Structuring Reflective Middleware using Meta-Information Management:
The Meta-ORB Approach and Prototypes

Fabio M. Costa and Bruno da Silva Santos
Instituto de Informatica
Universidade Federal de Goias
Cx. Postal 132, CEP 74001-970 - Goiania GO - BRAZIL
{fmc | brunosilva }@inf.ufg.br

Abstract

Reflection is now an established technique for achiev-
ing dynamic adaptability of middleware platforms. It pro-
vides a clean and comprehensive way to access the inter-
nals of a platform implementation, allowing its customi-
sation in order to achieve the best performance and ad-
equacy under given operation environments and user re-
quirements. In addition, the use of a runtime component
model for the design of the internal platform structure fa-
cilitates the identification of the elements to be adapted, a
all platform aspects are built in terms of components. The
major limitation of this approach, however, is related te th
multitude of aspects that make up a middleware platform,
together with the requirement of keeping platform consis-
tency after adaptations take place. This paper presents the
results of ongoing research contributing to reduce this lim
itation. The approach is based on the use of a common
meta-model, together with meta-information techniques to
provide a uniform way to specify and manipulate platform
configurations. Both platform configuration and runtime
adaptation are always specified using a small number of
building blocks defined in the meta-model. The paper also
describes the overall architecture of the Meta-ORB plat-
form, which demonstrates this approach, and presents its
two implementations: a proof-of-concept prototype writ-
ten in Python, and a Java-based implementation aimed at
supporting mobile devices. The results are also evaluated
from a quantitative perspective, according to the require-
ments of multimedia applications, one of the major areas
of application of reflective middleware.

Keywords: Reflective middleware, Meta-information
management, Dynamic reconfiguration.

*This work was partially supported by FUNAPE/UFG and CNPq.

43

1 Introduction

The Meta-ORB platform is one of the instantiations of
the Open-ORB reflective middleware architecture [1]. It
is based on an novel approach that seamlessly integrates,
through a common meta-modelling architecture, the reflec-
tive capabilities of the platform (used for dynamic adapta-
tion) and its flexible configuration features [4, 3]. Static
configuration is achieved through the use of a well defined
component model, which identifies the main constructs
available for building the platform. Using this model, cus-
tomised instances of the platform can be achieved as con-
figurations of interconnected components, each one fulfill-
ing a particular functionality of the middleware. Such con-
figurations are specified using the concepts and constructs
defined by the meta-model, such as components, interfaces
and bindings (explicit connections between components).
These same concepts are equally used to build the end-user
applications that run on top of the platform, thus achieving
a uniform programming model that spans both the infras-
tructure and the application levels.

Dynamic reconfiguration, on its turn, is achieved
through a reflective meta-level architecture, which presid
a meta-object protocol (MOP) for inspection and adapta-
tion of the structure and behaviour of the platform. In par-
ticular, the MOP allows the programmer to discover the
interfaces of the components and make dynamic calls to
the operations defined on those interfaces. Most impor-
tantly, however, is the MOP’s ability to provide a causally-
connected representation of the platform’s configuration.
This allows the meta-programmer to inspect the configura-
tion (in terms of a graph of components) and make changes
on it, such as by the addition, removal or replacement of
components.

The meta-model of the platform underlies all the above
functionality. It is present in the form of meta-informatio
which is distilled from the definitions (using a compo-
nent configuration language) of components, interfaces

and bindings. Such meta-information is made available
through a repository, which provides component and bind-
ing factories with the necessary information to create spe-
cific platform configurations. In addition, the reposi-
tory also feeds the reflective meta-objects with the meta-
information required to reify the internal configuration of
the platform, in the form of a graph of components inter-
connected through their interfaces and bindings. In this
way, both configuration and dynamic reconfiguration activ-
ities are based upon the same conceptual framework, free-
ing the developers from the burden of having to learn dif-
ferent terminology and concepts for each case.

This paper presents a detailed description of the Meta-
ORB approach, focusing on the foundational concepts and
their application in the context of a reflective middleware
architecture. The paper also describes the two existing im-
plementations of this architecture: a Python-based proof-
of-concept prototype, and a newer implementation based
on Java and aiming at mobile devices. The remaining of
the paper is structured as follows. Section 2 introduces the
basic concepts of reflection and meta-level architectases,
well as the concept of meta-information management and
its application in middleware. Section 3 describes the-base
level architecture of Meta-ORB, together with the major
elements of its meta-model, while section 4 presents the
meta-level architecture and the reflective facilities o th
platform. Both sections present useful examples of plat-
form configuration and dynamic reconfiguration in order
to illustrate the use of such facilities. Section 5 then de-
scribes the architecture and implementation of the two ex-
isting prototypes, followed by section 6, which presents a
performance evaluation of the Python-based prototype. Fi-
nally, section 7 discusses relevant related work, andsecti
8 presents some conclusions of this research.

2 Foundation
2.1 Reflection and meta-level architectures

The fundamentals of reflective computing systems were
introduced by B. C. Smith and can be summarised by his
reflection hypothesis [31], which argues that a system can
be made to manipulate representations of itself in the same
way as it manipulates representations of its applicatiocn do
main. Such a system is said to have a self-representation,
which can encompass both its state and behaviour. In ad-
dition, if there is a relationship of causal connection [22]
between the self-representation and the actual state and be
haviour of the system, meaning that changes in one have
corresponding effects in the other, the system is said to be
reflective. The self-representation can thus be used for in-
spection and adaptation of the system’s internals.

The architecture of a reflective system is usually struc-
tured in levels, thus the termeta-level architectuteThe
bottom level, known as base-level, deals with computation
about the domain of application, whereas the levels above
it, known as meta-levels, perform computation about the
system itself. More precisely, each meta-level is conagrne
with the representation and manipulation of the level be-
low it (which is its relative base-level), giving rise to the
notion of a reflective tower of meta-levels, as illustrated i
Figure 1. In principle, as with recursive procedures, this
tower can have an indefinite number of levels. In practice,
however, the use of techniques such as the lazy creation of
meta-levels (instantiating them on demand, upon a reifica-
tion operation) means that typically only a few levels are
actually present.

4 7
Meta—Meta-Level
- J
A
Reification Absorption
g v
Meta-Level
- J
A .
Reification | Absorption

E Base-Level]

Figure 1: Overall architecture of a reflective meta-level
system.

As shown in Figure 1, the act of a meta-level exposing
the internals of its (relative) base-level is knownrasi-
cation This corresponds to the establishment of an ex-
plicit representation of the base-level system and itg-inte
nal implementation in terms of programming entities that
can then be manipulated at runtime. Modifications to this
self-representation result in corresponding changeseo th
reified elements of the base-level, a process known as re-
flection or absorption. Given a particular base-level gntit
the set of meta-level entities reifying it is know as the en-
tity’s meta-space

2.1.1 Behavioural and structural reflection

The design of reflective systems usually follows a distinc-
tion between structural reflection and behavioural reflec-
tion, initially conceived in the context of programming
languages [14, 24]. Structural reflection is defined as the
ability of a language to provide a complete reification of
the program currently executing, together with the abstrac

data types that are part of the program. On the other hand,
behavioural reflection (also referred to as computatiasal r
flection [22]) is the ability of a language to provide a com-
plete representation of its own semantics, in terms of the
internal mechanisms of its runtime environment (such as
method scheduling and dispatching). Note that these two
styles of reflection are complementary to each other, with
many reflective architectures providing both.

2.1.2 Object-oriented reflection

A well-defined meta-level structure is an important ingre-
dient to facilitate the use of a reflective architecture, ttue
the multitude of aspects that may need to be handled. What
is needed is a meta-level that allows each of the concepts of
the system to be easily identified, in terms of discrete ele-
ments that can be handled separately from each other. The
object-oriented paradigm provides a clean way to struc-
ture the meta-level. In general, object-orientation afow
the partitioning of the reflection mechanisms and intedace
among multiple, distinct, meta-level entities [22]. Retyar
ing terminology, in object-oriented reflection, the et
that populate the meta-level are call@éta-objectswhile
those entities at the base-level are known as base-level ob-
jects. Thus, while the interfaces of base-level objects pro
vide an object protocol for access to the system'’s extgrnall
visible functionality, the interfaces of meta-objects\yide

a meta-object protoco{MOP) [18], which allows reflec-
tive access to the internal implementation of the system.
Importantly, the same object model should be employed at
both base- and meta-level, meaning that reflection can be
re-applied at the meta-level itself.

