Using AOP to Bring a Project Back
In Shape: The OurGrid Case

AylaDantas! Walfredo Cirne! Katia Saikoski*

t Laborabrio de Sistemas Distritidos
Departamento de Sistemas e Compatac
Universidade Federal de Campina Grande, 58109-970, Cantpiznde, PB, Brazil
ayla, walfredo@dsc.ufcg.edu.br

* Computing Lab - Research and Development
HP Brazil
katia.saikoski@hp.com

Abstract log in [9]. This solution has grown in several ways and
The design and development of distributed softwarehas become widely used. Several research results (e.g.,
is a complex task. This was not different in OurGrid, fault management [25], resource sharing [2, 3], applica-
a project whose objective was to develop a free-to-jointion scheduling [12], etc) have been incorporated into the
grid. After two years of development, it was necessaryoriginal prototype. The architecture of the system had to
to redesign OurGrid in order to cope with the integration be modified to accommodate such new features. If on
problems that emerged. This paper reports our experi-the one hand the inclusion of new capabilities was a good
ence in using Aspect-Oriented Programming (AOP) in theevolution for the original idea; on the other hand, it in-
process of redesigning the OurGrid middleware. The es-troduced chaos to the project. Most of the new features
sential direction of our approach was to get the project have been developed by independent teams. In order to
(and the software) back in shape. We discuss how théelp the integration process, automatic tests needed to be
lack of separation of concerns created difficulties in the provided by each integrator, and all the tests needed to be
project design and development and how AOP has bee@xecuted before the integration was completed. However,
introduced to overcome these problems. In particular, weproviding high-quality automatic tests for a grid solution
present the event-based pattern designed to better isois a complex task. Besides the usual difficulties in devel-
late the middleware concerns and the threads. Besidespping and testing multi-threaded and distributed software
we also present the aspects designed for managing th@rids add new challenges due to their wide-dispersion,
threads and for aiding the testing of multithreaded code. loose coupling, and presence of multiple administrative
We also highlight the lessons learned in the process ofdomains. In fact, both grid infrastructure and application
regaining control of the software. are currently very brittle [27]. After the integration pro-
Keywords: Separation of Concerns, Aspect], Grid cess, OurGrid 2.0 was released and used. At this point,
Computing, Software Reengineering, Software Architec-the bugs begun to appear and we started to identify im-
ture, Tests provements that needed to be performed. Nevertheless,
changing the code in a secure way had become a chal-
lenge and a very error-prone task. The several application
concerns were not well isolated, and the application tests
were not reliable since they could fail either due to an in-
in which institutions donate their idle computational re- sufficient time to wait befort_e an assertion or due toa bug.
At that point, we have decided to experiment with AOP

fg:;ﬁfse;nweﬁg:inegeedézr ?SC Cg?;]smgusroerﬂgcigse?fzz ;glfechniques to identify the problems associated with the
P 9€s N&ottware. The first step was to use AspectJ to debug Our-
fact that people do not use their computers all the time

. -) ‘Grid and get a better idea and control of its threads, espe-
OurGrid started by providing a simple and complete way _. ; . .
o ially during tests. By doing so, we could get a working
for users to run applications over all resources they coul

1. Introduction
OurGrid is an open, free-to-join, cooperative grid

Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

version of OurGrid with a reduced number of bugs (Our- An example of an aspect language is AspectJ [20],
Grid 2.1.3). Another concern was the software evolution.which is a general-purpose aspect-oriented extension for
This working version was very hard to evolve. Then we Java. It supports the concept @in points which
started an effort to isolate concerns or aspects of the-appliare well-defined points in the execution flow of a pro-
cation, redesigning it using an architecture where threadgram [34]. It also has a way of identifying particular join
could be well managed and where the tests could be mor@oints (namegbointcut§ and a mechanism to change the
deterministic and easier to implement. application behavior at join points (namadvice.

In this paper we report our experience in using AOP Pointcut designators identify particular join points by
during the OurGrid development, especially in a critical picking out a subset of all the join points in the program
phase of the project, and we present the redesigned Oufflow [20] and the corresponding values of objects at those
Grid architecture. The main contribution was a better points. A pointcut example is shown in the following:
;eparation of concerns, which makes easier th_e integr%oi ntcut startingApplication():
tion of new features to the software as well as improves execution (public static void
OurGrid’s usability. Another contribution is the develop- main(String [])) ;
ment of a general package for thread management using .) _ _
Aspect]. This package aids in testing and debugging of ThIS pointcut captqres the execunon of any public and
multithreaded code. static method calledwi n that has &t ri ng[] param-

This work is organized as follows. Section 2 briefly eter and hasoi d as |t§ return type. This 'S Just one
presents AOP and the Aspect] language. Section §xample of the several kinds of pointcuts provided by As-

resents the problems we faced during the OurGrid depeCt‘]' . . .

