach establishes design rules that encompass

the non-orthogonality of agency properties (Section 2.1).
To capture the interaction among agency aspects, we
define an advice to each agency aspect at the same
pointcut. For example, the Autonomy aspect interacts
with the Interaction aspect in order to receive the
incoming message and decide if the message should be
accepted. The Adaptation aspect interacts with the
Autonomy aspect in order to adapt the agent state and
behavior when an incoming message is accepted. As a
consequence, these aspects implement different advices
for the same pointcut that comprises executions to the
receiveMsg() method.

We use inheritance to capture the overlapping nature
between the Interaction and the Collaboration aspects.
Collaboration includes the interaction behavior and
refines it to add the coordination protocol. So, the
Collaboration aspect is a subaspect of the Interaction
aspect.

4.7. Agent Evolution
The behavior of software agents can evolve

frequently to meet new application requirements.
Suppose information agents do not need to cooperate
with each other to find information. Instead, information
agents are required to transport themselves from one
environment in the network to another in order to achieve
the searching goal. As a consequence, they do not need to
play the caller and answerer roles, but are expected to be
mobile. In our model, this modification is performed
transparently, since agency aspects can be added to or
removed from classes in a plug-and-play way. As a first
step, the Caller and Answerer aspects are detached from

the InformationAgent class without requiring any
invasive adaptation for the other agent's components. The
original behavior of the agent is maintained. As a second
step, the Mobility aspect is associated to the
InformationAgent class, introducing the ability to roam
the network and gather information on the behalf of its
owner. This association process uses the executions of
searching methods (search(*)) as a pointcut.

At runtime, when the execution of a search()
method is finished, the weaver deviates the program
control flow to the Mobility aspect. The aspect evaluates
the search result and if the information has not be found,
this aspect is responsible for migrating the information
agent to another host in order to start a new search for the
required information.

5 The Pattern-Based Method

This Section presents our pattern-oriented method
for developing MAS. Design patterns offer solutions that
structure and discipline the representation of separated
agency concerns in terms of objects, ensuring that the
system can only change or evolve in specific, predictable
ways. In this section, we focus on the description of
agency properties and roles using design patterns, as well
as on issues regarding aspect composition and agent
evolution. Agent state as well as agent types follow the
same design decisions already presented in Sections 4.1
and 4.2.

5.1. Agency Properties and Agenthood

The Mediator design pattern [10] is used to model the
basic agency properties an agent incorporates and the

InformationAgent
search(Keyword)
search(KWList)

CALLER

sendSearchAsk()
receiveResult()

after(search*):StartsCaller() <<crosscuts>>

ANSWERER

receiveSearchAsk()
sendResult()

<<crosscuts>> after(search*):StartsAnswerer()

Alessandro Garcia, Viviane Silva Engineering Multi-agent
Christina Chavez, Carlos Lucena Systems with Aspects and Patterns

67

way they interact with Agent objects (Figure 9). The
intent of the Mediator design pattern is to define an object
(the mediator) that encapsulates how a set of objects (the
colleagues) interact. The Mediator pattern lets us vary
how and which objects interact with each other, in a
disciplined fashion. In our solution, the mediator
interface subsumes an agent’s core state and behavior as
well as the interaction protocol among agency properties.
Agency properties are encapsulated as classes and play
the role of colleagues in the pattern — i.e., they interact
but do not refer to each other directly, only through the
mediator. This pattern facilitates the addition of new
kinds of properties (by subclassing Property), provides
good separation of concerns (each property is properly
modularized and encapsulated in a class) and disciplines
property composition, since the interaction among
properties is localized in the mediator. Nevertheless the
pattern introduces object schizophrenia: a Portalware
agent is explicitly broken into four objects (one object for
the agent’s core and three objects for each of the basic
agency properties), each of which has its own object
identity. To create an agent, four objects must be
explicitly created and initialized, according to the pattern.
Furthermore, the interaction relationships among

properties are not explicit at the design level, only inside
method definitions. Notice that the names of advices used
in Figure 6, Section 4.3, are used for methods defined in
the interface of each property subclass. These methods
are explicitly called from methods defined in the Agent
class interface (more precisely, from methods with the
same name of the pointcut).