2.2 Meta-information management

Reflective techniques inherently deal with meta-
information in order to build the self-representation of
base-level entities. Meta-information is kept about the re
fied aspects of a system, in either explicit or implicit form,
as part of the state of the meta-objects. Reflection, how-
ever, does not imply a consistent framework for modelling
and maintaining meta-information, especially considgrin
issues of sharing and distribution. The provision of such a
framework is precisely the goal of meta-information man-
agement, and its presence is an important, often overlooked
requirement for reflective middleware.

For the purposes of this paper meta-information can be
defined as information about the system itself, instead of
about the application domain of the system. The struc-
tured use of meta-information is typically based on the con-
cepts of model and meta-model. Models represent meta-
information about the runtime entities that compose a given

system, and may provide enough detail to enable instanti-
ation of the system, as well as introspection on its inter-
nals. On the other hand, meta-models comprise higher-
level meta-information, targeted at the representation of
models. A meta-model thus describes the constructs that
are available for modelling the entities of a system or ap-
plication [9]. This paper is mainly concerned with the man-
agement of meta-information at the level of models.

In addition, besides the use of models and meta-models,
an effective architecture for the management of meta-
information must also provide facilities to assist with:[6]

e meta-information definition, such as with a language
with well-defined syntax and semantics (conforming
to the meta-model), as well as tools, such as compil-
ers to validate and translate textual meta-information
into a machine-readable form; alternatively, interac-
tive tools (such as with a GUI) can be used for this

purpose;

meta-information maintenance, with a distributed and
persistent repository with features for creating, delet-
ing, managing and manipulating meta-information;

definition, storage and evaluation of relationships,
such as compatibility and substitutability, between
different entities of meta-information; and

meta-information interchange, based on mappings
and tools to transfer meta-information between dif-
ferent repositories, possibly using different meta-
models.

A well-known example of a general-purpose meta-
information management architecture is the OMG Meta-
Object Facility (MOF) [27], which provides a framework
for defining and managing models and meta-models, along
with the meta-information they comprise. Another exam-
ple, although restricted to the CORBA meta-model, is the
Interface Repository defined as part of the CORBA speci-
fication [28].

2.2.1 Meta-information management for middleware

The demand for a principled approach to meta-information
in middleware comes from two basic needs, namely type
management and configuration management. The former
refers to the management of type-related meta-information
describing the externally visible features of runtime enti
ties, as well as relationships between them. This is espe-
cially useful in the open services environment supported
by middleware, where new services can be dynamically in-
troduced or evolved, and where service users dynamically
bind to service providers. In this context, the availapitif

runtime meta-information describing the types of servers
and clients is vital for the dynamic discovery of services,
as well as for type checking and bridging of service types
before binding [20].

Configuration management, in turn, refers to the activi-
ties of building a system from smaller parts in a structured
way. This involves the creation, allocation and binding of
primitive components in order to form more complex, com-
posite components [10]. Explicit meta-information can be
used to describe the internal configuration of the compo-
nents of a system, in terms of templates with enough de-
tail to allow their instantiation. Such templates also serv
as runtime documentation of the configuration of a system
and its components, thus providing a basis for reconfigu-
ration. Using meta-information management techniques,

Meta-ORB components can be of two kinds: primitive
or composite. Primitive components can be seen as en-
capsulation of implementation artefacts (such as language
level classes), giving them a higher level status, as atyenti
that can be manipulated and interacted with using the plat-
form programming model. Composite components, on the
other hand, are more elaborate entities, which are made up
with other components, interconnected by their interfaces
and forming a component graph, as shown in the examples
below.

Following the same idea, binding objects are also clas-
sified as primitive and composite. A primitive binding rep-
resents an encapsulation of a transport protocol, in order
to allow its use according to high-level interfaces that are
more tailored to the types of the components connected

templates can be defined and managed in terms of a meta- through the binding. A composite binding, on its turn, is
model. This enables the association between templates and an encapsulation of more elementary binding objects, pro-

typing meta-information, which in turn permits the use of
type relationships to search and compare configurations, as
well as to validate interconnections between the elements
of a configuration.

It is therefore important to recognise the role of meta-
information management as a principled basis for the defi-
nition, instantiation and management of customised mid-
dleware platforms. A promising scenario for the future
would be the widespread existence of libraries of template
and type meta-information describing alternative imple-
mentations for the several functional elements of middle-
ware, which can then be selected and combined (or even
extended) in order to produce platforms that are tailored
to particular requirements. It is important, however, that
uniform meta-information management architecture (such
as the MOF) is used, so that types and templates can be
consistently defined and unambiguously interpreted in the
kind of heterogeneous environment typically supported by
middleware

3 Core meta-model

Configurations of the Meta-ORB platform are built in
terms of a set of building blocks defined according to a
well defined meta-model [3]. The major building blocks
are components and binding objects. While the former are
used for encapsulating local functionality of the platform
(or applications), the latter are aimed at realising remote
access between components in an explicit way. In addition,
all interactions among components and bindings are made
via well-defined interfaces. The meta-model definition was
inspired by the ISO RM-ODP (Reference Model for Open
Distributed Processing) standard [17], with the concept of
object replaced with that of a component [35].

viding a higher level of abstraction and services on top of

them. Forinstance, as shown in Figure 2, a composite bind-
ing for a video streaming application can be composed of
a pair of video codecs (one at each side of the binding),
which are connected through a primitive binding based on
UDP. As the figure shows, another kind of componentin a

binding are stubs, which are responsible for the adaptation
of the services provided by the binding object with respect

to the external interfaces it must support. In addition, no-

tice that a binding object also has a third interface, which

is provided for the purpose of controlling its operation.

Control Interface
T
Stub

Stub
HO OO

Video Codec Video Codec

Application
Object

O

Application
Object

Figure 2: Example composite binding object.

Specific types of component and binding objects, as
well as their interfaces, are defined using a special object
definition language, called Meta-ORB ODL (Object Defi-
nition Language) [3]. This is an extension of the standard
CORBA 2.2 IDL [26], with constructs for the definition of
components and bindings as first-class entities. Compo-
nent, interface and binding type definitions are then stored
in the type repository[4], which provides runtime access
to this meta-information for other parts of the platform.
Notably, the instantiation of such objects is performed by
component and binding factories, which obtain the appro-
priate definitions from the repository in order to create the
proper configurations.

Finally, the meta-model also includes elements to de-
fine auxiliary types, which do not correspond to first-class
entities in the platform, but are essential to their descrip

tion. Examples include: media types, constructed types
and primitive types. In addition, the meta-model includes
non-type-related meta-model elements. These elements
correspond to the scope-defining constructs of the type sys-
tem (e.g., module) and to auxiliary constructs, used in the
definition of the first-class meta-types (e.g. operatiomy,flo
signal and QoS annotation). A complete description of the
Meta-ORB meta-model is out of scope in this paper and
can be found in [3].

3.1 Examples of platform configurations

This section presents a few representative examples that
should provide an idea of how the basic meta-model con-
structs can be used for building customised platform in-
stances. A textual notation is used, based on the Meta-
ORB ODL. Typically, the platform designer provides a set
of specifications in ODL that define a particular middle-
ware configuration. These definitions are stored as meta-
information objects in a repository, from where they can
later be retrieved and used to instantiate the whole or
parts of the middleware configuration. Additionally, meta-
information stored in the repository can be re-used as part
of newly defined configurations.