\F/)elopment, inpspecial, for not dealing c?)rrectly with dis- Advice Fieclar_atlons are used to define code that runs

tinct aspectof the software. Section 4 presents how we when a pointcut is reached. For exampk_a, we can dgflne

used Aspect] to identify the OurGrid problems and to Sup_code to r'un before a pointcut as shown in the following

port the testing process. Section 5 presents the redesigneed(ample'

OurGrid aiming an isolation of concerns and threads man-before(): startingApplication(){

agement using an event-based architecture. Section 6 is System out. print|n(

the evaluation section, where we analyze the OurGrid re; e systemwi Il start”);

design and we present the lessons learned during the pro-

cess. Section 7 discusses some related work. Finally, Sec- Wjith this advice, a message is displayed on the stan-

tion 8 presents our conclusions and suggests directions fofard output before the execution of angpi n method

future research. identified by thest arti ngAppl i cati on pointcut.
Besides thebef ore advice, Aspect] also provides
af t er andar ound advice. The former runs after the

2 AOP Overview computation ur_ld_er tht_e jqin point finishes, while th_e_latter
runs when the join point is reached, and has explicit con-

Separation of concerns is an important matter for soft-y| gyer whether the computation under the join point is
ware development. In its most general form, separation|iowed to run at all [34].

of concerns refers to the ability to identify, encapsulate, Aspect] also has a way of statically affecting a pro-
and manipulate the parts of a software that are relevan oy * \jth inter-type declarations, the static structure
to a particular concept, goal, task, or purpose [33]. By i 4 program can be changed. For example, we can

analyzing the application concerns, we can organize an¢hange the members of a class and the relationship be-
decompose software into smaller, more manageable ang,cen classes [34]

comprehensible parts that address one or more concerns. Finally, AspectJ has the concept of@spectwhich is
Programming paradigms address this issue in distinc modular unit of crosscutting implementation. An aspect
forms (e.g., procedures and functions, modules, objects)is defined similar to a class definition, and it can have
However, not allaspectsthat need to be addressed in methods, fields, constructors, initializers, named point-
a program can be encapsulated in traditional programyyts, advice and inter-type declarations. In short, aspect
ming ways to separate concerns (e.g. message loggingroup pointcuts, advice, and inter-type declarations. The

ally scattered across the code, which makes maintenancgy an aspeaweaver{40].

and evolution complicated. Aspect-Oriented Program-

ming (AOP) [21] is a programming paradigm that aims to

clearly address thaspectghat crosscutraditional mod- L)

ules. AOP proposes that those aspects (e.g., transactios: CGEtting into Trouble during the Develop-
message logging, error handling, failure handling, andment of OurGrid

output formatting) should be written separately from the In this section we give an overview of OurGrid and
functional code. grid computing. Then, we discuss the problems we had

22

Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

in the process used to build this grid middleware. Finally, 3.2. Problemsin our development process

we describe the project status before the redesign. The process used to build OurGrid was XP-based [5].
However, during the development of the initial Our-
3.1. OurGrid overview Grid versions, practices such as “Continuous Integration”

OurGrid is an open, free-to-join, cooperative grid in “Pair Programming”, “Collective Ownership” and “Small
which participants donate their idle computational re- Reléases” were not used.
sources in exchange for accessing other participants’ idle In contrast with the weakness of omitting some prac-
resources when needed [8]. It aims to enhance the contices, there was a strong point in the process by the use of
puting capabilities of research labs around the world, by“automatic tests”. However, even the tests had problems
allowing them to trade resources that would otherwise be(low coverage and non determinism) and the test-first ap-
wasted. OurGrid was designed to be scalable, both in thg@roach (implement the tests before the functionality being
sense that it supports thousands of labs, and that joiningested) was not used due to the system complexity and the
the system is straightforward. In fact, anyone can juststrict deadlines.
download the OurGrid software and join the grid. There once the initial version of OurGrid was developed,