5.2. Alternative Agency Properties

Specific agency properties such as the ones described
in Section 4.4 also are represented as colleagues in the
Mediator pattern. New properties are added by
subclassing Property, although additional expressive
means are required at the structural view (constraints in
UML, for example) to assert that the reference to the
mediator (Agent class) will contain only the specific type
of agent (InformationAgent, UserAgent or InterfaceAgent
class) to which the new property should be associated.
Moreover, the addition or removal of a new property
requires invasive modification of the corresponding type
of agent, to add or remove a link to the new property.

Figure 9: Using the Mediator design pattern to model Agency Properties

receiveMsg()
sendMsg()
InboxUpdate()
OutboxUpdate()

inbox
outbox

Interaction

adaptBeliefs()
adaptGoal()
adaptPlan()
Verification()
PlanStart()
AchievedGoal()

suspendedPlanList

Adaptation

startsControlThread()
howManyThreads()
Decision()
ProactiveAction()

controlThreadList

Autonomy

theAgent: Agent

Property
senseMsg()

Sensor

putMsg()

Effector

theInteraction

theAdaptation
theAutonomy

theAgent

setBelief()
addGoal()
setGoal()
addPlan()
setPlan()
executePlan()
receiveMsg()
sendMsg()

beliefList
goalList
planList
theInteraction: Interaction
theAutonomy: Autonomy
theAdaptation: Adaptation

Agent

receiveMsg
 theInteraction.receiveMsg
 theAutonomy.Decision
 theAdaptation.Verification

Engineering Multi-agent Alessandro Garcia, Viviane Silva
Systems with Aspects and Patterns Christina Chavez, Carlos Lucena

68

Figure 10: Using the Role Object pattern to model Agent Roles

An alternative solution is the use of inheritance to
implement a new kind of mediator that incorporates the
new property (subclassing Agent, the mediator, to create
CollaborativeAgent, for example). Unfortunately, in
our case study, subclassing the mediator does not work
properly, since the Agent class already has subclasses
(the agent types).

5.3. Roles

As stated before, we want to isolate and encapsulate
each role an agent may play and to be able to compose
multiple roles with an agent’s core state and behavior
under the context of specific collaborations in such a way
that promotes easy and independent agent evolution
(addition and removal of roles). The Role Object design
pattern [2] is a suitable design choice since it lets us vary
how objects behave in a certain context, by allowing the

dynamic attachment and detachment of role objects from
the agent’s core state and behavior. The resulting object
aggregate represents one logical object, even though it
consists of several physically distinct objects. The Role
Object pattern avoids the combinatorial explosion of
classes, as it would result from using multiple inheritance
to compose the different roles in a single class [2].
Nevertheless, clients of the Agent class are likely to
become more complex, since working with an object
through one of its role interfaces implies slight coding
overhead compared to using the interface provided by the
Agent class interface itself. For example, caller and
answerer roles must be explicitly created and added to
information agent objects, and the client has to check
whether the object plays the desired role before explicitly
activating some capability introduced by it (Figure 10).

sendSearchAsk
receiveResult

receiveSearchAsk
sendResult

search(Keyword)
addRole(roleName: String)
getRole(roleName : String) : ...
hasRole(roleName : String)
removeRole(roleName : String)

CollaborativeInformationAgent

search(Keyword)
addRole(roleName: String)
getRole(roleName : String) : ...
hasRole(roleName : String)
removeRole(roleName : String)

InformationAgentCore

search(Keyword)
addRole(roleName: String)
getRole(roleName : String) : ...
hasRole(roleName : String)
removeRole(roleName : String)

InformationAgentRole
roles

core

AnswererCaller

search(Keyword)
 core.search(Keyword)