In the first example, shown in Figure 3, ODL defini-
tions for a composite component are presented. Note that
auxiliary definitions have been omitted for brevity (notabl
those for interfaces, which are based on a multimedia ex-
tension to OMG IDL). The last definition specifies a com-
ponent for audio/video processind/Pevi ceConp), which
is composed of three primitive components, also defined in
the example. The configuration of the composite compo-
nent is specified in terms of its set of internal components,
the object graph representing the way such internal com-
ponents are connected (adjacent components are linked by
means of their interfaces), and the interfaces that the over
all component presents to its users. This example illus-
trates how arbitrarily complex units of functionality cam b
modelled and configured in terms of structured component
compaosition, using primitive components (which encapsu-
late binary implementations) and composite components.

The next example similarly shows how distributed con-
figurations can be specified using the binding construct.
Figure 4 shows the specification of a complex binding
object, aimed at connecting the interfaces of audio/video
components of the kind defined above (the structure of the
resulting binding is shown in Figure 5). The binding is built
out of components and other binding objects (their defini-
tions were omitted for brevity) that implement the differen
elements of middleware functionality, such as stubs, proto
col filters and transport protocols. The binding definition
is given in terms of the type of the binding control inter-
face (which exposes functionality to control the operation

modul e Exanpl e{
primtive conponent Audi oDevComp{
i npl enent ation: Audi oDevl npl ;
interfaces: AudioDev audio_interf;
primtive conponent Vi deoDevComp{
i npl enentation: VideoDevlnpl;
interfaces: VideoDev video_ interf;
|3
interface <strean> AVDev: AudioDev, VideoDev{};
primtive conponent M xer Conp{
i mpl enentation: M xer Conpl npl ;
interfaces: AudioDev audio_interf;
Vi deoDev video_ interf;
AVDev av_interf;

conponent AVDevConp{
internal conponents: Audi oDevConp audi o_conp;
Vi deoDevConp vi deo_conp;
M xer Conp mi xer _conp;
obj ect graph: (audio_conp, audio_interf):
(mixer_conp, audio_interf);
(video_conp, video_interf):
(mixer_conp, video_interf);
AVDevice av is
(mixer_conp, av_interf);

interfaces:

b

1

Figure 3: An example specification of a composite compo-
nent.

of the binding, such as to pause and resume its operation),
the type of the internal binding objects used in the config-
uration, and the roles implemented at each of the binding
endpoints. In this particular case, a single role is defined,
as the binding is symmetrical (i.e., both its endpoints are
meant to connect interfaces of the same type and with the
same semantics). The definition of the binding role is sim-
ilar to a composite component definition, except for the
cardinality part, which specifies the maximum number of
endpoints conforming to the role that can be created in a
given binding instance (this means that multi-point bind-
ings are supported). In addition, the definition of a binding
role configuration (i.e., its object graph) must also specif
the connection points between the binding’s components
and the appropriate roles of its internal bindings.

4 Reflective meta-level

As seen above, the entities that constitute platform con-
figurations have their structure fully described by meta-

modul e Exanpl ef
bi ndi ng AVBi ndi ng{

control interfaces: Ctrllinterf ctrl is
(CtrlConp, ctrl_interf);
internal bindings: AudioBinding audi o_binding;

Vi deoBi ndi ng vi deo_bi ndi ng;
rol e AVBi ndi ngParti c{
conponents: AVStubConp st ub;
Audi oFi | ter Conp audio_filter;
Vi deoFi | ter Conp video_filter;
target interface: AVDevice is
(stub, av_interf);
cardinality: 2;
configuration:
(stub, audio_interf):
(audio_filter, audio_interf);
(stub, video_interf):
(video_filter, video_interf);
(audio_filter, forward_interf):
(audi o_bi nding, audio_role);
(video_filter, forward_interf):
(video_binding, video_role);

Figure 4: An example specification of a composite binding.

information elements. Reflection thus requires some means
to manipulate such meta-information at runtime, in a way
that is causally connected with the respective instances of
platform configuration. This is the role of the reflective
meta-level, which completes the architecture.

Reflection in Meta-ORB can be used for dynamic in-
spection and adaptation in the context of both platform
and application elements. To this end, the design of the
meta-level follows the principles of the Open ORB reflec-
tive middleware architecture [1], as discussed below.

The meta-object protocol (MOP) is realised in terms of
the interfaces of components that play the role of meta-

1 ctrl

forward_interf audio_role audio_role forward_inte|

audio\ audio i
filter) interf | (@v_interf)

video # :
filter
7 W

video_role forward_interf

=

AVDevice AVDevice

(av_interf)| j

O

forwardiihterf video_role

Figure 5: Composite binding for audio-video interaction
(as described in Figure 4).

objects. In addition, the base-level is similarly struetir

in terms of objects, meaning that meta-objects are used to
reify components, binding objects and interfaces. Impor-
tantly, in the Meta-ORB approach the state of meta-objects
must always have a direct correspondence with the meta-
information elements that describe their respective base-
level objects. In practice, such meta-information is used,
during the reification process, as the basis for initiajsin
the state of meta-objects.

In addition, considering the multitude of aspects that
must be reified in reflective middleware, the meta-space
is partitioned into a number of independent meta-space
models. The approach is similar to the multi-model re-
flection framework introduced by [25]. Each separate con-
cern of the meta-level is defined in terms of a meta-space
model, which represents the structure and functionality fo
the reification of a base-level object according to that as-
pect. Figure 6 illustrates the concept of using distinctanet
objects (each one corresponding to a different meta-space

model) to reify a given base-level object.
S
Discover
-~ Meta-Level

..

N | , - Base-Leve
) Base-level
Object

Figure 6: The meta-space reifying a base-level object.

Currently, five meta-space models are specified, with
well-defined abstract design and semantics. The meta-
space models are categorised according to the usual dis-
tinction between behavioural and structural reflectior].[38
The behavioural part of the meta-space consists of two
meta-space modelResourceandinterception These are
however out of scope in this paper, so we will not further
refer to them. Structural reflection, on its hand, is the fo-
cus of the prototype and is represented by three distinct
meta-space modelsterface Discovery (which reifies the
set of interfaces supported by a component or binding ob-
ject), Interface (which reifies the constitution of a particu-
lar interface, in terms of the operations, flows or signals it
provides}, andArchitecture (which reifies the internal con-
figuration of a component or binding object, in terms of an
object graph representing its internal components and the

1In other implementations of the general OpenORB framewibise
two meta-space models are merged into a single one, simf¥dda-
terface. The reason for partitioning them in Meta-ORB is to sepatiae
functionality related to finding the interfaces of a compunat one hand,
from that related to the dynamic discovery of the operatiiog/s or sig-
nals provided by a single interface.

way they are connected). These three meta-space models! ™'t MetaCRB

are designed so as to be independent of each other with re-

gard to adaptation. This basically means that changes in the
configuration of an object effected through threhitecture
meta-space model need to respect the types of the inter-
faces involved. For instance, if a component is replaced
by another, the substitute must provide the same interfaces
of the replaced component (or interfaces derived from sub-
types of the original interface types).

4.1 Examples of adaptation

The current version of Meta-ORB is focused on struc-
tural reflection, based on theterface Discovery, Interface,
and Architecture meta-space models. However, only the
latter is meant for adaptation, whereas the former two are
meant for inspection only (i.e., to discover the services pr
vided by a component, in terms of interfaces and their op-
erations). The reason for this is to avoid possible incom-
patibilities (at the level of local bindings) that may arise
from the addition or removal of interactions and interfaces
In future versions, this restriction may be removed with
the adoption of rules (such as subtype-based evolution) to

Obtain a reference to the Architecture

meta-obj ect.

arch_mobj = MetaORB. get _ar ch_nobj (
bind_ctrl.get_binding_nane())

otain the type of the new conponent from

the Type Repository

type_of _new conp = Met aORB. TypeRep. | ookup_name(
 LowBandwi dt hVi deoFi | ter’, dk_Bi nding)

Pause the binding, so that reconfiguration can
take place without affecting its consistency
bi nd_ctrl . pause()

Invoke the appropriate operation of the

Architecture MOP to replace all occurrences of

the old video filter conponent (in all binding

endpoints conforming to the AVBi ndingPartic

role) with conponents instantiated fromthe

new conponent type.

arch_nobj . rol e_repl ace_conponent (AVBi ndi ngParti c,
video_filter,
type_of _new_conp)

constrain the adaptations made via these two meta-space # Resume nornel binding operation

models.