is no need for paperwork or human negotiation, as itis thegeyeral research efforts evolved in parallel. The evolu-
case for other grids [8]. tion of the OurGrid code and the external features were
The current design of OurGrid assumes applicationsmanaged separately (e.g., different branches in a reposi-
to be Bag-of-Tasks (BoT). A Bag-of-Tasks application is tory, bug fixing, etc.). Then, after one year, each branch
a parallel application composed of independent tasks thajheeded to be integrated into the repository main branch in
can be executed in any order. A typical example of a BoTorder to release version 2.0 with several new features.
application is a set of tasks composing a parameter-sweep The integration of each new feature (each branch in
simulation. BoT applications are both relevant and suitedthe repository tree) was a hard task. First, the auto-

for gxecution in grids.. OurGrid is open-source gnd itis matic tests took a long time to be performed (more than
available for downloading tt t p: //WMA./' ourgri di .3 hours). Second, sometimes the tests failed because of
org. The current status of the OurQnd community is timing problems, that is, the time the test would wait be-
avallak_JIe atht tp: /./ status. our_gr|_d. org. The_ fore assertion was not enough because the functionality
OurGrid b_aS|c architecture s_hown |n.F|gure 1 COMPIISESt; he tested had not finished yet. This happened because
thg foIIowm_g elemgnts: therid Machines (GuMs), the the test thread usually created other threads that would ac-
Grid Machine Prowc.iers(GuMPs) ar.1d thé;cheduler. tually make the assertions correct. Therefore, sometimes
We may summarize the communication between thesg; \yas necessary to includg eep calls on the tests to
elements as follows. The user submits jobs toStteed- ke them wait before these assertions. In several cases
uler. The Scheduler then requests machines (GuMS) 10 o code was committed with bugs because application
the providers (GuMPs) and allocates the received GuMsjeyelopers interpreted failures as an insufficient “sleep”
to execute the tasks of the submitted jobSGAMP con- ime in the thread control of the test. Finally, some of the
trols machines in a given administrative domain. GUMPStjres were really bugs, especially those related to the
can trade machines among themselves using an incentivesyder of execution of threads that were not foreseen. Such
compatible peer-to-peer protocol [2, 3]. bugs made the tests pass sometimes and fail in others.

In the 1.0 version of OurGrid users could submit o . :
their jobs directly through th&chedul er remote ob The result of this integration approach was a reposi-
. J0bs ety gnt . . tory with non-deterministic tests whose failures could not
ject or using Linux shell scripts. The machines available . . . :

. . - : : .~ be well diagnosed. This was due to the increase in the
for the jobs in the initial versions were just those previ- ; : .
. number of threads and synchronized blocks in the applica-
ously configured in a local grid machine provider. . .
X tion (for example, there were 174 synchronized blocks at
OurGrid 2.0 brought a host of new features COM- yq an of this set of integrations). The worst scenario was

pared with the 1.0 version, such as new scheduling heurisfhat each thread could freely “walk” throughout a poorly
modularized code, making deadlocks easy to be created

tics [12,30] and a new way to obtain GuMs using a peer-
and difficult to be detected. To make things worse, be-

to-peer community [3]. However, the process of incor-
porating these functionalities faced some problems. AS.ause tests would take a long time, developers would fre-
guently interrupt a test and execute it later without notic-

with other grid systems [27], the result was a brittle code.
Besides the classic difficulties in developing and testinging that the delay could be the result of a deadlock that

multi-threaded and distributed software, grids add newq,n .y hapnened in a certain threads configuration. Besides
challenges due to their wide-dispersion, loose couplinge testing problems, the code was not well understood
and presence of multiple administrative domains. In par-p, 16 \yhole development team and evolution (including
ticular, we had very serious problems in testing the soft-bug fixing) had become a hard problem, especially be-
ware. cause separation of crosscutting concerns and even of the
Iversion 1.0 of OurGrid was originally called MyGrid and it svae- Cpncems th.at Were. not so.crosscuttmg has not been con-
leased in the beginning of 2003 sidered during the integration.

23

Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

wannaGuMs
addJob -

—_— Scheduler GuMP

-
-==-1herelsGuM

T

Figure 1. OurGrid Architecture Basics

4. Using Aspects to Diagnose the Problems ThreadServices
and Test OurGrid
Because the code of OurGrid was handled by sev- +waitUntilWorklsDone()
eral people (around 20) without usipgir programming Ia::tg:I::E::2:3:22;’;‘;23‘;{(3nning 0
a}nd not.focusin.g.on theollective code ownershipra_lc- +areAllThreadsWaiting()
tice [5], it was difficult to understand strange behaviors of +waitThreadsDie()
the complete application. An even more difficult task was +waitUntilThreadIsWaiting()
+printWaitingThreads()

to correct the bugs. Bug fixing begun to take much more

time than expected after the release of versions 2.0 and
2.1. As a consequence, we started an effort to better un-
derstand the code in order to make its evolution possible.
At this phaseaspectg§21] were introduced.