Alessandro Garcia, Viviane Silva Engineering Multi-agent
Christina Chavez, Carlos Lucena Systems with Aspects and Patterns

69

5.4. Composition of Agency Concerns

The need for capturing the interactive and overlapping
characteristics of the multiple agency aspects also is an
important issue in our pattern-based solution. The
interaction among agency properties is captured in the
methods that comprise the interface of the mediator
(Agent class). For example, the method receiveMsg()
defined in the Agent class serves as a means to describe
the protocol of agent’s message reception, involving the
Interaction, Autonomy and Adaptation properties. The
modification of this protocol, including the adaptation of
the precedence relationship among properties or the
inclusion of new properties, may require invasive change
to the original class, or some spurious use of inheritance
to refine the protocol behavior. We also use inheritance to
capture the overlapping nature between the Interaction
and the Collaboration properties. The Collaboration
class is defined as a subclass of Interaction.

5.5. Agent Evolution

In general, the use of design patterns requires
preplanning for suitable support for evolution without
invasive changes. As a consequence, many classes may
be created just to deal with this demand (the class
explosion problem). Nevertheless, some invasive changes
may still be necessary. For example, consider again the
scenario described in Section 4.7, where a collaborative
information agent is required to move across a network to
find some piece of information, instead of collaborating
with other agents. In our pattern-based solution, this
change requires at least the following actions: (i) the
removal of a link from the InformationAgent class to the
Collaboration property; (ii) the inclusion of the Mobility
property in the design (subclassing Property); (iii) the
definition of an association link from the
InformationAgent class to this new property; and (iv) the
modification of the code excerpt where an explicit call is
made to the method startsCaller, replacing it with
another explicit call to a method that starts the process of
mobility. Unfortunately, except for (ii), all these changes
are invasive.

6. Results and Discussion

The benefits of the proposed aspect-based method seem
to be very appealing regarding ease of construction,
evolution and reuse in multi-agent system development.
Nevertheless, a realistic and systematic assessment
should be conducted in order to validate the proposed
ideas and demonstrate their usefulness and benefits in
terms of some qualitative and quantitative criteria [1].

Hence, we have developed a comparative case study
to assess and evaluate the potential benefits and possible
problems of applying our aspect-oriented method and our
pattern-oriented method to the design and implementation
of Portalware. The main purpose of our case study then
is to characterize, evaluate and compare our proposed
methods built from the perspective of MAS developers in
a single project scope. The case study was structured into
three phases, performed by two different teams in parallel
(each team using one method), both regarding: (1) initial
system construction, (2) subsequent modification due to
new requirements (e.g., information agents become
mobile), and (3) reuse of existing features in new
contexts (e.g., the Collaboration aspect may be reused for
user agents). In phase 1, the two teams designed and
implemented object-oriented and aspect-based solutions
for Portalware. In phases 2 and 3, both teams evolved the
Portalware design, by modifying and reusing agency
properties and roles, according to the same requirements.
The measurement process considered qualitative and
quantitative criteria, regarding writability, readability,
maintainability and reusability as the main key qualities
for the designs at hand. The comparative case study led to
interesting results and insights concerning the overall
benefits and usefulness of our proposed aspect-based
method. Nevertheless, as a preliminary evaluation from
the collected results, we have noticed that:

The aspect-oriented method supports better
writability. The use of design patterns with its demand
on preplanning for change, requires the definition of
several classes and methods with only trivial structure
and behavior, e.g., abstract classes and explicit for-
warding of messages to other objects or methods. This
may lead to significant overhead for the software
developer in terms of writability and also decreased
understandability of the resulting code. With our aspect-
based approach we write less code and furthermore, we
are able (i) to isolate and encapsulate concerns more
appropriately, and (ii) to compose them with little effort.