Adaptation according to thérchitecture meta-space
model is achieved through the manipulation of the object
graph that represents the configuration of a given plat-
form element. The meta-object protocol associated with
this meta-space model offers operations for inspecting the
structure of a configuration, as well as for changing it, by
adding, removing or replacing components. For instance,
in a binding configuration, such as the one specified in Fig-
ure 4, if the available bandwidth of the underlying network
suffers a drop, it may become impossible to sustain the pre-
viously agreed quality of service. Under the circumstances
of rigid middleware infrastructures, such as with conven-
tional middleware, this would typically mean that the bind-
ing should be torn down. On the other hand, in the Meta-
ORB reflective middleware, tharchitecture meta-object
may help overcome the problem in a more satisfactory way.

The solution could involve selecting an alternative video
encoding method with lower bandwidth requirements, as
well as a component type (defined in the meta-information
repository) that implements it. Tharchitecture meta-
object can then be used to replace the current video codec
components (at each of the binding endpoints) with com-
ponents of the selected type, without disrupting the oleral
service (although the user might experience some down-
grading of the video output quality, due to the change of
encoding). The code for implementing such reconfigura-
tion, in Python, is shown in Figure 7.

The bottom line for using reflection in such a way is

bind_ctrl.resume()

Figure 7: Example script for dynamic binding reconfigura-
tion.

therefore the convenience of making runtime structural
changes to an application or to the underlying platform.
In addition to smoothing the change process (by preserv-
ing continuous availability of the adapted service), ths a
proach also enables a simplification of the process of sys-
tem evolution, as changes can be made in a localised way,
without affecting the whole system.

4.2 Combining reflection and meta-information
management

In Meta-ORB the meta-information management fa-
cilities are organised around the concept of a repository.
This repository provides for the storage, retrieval and-con
sistency management of meta-information describing the
building blocks of the platform. Such facility is described
in terms of a set of meta-types, which make up the meta-
model of the platform. Among the major meta-types are
binding, component and interface, along with other more
primitive elements (such as operations, flows and primitive
data types). In addition, the meta-model is a direct exten-
sion of the CORBA 2.2 object model, meaning that all the

constructs prescribed in that version of CORBA are also
supported.

According to the usual functionality of a meta-
information facility ([6]), the repository provides furichs
for registering new types, for checking type compatibility
and for the lookup and browsing of existing types. All these
functions are meant (though not necessarily) to be auto-
matically generated, based on the description of the meta-
model, using MOF-related tools.

All configuration and reconfiguration facilities depend
upon these meta-information management features. For in-
stance, in order to create a platform configuration (e.g., a
set of components and binding objects), the object factorie
need to obtain the right type definitions from the reposi-
tory. In addition, the structural reflection features need t
obtain meta-information describing the (type of the) base-
level object, so that it can be properly reified.

However, a more subtle relationship between the meta-
information management and reflection facilities may arise
due to the fact that reification is strongly based on meta-
information from the repository. An important requirement
of every reflective system is that the self-representation
maintained by a meta-object is always consistent with the
type of its base-level object. However, as a result of succes
sive adaptations, the configuration of the base-level ¢bjec
(and thus its self-representation) becomes different from
that specified in the type. To solve this apparent contradic-
tion, Meta-ORB adopts an approach basedyge evolu-
tion [4], which means that the type of an object is changed
(into a new version of the original type) once the object is
subject to adaptation. However, the new type is only pub-
lished in the repository when the base-level object becomes
stable (i.e., no further adaptations are envisaged) and the
meta-object is explicitly asked to do so (until then, a pri-
vate copy of the type is kept in the meta-object). As an
interesting consequence, the approach enables new com-
ponent and binding types to be derived as a result of reflec-
tive adaptations. Such new types (once published) can be
used to create objects that contain, from scratch, thetsesul
of previous adaptation efforts. Another consequence of us-
ing type evolution is the possibility to constrain adaptas
based on type relationship rules, so that a dynamically cre-
ated new type does not contradict the properties of the type
used to derive it. This is important to keep compatibility
with existing clients of an adapted object. Currently, we
support subtyping as a type evolution rule, so that the new
type must be a subtype (i.e., present all the interfaces) of
the original type. The investigation of this approach as a
way to check more global properties of the system remains
an issue for future work.

5 Implementation

5.1 Python-based prototype

A prototype implementation of the Meta-ORB architec-
ture has been developed with the goal of demonstrating its
feasibility and applicability. The focus of this work was on
the functionality and the qualities of the architecturéhea
than performance. This is reflected on the chosen imple-
mentation environment, based on the Python programming
language [36], which favours rapid prototyping instead.
Despite this, experiments have shown that the performance
of the prototype is appropriate for simple multimedia ap-
plications [3]. In addition, by implementing the prototype
purely in Python, portability to a variety of operating sys-
tems is guaranteed, which was also a factor when choosing
the language. The implementation is structured in three
main modules, according to the abstract design discussed
in section 5. These modules are briefly described below.

5.1.1 Platform Core

This module implements the core features that are nec-
essary to support the Meta-ORB programming model.
Specifically, it contains the basic distribution infrastru
ture, with naming and capsule management services, as
well as the primitive constructs to support the meta-model,
such as interface references and local bindings (which are
links between the interfaces of locally connected compo-
nents). In addition, this module defines the runtime repre-
sentation for the first-class constructs of the programming
model: interfaces, components and binding objects. In par-
ticular, regarding the latter, the implementation encgesa
the use of the General Inter-ORB Protocol (GIOP) as the
basis for communication between the components of bind-
ing objects. This is on the way of providing interoperajilit
with CORBA, though further work is still needed (e.g., to
use interface references that are compatible with the IOR
standard). Finally, higher-level services are also defined
in this module, notably component and binding factories,
which are the entities responsible for the instantiation of
components and binding objects based on specified type
meta-information.

5.1.2 Type Repository

This module implements the meta-information manage-
ment framework of Meta-ORB, providing support for both
the platform core and its meta-level. Its logical structure
is an extension of the CORBA Interface Repository, in
order to comprise the new meta-types introduced by the
Meta-ORB meta-model, in addition to those that are na-
tive of CORBA. The implementation is based on replica-

tion of the repository, in order to increase performance of their respective base-level objects, such as by creating
when accessing type definitions. Persistence of type def- and deleting componets, and disconnecting and reconnect-
initions is achieved through their simple serialisatiomlan ing local bindings between their interfaces. In this way,
storage in the local file system of each repository replica meta-objects can perform the absorption of reflective com-
(use of a database system is considered for future devel- putation (see Figure 1).

opment). Creation of new type definitions, in turn, is per-

formed through a master-slave collaboration between the 5.2 Java-based prototype

repository replicas, where the master is the replica that re

ceives and processes a given type creation request, propa- The first prototype, described above, was mainly aimed
gating the new type definition to the slave replicas. Type atdemonstrating the concepts introduced in the Meta-ORB
versions are created in a similar way, though there is a cen- architecture. Current activity in the project is now target
tralised manager responsible for generating unique wersio ing the development of a fully functional Java version of
numbers. Note that because type definitions (once stored the platform, aimed at portability across a range of dif-
in the repository) are immutable, the problem of keeping ferent platforms, as well as better performance. The fo-
consistency among the replicas can be solved quite sim- Ccus is on exploring the dynamic adaptation facilities of
ply. The solution is based on the reliable distribution of ~Meta-ORB in mobile computing environments, especially
newly created types to all replicas and on the uniqueness of involving handheld devices such as palmtops and mobile
type names and version numbers (which is guaranteed by phones. This has led to the adoption of J2ME [34], accord-
the central manager). Finally, the Type Repository module ing to the CLDC configuration [32] and the MIDP profile
also introduces tools to facilitate the definition and manip [33], as the main runtime environment. As a result, seam-

ulation of meta-information, such as a GUI-based browser,
used to specify, edit, publish and search for type defini-
tions.