+printStartedThreads()
+printRunningThreads()

Figure 2. Thread Services class operations

4.1. Management of application threads during de- which can be reused in other projects.
bugging and testing The OurGrid tests use the JUnit framework [24],
The main problem was to understand the behavior ofwhich is based on assertions. Each test invokes the ap-
the application threads. In order to do that using pureplication and then it makes an assertion to verify if a
object-oriented programming, we would need to insertcertain state has been reached. Before these assertions,
code in several parts of the application (e.g., in eachwe usually usedl| eep calls with a certain amount of
thread creations| eep andwai t call, etc). So, we de- time to wait until a certain condition to be tested was
cided to use AOP to help in this process. In the end, AOPachieved. This happened because the test thread usually
was not only used to debug the code, but also to improvecreated other threads that actually changed the applicatio
the testing process by controlling the application threadsstate to the one expected by the test assertion. Neverthe-
before performing assertions. less, the sleep time was not a good solution because it is
However, there were problems regarding the use ofdependent on the machine being used in the test and on
AOP by the development team. First, only one personthe load it faces.
was familiar with AOP and second, the team was very The org.ourgrid.threadservi ces pack-
heterogeneous and changed frequently. The solution waage solves this problem. It was accessed through the
to devise a transparent way to introduce AOP. This wouldThr eadSer vi ces class, which is a common class with
allow anyone to use it, even without AOP knowledge. a set of static operations (illustrated in Figure 2). From
The programmers simply needed to compile their pro-the methods available, the most used for tests was the
grams with a different command and to know the meth-wai t Unt i | WWr kI sDone method. This method makes
ods of a class that provided services that made the testthe caller thread wait until all threads started by the test
threads wait for the other application threads before pro-have finished or were waiting on a monitor. The other
ceeding. For the debugging process, we did not focusmethods used to make the test thread to wait (methods
on much transparency because our intention was only tavai t *) were also widely used and they replaced most
understand the problems in application threads. Moreof the sl eep calls from the tests, making them faster
specifically, we wanted to identify the following points: and more deterministic. For instance, if we wanted to
when threads started and finished to run, when the thread®st the Scheduler, the test would submit a job to it and
waited on a monitor or when these waiting threads werethen verify if the job had been successfully executed
notified. This debugging code led to a general packageasserting that the job state was finished. Before asserting
for testing callecbr g. our gri d. t hr eadser vi ces, if the execution had successfully finished, we would call

24

Ayla Dantas, Walfredo Cirne, Katia Saikoski

Using AOP to Bring a Project Back in Shape:
The OurGrid Case

the ThreadServices. wait Until Wr kl sDone

The code inside each advice will include the threads

method and then, the test thread would wait until thecaptured by the pointcuts in different collections of
scheduler thread and the other threads started by the tetitreads according to their state (started, running or wait-

had finished running or were waiting on a monitor.

ing). AstheThr eadLi st s classis responsible for these

In order to use the services shown in Figure 2, be-collections of threads, the inclusion is done through an in-

sides invoking th&hr eadSer vi ces class on the tests,

stance of this class, namedi st s. Note that in the last

it was necessary to replace the command used to comadvice we take the caution of excluding thai t calls
pile the application before the tests. In more practicalthat were inside th&hr eadLi st s class itself.

terms, application developers need to invoke dhé as-

We have also included aaf t er advice to remove

pectscommand. This did not cause any impact in the de-a thread from the collection of running threads after the
velopment process since developers already used Ant [18] un method execution has finished:

for testing and compiling.
In order to implement th&hr eadSer vi ces meth-

ods without directly changing any part of the code, we

have implemented tHeunni ngThr eadsMni t or as-
pect. TheRunni ngThr eadsMoni t or aspect man-

after(): runnabl eRunExecutions(){
tLi sts. renobveRunnabl eThread() ;

Another twobef or e advices have also been imple-

ages the application threads with the help of a Java clasgnented, as illustrated below. They are invoked when

called Thr eadLi st s, which manages thread collec-
tions. Some of th&®unni ngThr eadsMoni t or point-
cut definitions are the following.

poi ntcut threadStartCalls(Thread t):

call (public void start())&& target(t);
poi ntcut waitCalls(Object 0):

call (public void wait())&& target(o0);
poi nt cut runnabl eRunExecutions():

execution(public void Runnable+.run());