The aspect-oriented method supports better reuse.
Design patterns have no first-class representation at the
implementation level. The implementation of a design
pattern, therefore, cannot be reused and, although its
design is reused, the software developer is forced to
implement the pattern many times. Unlike patterns,
recent AOD approaches provide first-class representation
at the implementation-level for design-level aspects and
crosscutting composition mechanisms, supporting reuse
both at the design and implementation levels. Moreover,
our aspect-based approach supports better reuse as a side
effect of AOP crosscutting mechanism, that defines
implicit behavior composition at well-defined join points.
For example, reusing the Collaboration property in the

Engineering Multi-agent Alessandro Garcia, Viviane Silva
Systems with Aspects and Patterns Christina Chavez, Carlos Lucena

70

context of user agents requires the association of the
Collaboration aspect to UserAgent class, depicting the
join points of interest, while in our pattern-based
approach, some additional modifications are required to
introduce the association as well as the explicit calls to
methods defined in the interface of the Collaboration
class.

The aspect-oriented method supports better evolution.
During the evolution phase, the introduction of the
Mobility property was much simpler in the aspect-based
design than in the pattern-based design with the use of
Mediator (Section 5.1). Furthermore, design for change,
as prescribed by design patterns, sometimes imposes a
not so simple structure to provide the required flexibility
for evolution. Last but not least, combining several
design patterns in the same project is not a trivial task.

The aspect-oriented method supports better
expressiveness. The aspect-based approach can be
extremely useful, especially on larger projects, to express
requirements, relationships or contracts involving agency
properties that need to be maintained, or at least kept in
mind. For example, the specification of the agent’s
expected behavior after message reception (receiveMsg)
remains explicitly documented at the structural view of
the design.

The aspect-oriented method supports better flexibility
to accommodate distinct definitions for agenthood.
Although we have presented a definition for agenthood
(Section 2.1) that tries to identify the common features of
software agents, this definition is not widely accepted and
varies from researcher to researcher. This variation
requires an agent model that is flexible enough to
encompass disciplined composition of aspects of agents.
Fortunately, our aspect-based approach can accommodate
distinct definitions since agency aspects can be easily
attached to and removed from the Agent class.

7 Comparison with Related Work

Some attempts to deal with agent complexity by
using the object model have been proposed in the
literature [19, 20]. Kendall et al [20] proposes the layered
agent architectural pattern, which separates different
layers of an agent, such as sensory layer, action layer and
so on. However, some aspects of agents, such as
autonomy, cut across the different layers of this approach.
We also believe that the evolution of this kind of design
is cumbersome since removing any of these layers is not
a trivial matter; it requires the reconfiguration of the
adjacent layers. The aforementioned work does not

present guidelines for evolving agent behavior in order to
accommodate new aspects of agents or remove existing
ones. In fact, modeling the agency properties of an agent
within the traditional object model is hard to do and
introduces substantial limitations. In contrast, our model
allows the addition or removal of aspects of agents
transparently (Section 4.7).

Moreover, in our experience on using design patterns
for the agent domain, we have detected a number of
problems: (i) class explosion, (ii) need for preplanning,
(iii) difficulty in the application and combination of
suitable design patterns, (iv) lack of expressive power,
and (v) object schizophrenia.

To implement an agent’s role aspects, we have
followed Kendall et al’s [19] guidelines for the
application of aspect-oriented programming to implement
role models. However, their work does not deal with
agents’ agency properties, which we believe are the main
source of agent complexity. Our proposal builds on
(enriches) their approach and presents a unified
framework for dealing with roles as well as agency
properties and their interrelationships.

Research in aspect-oriented software engineering has
concentrated on the implementation phase, although
some work has presented aspect-oriented design
solutions. To date, aspect-oriented programming has been
used mainly to implement generic aspects such as
persistence, error detection/handling, logging, tracing,
caching, and synchronization. However, these approaches
are generally concerned with only one of these generic
aspects. In this work, we provide an aspect-based design
model which: (i) handles both agency-specific aspects as
well as generic aspects (e.g. synchronization and
persistence); and (ii) encompasses a number of different
aspects and their relationships.