5.1.3 Meta-level

This module corresponds to the mechanisms and facilities
for structural reflection provided by the platform. It fol-
lows the framework described in section 4, with the de-

less portability and a smaller footprint of the runtime were
naturally achieved, enabling the new version to run on a
variety of devices.

An effort was made to retain total compatibility with
the previous version, including the programming model
and runtime data representation, thus enabling interoper-
ability. However, due to the limitations of J2ME, a num-
ber of adaptations were needed in the core architecture. In
particular, the use of version 1.0 of MIDP restricted us to

sign defined in terms of the constructs of the programming HTTP as the sole communication protocol. This means
model. Thus, meta-objects are themselves components, that all primitive and implicit bindings are based on this
and are created and managed using the services provided protocol, having to provide all their features through con-

by the Platform Core and Type Repository modules. The
overall approach is to provide a default design and imple-
mentation, with meta-object types that offer a representa-
tive meta-object protocol. This design can then be extended
with new meta-object types, either through static type defi-
nition, or through reflection (i.e., using meta-meta-otggc
and type evolution. The precise meta-object protocols cur-
rently implemented are described in [3].

The implementation of thinterface andinterface Dis-
covery meta-objects is straightforward, as they simply pro-
vide a convenient way to access type meta-information
about the base-level objects. Their use is preferred idstea
of direct access to the respective types in the repository,
as they should provide up-to-date type meta-information
(considering any previous adaptations and evolution of the
type).

Architecture meta-objects, on the other hand, have a
more complex implementation, as they also provide for
adaptation. This means that causal connection must be ex-
plicitly maintained, which is achieved by allowing meta-
objects to directly manipulate the runtime representation

ventional HTTP request/reply text-based messages, which
may affect interaction performance. We expect to remove
this constraint as implementations of the latest version of
MIDP (2.0) become available, enabling the use of more
capable datagram and socket-based connections. Another
limitation of J2ME that has influenced the implementation
was the lack of native reflection support (as available in
the conventional Java Class Library). In particular, ité$ n
possible to make dynamic method calls, which has com-
promised the flexibility of local bindings (connections be-
tween local interfaces) in the platform. As a result, the run
time representation of a component’s interface (in terms of
a Java class) has to be generated specifically for the partic-
ular interface type, as opposed to the generic, interface-
independent, counterpart in the Python prototype. Note
however, that this limitation is not related to the implemen
tation of the reflection mechanisms of the platform, which
are completely independent of the reflective features of a
particular programming language.

Finally, limitations of the targeted execution environ-
ment, especially in terms of memory, processing power and

battery, have led to the need to save as much resources asan object request protocol on top of it. As J2ME-based ob-

possible in this implementation. As a result, only the plat-
form core was ported, consisting of the runtime infrastruc-
ture (capsule, local name server, component and binding
factories, and implicit binding support). Some features,
notably the Type Repository, were kept from the previous
version (with some adaptations, discussed below, to enable
the Python-Java interoperability), whereas others, sach a
the naming service, where implemented in the more capa-
ble J2SE platform. In what follows, a high level description
of the architecture of the prototype is presented.

5.2.1 Architecture

As stated above, under CLDC/MIDP1.0, all networking
has to be done through HTTP. Furthermore, only the client
part of this protocol is implemented, meaning that a J2ME
device cannot be the target of interactions (e.g., to receiv
requests). These two limitations have posed the need for a
proxy-based architecture, where each J2ME device partic-
ipating in the distributed environment of Meta-ORB must
have a representative object residing in a more capable de-
vice located elsewhere (e.g., in the fixed network), which is
able to receive interactions from clients (or media produc-
ers) and redirect them to the target object in the device. The
overall architecture is illustrated in Figure 8, which sisow
the major elements involved in a platform infrastructure,
along with the several possibilities of runtime environinen
(mainly J2ME and J2SE in this case).

As the figure shows, access to the Type Repository
(in Python) is achieved through a servlet that redirects
HTTP requests as appropriately formatted sockets-based
messages to the closest Type Repository server. The re-
guested type definitions are formatted as text-based mes-
sages before returning them to the caller. A similar ap-
proach is used for access to the global name server.

Figure 8 also illustrates access to component interfaces
through implicit binding. This is achieved using a proxy-
based approach, in a way similar to the Middleman archi-
tecture proposed in [23]. For each J2ME-based capsule,
there is a proxy in charge of receiving and processing re-
quests directed to interfaces located in that specific dapsu
as well as handling the replies back. This proxy is created
by the capsule manager at the same time as the capsule
itself, by using a well-known configuration service (Con-
figServer)? Communication between clients and the proxy
can be either through HTTP (in the case of J2ME clients)
or object requests (in the case of J2SE clients). Commu-
nication between the proxy and the target interface in the
J2ME capsule is always based on HTTP, by superimposing

2Although not shown in the figure, the ConfigServer need no bles
same capsule as the proxy.

jects (midlets) can only act as clients, requests direated t
them have to be conveyed within normal HTTP reply mes-
sages. Such communication is based on a polling scheme,
where the communications server object (CommsServer)
residing in the J2ME capsule sends HTTP requests to the
port associated with the proxy and waits for replies con-
taining proper object requests. In other words, there is an
inversion of the client and server roles.

As an example of this kind of interaction, consider the
access to the (server) interfaces of component and bind-
ing factories in order to request the creation of components
or the establishment of (explicit) bindings. In this exam-
ple, the CommsServer object would poll (using an HTTP
request message) the Proxy for newly arrived object re-
quests. Such requests would be sent to the CommsServer
inan HTTP reply message, which would then be parsed by
the CommsServer in order to generate the appropriate local
calls to the interfaces of the target components (in the ex-
ample, the component factory or the binding factory com-
ponents). The reply for an object request would be sent by
the CommssServer to the Proxy via an HTTP request mes-
sage. The Proxy would then handle the reply to the actual
client in an appropriate way.

Finally, the figure also shows an explicit binding object
connecting the interfaces of two remote components. Al-
though not shown, the internal implementation of the bind-
ing (more precisely, the primitive binding inside of it), is
based on a similar proxy mechanism as described above. In
particular, the stub componentat the J2ME side of the bind-
ing is a dedicated version of the communications server,
while the stub at the other side takes the role of the (ded-
icated) proxy. In case both endpoints are based on J2ME
capsules, we need an intermediate proxy (located in a J2SE
capsule) to handle the HTTP request/reply messages prop-
erly.

5.2.2 Ongoing work

The above description corresponds to a lightweight ver-
sion of the Meta-ORB base-level architecture. It fulfils
the major elements of the core meta-model and enables
the development of applications targeting mobile devices.
In particular, all the facilities for flexible platform cogfi
uration are present under the headings of the component
and binding factories, which take object definitions from
the Type Repository and perform the instantiation of cus-
tomised platform configurations.

The reflective meta-level, on the other hand, is the sub-

ject of ongoing work. The focus will again be on the struc-

tural part of the meta-space, notably on the architecture
meta-space model. This will enable us to evaluate the ap-
proach for dynamic reconfiguration in a mobile, resource-

s

~

Distributed Explicit Binding
(on top of HTTP)

App
Object

o Local

5 B CoafSibne (Lo

> 2 Object

)

N ~

o N \\\

= AN Component Capsule

AN Factory Y \Jnanager

JZEE socket -

sockets”
L d

Global
nameserve

J2SE

Binding AN
Factor DETUERN

Python J2ME

HTTP
Proxy
Y, N -

J2ME/J2SE

/
obj.

~
J

“>eH ConfigServer

J2SE/NJ2EE

Figure 8: Overall architecture of the Java-based Meta-ORBopype.

constrained environment, which provides the mostinterest
ing requirements for this kind of capability.

6 Performance evaluation

In this section we present a detailed performance evalu-
ation of the Meta-ORB Python-based prototype according
to three aspects: static configuration, interaction, ard re
flective reconfiguration. This is provided with a note of
caution, due to the interpreted nature of PytRokow-
ever, the aim is to highlight the relative overhead compared
with non-reflective platforms and with the demands of dis-
tributed multimedia. Indeed, the results are quite enapura
ing, giving a rough indication of the level of performance
that can be achieved in more efficient language environ-
ments.