8 Conclusions

As the world moves rapidly toward the deployment
of geographically and organizationally diverse computing
systems, the technical difficulties associated with
distributed, heterogeneous computing applications are
becoming more apparent and placing new demands on
software structuring techniques. The notion of agents is
becoming increasingly popular in addressing these
difficulties. However, MAS development is not a trivial
task. This work discussed the problems in dealing with
agency concerns as well as presented two software
engineering methods to address these problems. The
success or otherwise of a structured method for MAS
development depends on its ability for (i) separating
agency concerns, and (ii) minimizing the conceptual gaps
between high-level agent models and object-oriented
designs.

Alessandro Garcia, Viviane Silva Engineering Multi-agent
Christina Chavez, Carlos Lucena Systems with Aspects and Patterns

71

First, we presented an aspect-oriented method for
MAS development. This method uses aspects to
encapsulate the agency concerns in the design phase and
minimize misalignments with the specification phase.
Second, we proposed a pattern-oriented method that
realizes a MAS as a set of design patterns. The use of this
method promotes objects as potentially reusable
components because they are independent encapsulations
of agency concerns. Since objects are associated with
agency concerns, there often is a clear mapping between
high-level agent models and their respective objects
identified in the subsequent phase, thus reducing potential
misalignments and producing likely reusable and
maintainable software systems. So we presented some
findings by comparing these methods. The goal of this
comparison was twofold: (i) to verify which method is
likely to produce MAS with a lower degree of
misalignments; and (ii) assess the quality of the produced
designs in terms of reusability, maintainability and
understandability. We have concluded that the
composition mechanisms of AOD provide improved
support for dealing with the complexity of agency
concerns and producing MAS which is easier to
understand, maintain and reuse.

Acknowledgments. This work has been partially
supported by CNPq under grant No. 141457/2000-7 for
Alessandro and grant No. 140646/2000-0 for Viviane,
and by FAPERJ under grant No. E-26/150.699/2002 for
Alessandro. Alessandro, Viviane, Christina and Carlos
also are supported by the PRONEX Project under grant
7697102900. We would also like to thank Arndt von Staa
for the good suggestions during this work.

References

1. V. Basili et al. Experimentation in Software Engineering.
IEEE Transactions on Software Engineering, SE-12(7),
July 1986.

2. D. Bäumer, et al. The Role Object. In Proc. of the 1997
Conference on Pattern Languages of Programs (PLoP
'97), 1997.

3. J. Bigus, J. Bigus. Constructing Intelligent Agents with
Java – A Programmer’s Guide to Smarter Applications.
Wiley, 1998.

4. G. Booch, J. Rumbaugh. Unified Modeling Language –
User Guide. Addison-Wesley, 1999.

5. J. Bradshaw et al. KaoS: Toward an Industrial-Strength
Generic Agent Architecture. In Software Agents, J.
Bradshaw (ed.), Cambridge, MA: AAAI/MIT Press,
1996.

6. J. Bradshaw. An Introduction to Software Agents. In
Software Agents, J. Bradshaw (ed.), American
Association for Artificial Intelligence/MIT Press, 1997.

7. D. Brugali, K. Sycara. A Model for Reusable Agent
Systems. In Implementing Application Frameworks –
Object-Oriented Frameworks at Work, M. Fayad et al.
(editors), John Wiley & Sons, 1999.

8. C. Chavez, C. Lucena. Design-level Support for Aspect-
oriented Software Development. In Proc. of the Workshop
on Advanced Separation of Concerns in Object-oriented
Systems at OOPSLA'2001, USA, 2001.

9. M. Elammari, W. Lalonde. An Agent-Oriented
Methodology: High-Level and Intermediate Models. In
Proc. of AOIS 1999, Heidelberg (Germany), June 1999.

10. E. Gamma et al. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

11. A. Garcia, M. Cortés, C. Lucena. A Web Environment for
the Development and Maintenance of E-Commerce
Portals Based on a Groupware Approach. In Proc. of the
2001 Information Resources Management Association
International Conference (IRMA 2001), Toronto, May
2001.