All experiments were conducted on a 10Mbps Ether-
net LAN, using identical Pentium Ill 800MHz PCs with
256MB RAM, running Windows 2000 and Python 2.1. All
measurements were taken using the clock function of the
standard Python library, with several runs and averaging to
smooth the effects of non-determinism introduced by the
OS scheduler and network.

6.1 Static configuration performance

As particular instances of the platform are made up with
component and binding objects, an evaluation of their in-
stantiation performance is crucial to understand the dost o
establishing complete platform infrastructures.

The cost of component instantiation is shown in Fig-
ure 9 for three representative cases: primitive components

3A corresponding evaluation of the Java-based implementasi the
subject of ongoing work.

with a varying number of interfaces, composite compo-
nents made up with flat compositions of primitive compo-
nents, and composite components with a recursive compo-
sition pattern (i.e., hierarchically nested components).
can be seen, the cost scales up linearly with the compo-
nent's complexity. The graph also gives a rough idea about
the cost incurred by other component configurations (e.g.,
the instantiation of a flat composite component with five in-
ternal primitive components and three interfaces will cost
approximately 48ms — 38ms for the composition plus 10ms
for its three interfaces).

The next experiment shows the performance and scal-
ability of binding instantiation. It considers multi-pain
bindings with up to six endpoints, each one located in a
different machine and consisting of a stub and the endpoint
of a primitive binding. The use of such minimal bindings
is so that the inherent cost of instantiating distributedibi
ings is made more evident (the cost of more complex bind-
ings would be the sum of the cost of a simple binding plus
that of their internal components).

Given the distributed nature of the binding protocol,
where binding endpoints are created in parallel by differen
local binding factories (see [3]), the impact of the number
of endpoints is made less significant. The increases shown
in Figure 10 are mainly due to the additional processing
performed by the primary binding factory (which coordi-
nates the whole process) to stich the several endpoints to-
gether. Nevertheless, the results seem to suggest that such
increases tend to attenuate as the number of binding end-
points grow.

6.2 Interaction performance

This section discusses the performance of interaction
between remote components. Whenever applicable, re-
sults are contrasted with two other Python-based platforms

total time (ms)

number of interfaces or nested
components

B Primitive components
(varying the number of
interfaces)

H Linear composite
components (varying the
number of nested primitive
components)

O Recursive composite

K components (varying the
number of nested primitive
and composite
components)

Figure 9: Cost of component instantiation.

//I

o
—u

elapsed time (ms)

number of endpoints

Figure 10: Cost of binding instantiation.

Fnorb [13], a CORBA-compliant middleware platform;
and minimal implementations based on TCP/UDP sockets
(in order to highlight the overhead introduced by the Meta-
ORB programming model). All experiments use the same
binding configuration as above, though with only two end-
points.

6.2.1 End-to-end delay

The first experiment, shown in Figure 11, illustrates, in-log
arithmic scale, the round trip delay for request-replyrinte
action. The comparison with TCP-based sockets shows an
overhead of about 30% for small interactions (up to 128
bytes), although the overhead decreases for larger inter-
actions (above 4KB, it does not exceed 10%). This extra
cost can be explained by the higher level of abstraction of
the Meta-ORB programming model. The complementary

analysis shows that the Meta-ORB framework can be used
to achieve superior performance in comparison with Fnorb
(which is at least about 5ms slower in all cases). In part,
this is due to the extra processing performed on an invo-
cation by Fnorb, such as marshaling/unmarshaling, which
is significantly more generic than in our prototype. This
demonstrates that reflective middleware can achieve better
performance by removing unnecessary overhead.

roundtrip delay (ms)

request length in bytes (with empty return)
—m— Meta-ORB TCP sockets ‘

—e—Fnorb 1.1

Figure 11: Round trip delay for request-reply interaction i
a distributed binding.

An analysis of the end-to-end delay of stream interac-
tions, comparing a Meta-ORB binding with UDP sockets,
is shown in Figure 12 (a comparison with Fnorb does not
apply, as it does not have support for streams). The delay
is estimated by halving the round-trip time.

Compared with the typical delay requirements of mul-

timedia applications (maximum of 250ms for both audio
and video, according to [16]), these figures seem appropri-
ate, especially considering frames of moderate sizes (up to
8KB). However, the extra cost of processing complex me-
dia in the binding should also be taken into account, sug-
gesting that such functionality should be implemented in
C/C++ and integrated into the platform using Python’s ex-
tension facilities [37].

‘ —— Meta-ORB —=— UDP sockets

end-to-end delay (ms)

frame size (bytes)

Figure 12: End-to-end delay of stream interaction.

6.2.2 Throughput

Figure 13 shows the result of an experiment measuring
the user-level throughput of a stream binding on a lightly
loaded network, along with a comparison with UDP sock-
ets. As the graph shows, for frame sizes over 32 bytes, the
absolute difference in achievable throughput is nearly con
stant (300-700 Kbits/s). In relative terms, the throughput
of a Meta-ORB binding is only 10 percent lower for frame
sizes over 512 bytes. This lower throughput is a result of
the high-level programming model of Meta-ORB, showing
a tradeoff between programmability and raw performance.

Finally, to put the figures in perspective, they can also
be compared with the typical requirements of continuous
media. In particular, for audio streams, the throughput is
clearly suitable. For video streams, however, it can be less
than adequate. Nevertheless, considering the requirement
of compressed TV-quality video (2-10Mbit/s), as well as
the use of larger (over 512 bytes) frame sizes, reasonable
results may be achieved.

6.3 Reflection performance

6.3.1 Meta-object instantiation

The performance of reification is examined here using sev-
eral experiments that illustrate the creation of meta-abje
according to the three structural meta-space models de-
scribed earlier.

—o— Meta-ORB]
—m— UDP sockets| |

throughput (Mbit/s)

frame size (bytes)

Figure 13: Composite binding throughput.

The time required to creataterface Discovery meta-
objects is independent of the particular base-level oligect
be reified, being around 8.8ms for components and 9.8ms
for bindings. Similarly, fonnterface meta-objects, reifica-
tion time is independent of the particular interface, and wa
about 9.5ms.

On the other hand, fakrchitecture meta-objects, perfor-
mance depends on the complexity of the particular base-
level object. Two experiments were chosen to show the
scalability of architecture reification: firstly, for compo
ite components, using linear composition and a varying
number of nested components; and secondly, for binding
objects with an increasing number of endpoints (with the
simple binding configuration described in 6.1).

The results have shown that reification time is linearly
proportional to the number of features present in the base-
level object. For components with one internal component,
reification takes 10.6ms, with each extra internal compo-
nent adding up about 0.4ms (e.g., reifying a component
with 5 internal components would take 12.6ms). For bind-
ing objects, both the number of internal components and
binding endpoints influence reification time. We observed
that for simple bindings with two endpoints, architectural
reification takes about 19.9ms, with each extra endpoint
adding up about 0.2ms.

These figures indicate that meta-objects should ideally
be created in advance of the need for reflection, especially
in the case oArchitecture meta-objects and in time-critical
applications. Once meta-objects are created, though, thei
access time is less significant.

6.3.2 Adaptation performance

This is a critical issue, as adaptation mechanisms are meant
for dynamic use, while the platform is running. In or-
der to demonstrate the level of performance in the cur-

rentimplementation, three experiments were run, using the
most common adaptation operations. In order to isolate
the inherent cost of reflective adaptation, all components
involved in the adaptations are primitive. (Adaptations in
volving complex, composite, components would have the
added costs incurred in the instantiation of the composent’
internal configuration.) The results, for binding adajtati
are as follows: inserting a new component takes 37.5ms,
while component removal takes 44ms and component re-
placementtakes about 90ms. Adaptation of components, in
turn, require slightly lower times, as both base- and meta-
objects would always be local to each other.

Considering the typical requirements of continuous me-
dia, in particular the short inter-frame intervals for audi

In addition, our approach towards the integration of reflec-
tion and meta-information management can further lever-
age the idea of architecture adaptation, especially réugard
the seamless integration of configuration and reconfigura-
tion, as well as the notion of type evolution discussed in
4.2, which could use architectural constraints as a basis to
validate adaptations.

Outside the scope of Open ORB, other projects have
also adopted reflection as a principled way to build flexi-
ble middleware platforms, though following different ap-
proaches. OpenCORBA [21], for instance, is a reflective
implementation of CORBA based on the meta-class ap-
proach and on the idea of modifying the behaviour of a
middleware service by replacing the meta-class of the class

and video streams, the above results seem to suggest a needyefining that service. This is mainly used to dynamically

for more efficient meta-object implementations, e.g., in C
or C++, in order to reduce the possibility of frame loss or
even to schedule a given adaptation in between frame ar-
rivals.

7 Related work

In the context of the Open ORB architecture, several
prototypes have been implemented, each exploring a dif-
ferent aspect of the architecture. In particular, the Open-
COM runtime component model, together with the ReM-
MoC middleware built on top of it [15, 2], strive for ef-
ficiency of implementation and memory footprint. This
platform was written in C++, which, besides being an ef-
ficient compiled language, allows access to low-level fea-
tures (such as virtual pointer tables), which greatly opti-
mise performance. The performance of this platform has
been shown to be on a par with non-reflective middleware,
with the added benefit of further optimisations that can be
achieved with the very use of reflective adaptation [5]. Our
approach has several similarities with this work, espcial
the use of reflection for platform optimisation. However,
the aim here was to highlight the benefits of the combined
use of meta-information management, also showing that it
does not impose considerable overhead.

Another relevant outcome of the Open ORB project was
the FORMAware framework, aimed at the management of
adaptation in component architectures [7]. The approach
is based on software architectures as a way to fully de-
scribe configurations of components, together with con-
straints that specify the criteria for validating reconfigu
tions. For dynamic reconfiguration, a comprehensive meta-
object protocol is provided, which enables the handling of
all aspects of an architecture. We note that such an ap-
proach can conceptually complement our architecture, fit-
ting into the scope of tharchitecture meta-space model.

adapt the behaviour of remote invocations, by applying the
above idea to the classes of stubs and skeletons. The use
of meta-classes, however, has the consequence of making
such adaptations reflect on all instances of a class. In con-
trast, in Meta-ORB reflection is based on per-object meta-
objects, enabling to isolate the effects of reflection (sd th
other objects are not affected when reflection is used to al-
ter a particular object). In reflective middleware, this is

a desirable property as the components of a middleware
system tend to be fairly independent of each other (even
though they might have the same class).

DynamicTAO [8] is another representative reflective
middleware architecture. It is based on an extension of
the TAO ORB [30] with the concept of architectural aware-
ness, making explicit the architectural structure of aayst
in a causally connected way. Middleware configurations
are defined in terms of prerequisite specifications, which
represent the components of the platform and the depen-
dencies among them. These specifications are used by an
automatic configuration service to instantiate the platfor
components and the components on which they depend.
At runtime, such prerequisites are managed by component
configurators, which are in charge of keeping the consis-
tency of dependencies as new components are added or re-
moved from the system. This approach is similar to the
use of architectural reflection in Meta-ORB, with the added
value of dependency management. However, dynamicTAO
restricts the use of reflection to coarse-grained compsnent
limiting its applicability to control more detailed struces
of the platform.

In parallel with our effort to build a flexible Java-
based middleware platform for mobile computing, it is
worth mentioning the work carried out in the Arcademis
project, which is building a framework for the implemen-
tation of customised middleware [29]. Similar to our work,
Arcademis also targets the problem of middleware cus-
tomisability, especially in the context of mobile comput-

ing. Their approach is based on a set of abstract classes 8 Concluding remarks

and interfaces describing general middleware functional-
ity, which can be specialised to produce particular kinds of
middleware. One such example is the use of the framework
to build an object-oriented middleware for J2ME-enabled
devices. Their approach thus differs from ours in the way
middleware configurations are specified, which in our case
is based on an object definition language. However, in the
same way as FORMAware, we can conceive an integration
of the two approaches, using frameworks as a way to con-
strain configuration definitions. Another important differ
ence, however, is the absence of support for runtime reflec-
tion and dynamic reconfiguration in Arcademis, although
such support could possibly be developed following our
overall approach and having a runtime representation of the
underlying component framework.

Regarding the management of meta-information, al-
though all reflective middleware architectures (such as the
ones discussed above) deal with meta-information in one
way or another, the treatment is typically ad hoc. On the
other hand, the isolated use of meta-information manage-
ment in middleware, notably for type management pur-
poses has been proposed in the literature (such as in [11]).
To our knowledge, however, Meta-ORB is the first mid-
dleware architecture to integrate a comprehensive and per-
vasive framework for meta-information management with
a principled reflective meta-level. This has the benefit of
unifying the use of meta-information in the system (e.g.,
preventing that different meta-object implementations us
different meta-level representations), as well as progjdi
a basis to closely integrate the configuration and adaptatio
features of the platform.

Finally, we also mention the efforts in the area of aspect-
oriented programming (AOP) [19], which is similar to re-
flection in the sense that it is also a technique to enable
separation of concerns in systems such as middleware. The
original proposals of AOP were targeted at static aspects,
which are combined by the weaving process andthus made
unavailable at runtime. There is however a number of
research efforts in the direction of dynamic aspects [12],
which preserve the distinction among the aspects of a sys-
tem at runtime, enabling new aspects to be added and old
ones to be removed or replaced. We consider reflection and
AOP complementary techniques, as reflection (and meta-
object protocols) can be used as the mechanism enabling
the dynamic manipulation of aspects. In this sense, aspects

can be seen as another approach to structure the middle-

ware system, in a way that is orthogonal to the way compo-
nent composition is used in our approach. Further investi-

This paper has presented Meta-ORB, a reflective mid-
dleware platform based on a combination of a meta-level
architecture with meta-information management concepts.
The overall aim of the research is to develop an approach
that permits the integration of configuration and reconfig-
uration facilities in a highly flexible middleware architec
ture. The foundation concepts used in the research have
been surveyed, together with their application in the con-
text of middleware. The paper discussed the architecture
of the platform, together with its two implementations,
a Python-based proof-of-concept prototype, and a Java-
based implementation, which is currently under develop-
ment and targets wireless mobile devices. The paper also
presents an evaluation of the approach based on the first
prototype.

The work has enabled us to draw some important con-
clusions about the design and implementation of adap-
tive middleware platforms. The most important of such
conclusions is related to the benefits of an integrated ap-
proach combining runtime reflection an explicit runtime
meta-model representation of the platform. This enables
the use of the same set of abstractions for configuring a
platform from scratch and for adapting it at runtime, re-
lieving the user from the need to learn a different set of
concepts and tools. In addition, the concept of type evo-
lution has shown to be an important step towards enhanc-
ing the process of developing customised middleware, as
new versions of a platform configuration can be produced
at runtime, by successive adaptations in order to match real
operation scenarios. The most promising versions can then
be turned into proper configuration definitions and stored in
the Type Repository for later use in order to reproduce the
successful evolved configurations in other contexts. We be-
lieve this is a promising approach to software development
in general, and to adaptive middleware in particular.

Another important conclusion is related to the impact
of both techniques, reflection and meta-information man-
agement, on the overall performance of the platform. The
experiments presented in the paper demonstrate that such
impact, though not negligible, is within acceptable limits
for some important categories of application and is com-
parable with the performance of non-reflective platforms.
Furthermore, we have identified several points for improve-
ment, mainly related to the implementation environment.
For example, implementing the more computing intensive
components of the platform in an efficient language, such
as C++ (while still taking advantage of productivity bene-
fits of Python for placing the components together), would
improve several of the performance figures presented in

gation about this combined use of aspects, components and the paper. Thus, we can argue that the main performance

reflection in Meta-ORB remains an issue for future work.

bottleneck of the prototype is not the reflective program-

ming model itself. Future work will investigate the above
argument with the development of primitive components
and component factories implemented in C++, in order
to verify if the related performance impact is significant.
Ongoing work is also investigating the performance of
the platform in environments with more limited resources
available, notably comprising the J2ME-based prototype in
handheld computers connected by wireless LANSs.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

Gordon S. Blair, Fabio M. Costa, Katia Saikoski, and
Nikos Parlavantzas Hector Duran Mike Clarke. The
design and implementation of Open ORB version 2.
IEEE Distributed Systems Online Journ2(6), 2001.