12. A. Garcia et al. An Aspect-Based Approach for
Developing Multi-Agent Object-Oriented Systems. In
Proc. of the XXI Brazilian Symposium on Software
Engineering, Rio de Janeiro, Brazil, October 2001, pp.
177-192.

13. A. Garcia et al. A Comparative Study of Exception
Handling Mechanisms for Building Dependable Object-
Oriented Software. Journal of Systems and Software,
Elsevier, 2(59): 197-222, November 2001.

14. A. Garcia, C. Lucena. An Aspect-Based Object-Oriented
Model for Multi-Agent Systems. In Proc. of the 2th
Advanced Separation of Concerns Workshop at ICSE’01,
Toronto, Canada, May 2001.

15. A. Garcia, C. Lucena, D. Cowan. Agents in Object-
Oriented Software Engineering. Software: Practice and
Experience, Elsevier, 2003. (Accepted to Appear).

16. A. Garcia, C. Rubira. A Unified Meta-Level Software
Architecture for Sequential and Concurrent Exception
Handling. The Computer Journal, 6(44):569-587 January
2002.

17. W. Harrison and J. Ossher. Subject-Oriented
Programming: A Critique of Pure Objects. In Proc. of
OOPSLA’93, ACM, pp. 411-428, 1993.

Engineering Multi-agent Alessandro Garcia, Viviane Silva
Systems with Aspects and Patterns Christina Chavez, Carlos Lucena

72

18. N. Jennings, K. Sycara, M. Wooldridge. A Roadmap of
Agent Research and Development. International Journal
of Autonomous Agents and Multi-Agent Systems 1(1) 7-
38, 1998.

19. E. Kendall. Agent Roles and Aspects. In Proc. of
Workshop on Aspect-Oriented Programming, ECOOP’98
, July 1998.

20. E. Kendall, P. Krishna, C. Pathak and C. Suresh. A
Framework for Agent Systems. In Implementing
Application Frameworks – Object-Oriented Frameworks
at Work, M. Fayad et al. (eds.), John Wiley & Sons, 1999.

21. G. Kiczales et al. Aspect-Oriented Programming. In Proc.
of ECOOP´97 Conference on Object-Oriented
Programming, LNCS, (1241), Springer-Verlag, Finland.,
June 1997.

22. G. Kiczales et al. An Overview of AspectJ. In Proc. of
ECOOP´01 Conference on Object-Oriented
Programming, Budapest, Hungary, 2001.

23. D. Lange, M. Oshima. Programming and Developing Java
Mobile Agents with Aglets. Addison-Wesley, 1998.

24. T. Nelson, D. Cowan, P. Alencar. A Model for Describing
Object-Oriented Systems from Multiple Perspectives.
Lecture Notes on Computer Science, (1783):237-248,
Springer-Verlag, 2000.

25. H. Nwana. Software Agents: An Overview. Knowledge
Engineering Review, 11(3):1-40, 1996.

26. Object Management Group – Agent Platform Special
Interest Group. Agent Technology – Green Paper. Version
1.0, September 2000.

27. P. Ripper, M. Fontoura, C. Lucena. V-Market: A
Framework for e-Commerce Agent Systems. World Wide
Web, Baltzer Science Publishers, 3(1), 2000.

28. Y. Shoham. Agent-Oriented Programming. Artificial
Intelligence, (60): 24-29, 1993.

29. SoC+Agents Group. Separation of Concerns and Multi-
Agent Systems. URL: www.teccomm.les.inf.puc-
rio.br/SoCAgents, 2001.

30. P. Tarr et al. N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In Proc. of the 21st International
Conference on Software Engineering (ICSE'99), May
1999.

31. M. Wooldridge, N. Jennings, D. Kinny. The Gaia
Methodology for Agent-Oriented Analysis and Design.
International Journal of Autonomous Agents and Multi-
Agent Systems, 3(3), 2000, pp. 285 – 312.