Mike Clarke, Gordon S. Blair, and Geoff Coul-
son. An efficient component model for the con-
struction of adaptive middleware. IRroceedings
of the IFIP/ACM International Middleware Con-
ference (Middleware’200])Heidelberg, Germany,
2001. Springer-Verlag.

Fabio M. Costa. Combining Meta-Information
Management and Reflection in an Architec-
ture for Configurable and Reconfigurable
Middleware Ph.D. thesis, University of
Lancaster, Lancaster, UK, September 2001.
http://www.comp.lancs.ac.uk/computing/users/
fmc/pubs/thesis.pdf.

Fabio M. Costa and Gordon S. Blair. Integrat-
ing reflection and meta-information management in
middleware. InProceedings of the International
Symposium on Distributed Objects and Applications
(DOA’00), Antwerp, Belgium, 2000. IEEE, IEEE.

Geoff Coulson, Gordon S. Blair, and Paul Grace.
On the performance of reflective systems software.
In Proceedings of the International Workshop on
Middleware Performance (IWMP’04Phoenix, AZ,
April 2004. IEEE Computer Society.

Steve Crawley, S. Davies, Jaga Indulska, Simon
McBride, and Kery Raymond. Meta-information
management. IProceedings of the 2nd IFIP In-
ternational Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS,97)
Canterbury, UK, 1997. IFIP.

Rui Jorge da Silva MoreiraFORMAware: Frame-
work Of Reflective components for Managing archi-
tecture Adaptation Ph.d. thesis, Computing Depart-
ment, Lancaster University, Lancaster, UK, March
2004.

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Fabio Kon et al. Monitoring, security and dynamic
configuration with the DynamicTAO reflective ORB.
In Proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Dis-
tributed Processing (Middleware’2000New York,
2000.

H. Mili et al. Metamodelling in OO - workshop
summary. InAddendun to the Proceedings of OOP-
SLA'95 Austin, TX, 1995.

Stephen Crane et al. Configuration management for
distributed software services. Proceedings of the
IFIP/IEEE International Symposium on Integrated
Network Management (ISINM’95)Santa Barbara,
CA, 1995. IFIP/IEEE.

Waine Brookes et al. Types and their management in
open distributed system®istributed Systems Engi-
neering 4(1):177-190, 1997.

Robert Filman, Michael Haupt, Katharina Mehner,
and Mira Mezini, editors.Proceedings of the 2004
Dynamic Aspects Workshop (DAWQ4)lume 1,
Lancaster, UK, March 2004. Research Institute for
Advanced Computer Science. RIACS Technical Re-
port 04.01.

Fnorb.Fnorb - release 1.1CRC for Distributed Sys-
tems Technology, University of Queensland, Queens-
land, Australia, 2000. http://www.fnorb.org.

Brian Foote. Object-oriented reflective metalevel ar-
chitectures: Pyrite or panacea? Rroceedings

of ECOOP/OOPSLA’90 Workshop on Reflection and
Metalevel Architecture®Ottawa, 1990. ACM.

Paul Grace, Gordon S. Blai, and Sam Samuel. ReM-
MoC: A reflective middleware to support mobile
client interoperability. InProceedings of the Inter-
national Symposium on Distributed Objects and Ap-
plications (DOA'03) Sicily, Italy, 2003. IEEE, IEEE
Computer Society.

D. B. Hehnmann, M. G. Salmony, and H. J. Stuttgen.
Transport services for multimedia applications on
broadband networks. Computer Communications
13(4):197-203, 1990.

ITU-T/ISO. ITU-T X.901 | ISO/IEC 10746-1 Open
Distributed Processing Reference Model - Part 1:
Overview 1995.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bo-
brow. The Art of the Meta-Object ProtocolMIT
Press, 1991.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

Gregor Kiczales, J. Lamping, C. Maeda A. Mend-
hekar, C.V. Lopes, J-M. Loingtier, and J. Irwin.
Aspect-oriented programming. IRroceedings of
the 11th European Conference on Object-Oriented
Programming (ECOOP’97number 1241 in Lecture
Notes in Computer Science, pages 220-241, Jyvask-
ila, Finland, June 1997. Springer-Verlag.

Lea Kutvonen. Management of application federa-
tions. InProceedings of the International IFIP Work-
shop on Distributed Applications and Interoperable
Systems (DAIS’97Tottbus, Germany, 1997. IFIP.

Thomas Ledoux. OpenCORBA: A reflective open
broker. InProceedings of the 2nd International Con-

ference on Reflection and Meta-level Architectures
(Reflection’99) St. Malo, France, 1999. Springer-

Verlag.

Patie Maes. Concepts and experiments in compu-
tational reflection. InPACM Conference on Object-
Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA’87)Orlando, FL USA, 1987.
American Computer Machinery, ACM Press.

Qusay Mahmoud. Advanced MIDP net-
working, acessing using sockets and RMI
for MIDP-enabled devices. Technical re-

port, Sun Microsystems, Inc., January 2002.
http://developers.sun.com/techtopics/mobility/
midp/articles/socketRMI/.

Jacques Malenfant, M. Jacques, and F. Demers. A
tutorial on behavioural reflection and its implementa-
tion. In Proceedings of Reflection’96an Francisco,
1996.

Hideaki Okamura, Yasuhiru Ishikawa, and Mario
Tokoro. AL-1/D: A distributed programming system
with multi-model reflection framework. IRroceed-
ings of the International Workshop on New Models
for Software Architecture (IMSA’92)992.

OMG. The Common Object Request Broker: Ar-
chitecture and Specification Object Management
Group, Needham, MA, rev. 2.2 edition, 1998.

OMG. Meta Object Facility (MOF) Object Manage-
ment Group, Needham, MA, 2000. OMG Document
formal/2000-04-03.

OMG. The Common Object Request Broker: Ar-
chitecture and Specification Object Management
Group, Needham, MA USA, rev. 3.0 edition, 2003.

[29] Fernando Magno Pereira, Danielle Gordiano Valente,
Geraldo Robson Mateus, and Antonio Alfredo Fer-
reira Loureiro. Arcademis: A java-based framework
for middleware development. IRroceedings of the
22nd Brazilian Symposium on Computer Networks
(SBRC’2004)Gramado, RS, 2004. SBC.

[30] Douglas Schmidt, D. L. Levine, and S. Mungee. The
design of the TAO real-time object request broker.
Computer Communication21(4):294—-324, 2000.

[31] Brian C. Smith. Reflection and Semantics in a Pro-
cedural Language Ph.D. thesis, MIT Laboratory of
Computer Science, 1982. MIT Technical Report 272.

[32] Sun. Connected Limited Device Configura-
tion (CLDC). Sun Microsystems, Inc., 2004.
http://java.sun.com/products/cldc/index.jsp.

[33] Sun. J2ME Mobile Information Device Pro-
file (MIDP). Sun Microsystems, Inc., 2004.
http://java.sun.com/products/midp/index.jsp.

[34] Sun. Java 2 Platform Micro Edition Sun Microsys-
tems, Inc., 2004. http://java.sun.com/j2me/.

[35] Clemens Szyperski.Component Software: Beyond
object-orientation Addison-Wesley, 1997.

[36] Guido van RossunPython Documentation, version
2.3 Python Labs., 2002. http://www.python.org/doc/.

[37] Guido van Rossun and F. L. Drake. Ex-
tending and embedding the Python inter-
preter. Technical report, Python Labs., 2001.
http://www.python.org/doc/current/ext/
ext.html.

[38] Takuo Watanabe and Akinori Yonezawa. Reflec-
tion in an object-oriented concurrent language. In
Proceedings of ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA'88) San Diego, CA, 1988. ACM, ACM
Press.