The threadStartCalls pointcut illustrated
above collects every call to thet art method on a
Thr ead object. Thewait Cal | s pointcut collects
every call to thewai t method on anyObj ect. This
will indicate that one of the threads will be waiting
on a given object. The unnabl eRunExecuti ons

noti fy andnoti f yAl | methods are called during the
execution, but not withinThr eadLi st s class. They
are responsible for notifying theLi st s object about
threads that may stop to wait, and that could, therefore,
have changed their state.

bef ore(Obj ect 0):(
call (public void notifyAl()))
&& target (o) &&! wthin(ThreadLists){
tLists.notifyAl lWitingThreads(o0);
}

bef ore(Obj ect 0):(
call (public void notify()))
&& target (o) && within(ThreadLists){
tLists.notifyOneWitingThread(o);

As could be seen,ThreadLists is responsi-

captures the moment a thread is actually running. Thisble for managing the state of application threads.
corresponds to the execution of everyn method from It implements the functionality that waits until a
aRunnabl e object or from a class that implements this given configuration of threads is achieved or prints
interface, such as théhr ead class. These execution threads in a given state, which is provided by the
points were important to capture, because in most of theThr eadSer vi ces class (see Figure 2). In order to do

tests the threads are only started (i.e.,gshart method
is called). However, when thet art method returns, it
does not mean that thein method has started.

In the following, we show a number @fdvices that

this, theRunni ngThr eadsMbni t or aspect replaces
the Thr eadSer vi ces static methods implementation
using the Aspectar ound advice. Developers would
use static methods fromhr eadSer vi ces class, but

present the code to be run immediately before the pointwould be in fact using a real instance™ifr eadLi st s

cuts described above are reached.

before(Thread t): threadStartCalls(t){
tLists.includelnStartedThreads(t);

}

before(): runnabl eRunExecutions(){
t Li sts.incl udel nRunni ngThr eads(
Thread. current Thread());
}

before(Object 0): waitCalls(o) &&
I'wi t hi n(Thr eadLi st s) {
tLi sts. addWiting(o);

25

instantiated by theRunni ngThr eadsMbni t or as-
pect. This little “trick” was essential to make the use of
aspects transparent to most programmers.

One of these advices is shown below. The others fol-
low the same idea.

voi d around(): execution(public static void

org.ourgrid. threadServices. ThreadServi ces.
wai t Unti | Wor kl sDone()){

tLi sts.waitUntil WrklsDoneNotifying();

instead of
the body of

that
in

This advice defines
cuting what is defined

exe-
the

Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

Thr eadSer vi ces. wai t Unt i | Wr kl sDone was kept easy as it was introduced in a transparent way
method, thewai t Unti | Wor kl sDoneNot i fyi ng through a different call to a tool already know by the de-
method is called on th&hr eadLi st s instance owned velopment team (Apache Ant tool).

by the aspect.

4.2. Finding deadlocksthrough existing tests 5. The Redesian of OurGrid
After we have solved the problems of non- ™ 9

deterministic tests that failed because of timing problems According to the analysis based on the aspects in-

we still had the challenge of discovering application dead-c/uded in the code, we discovered that a reengineering
locks. process was necessary or we would lose the control of

We randomly called thel eep method (with a ran- the qode completely. The main goal of this process was to
dom time at a given interval) on running threads so thatWell isolate internal concerns (aspepts)_of the grid middle
application threads would run in different orders. AspectsWare and to better control the application threads. Some
aided in this task and provided a solution more appropri-c/asses could be reused, but others had to be completely
ated than those based on pure object-oriented approadigWritien or created.
where several parts of the code needed to be changed. In this reengineering process, we have tried to iden-

Testing would then be run over and over seeking for atify patterns in the concerns implementations that would
deadlock. make evolution easier. Besides that, identified patterns

A single advice in a new aspect (the could also be used for future concerns to be included on

form this task: the OurGrid broker (called MyGrid) redesign to illustrate
our experience and share some ideas from this process.
before(): call (* =(..)) The first concern to isolate was the user interface. In

&& withincode (* *..x.run()) {

. the early versions of OurGrid, users had to directly ac-

} makeThreadSl eepl f1t1sHerTurn(); cess remote objects through RMI [17] or Linux scripts,
and they were always forced to change their grid appli-

This advice invokes the cations when any interface (or script) changed or when
makeThr eadS| eepl f It 1 sHer Turn method a new interface was added. Besides, if the communi-

before the execution of every call to any method insidecation infrastructure changed, users had to make several
a run method execution. The method invoked inside changes in their application if directly accessing the code
the advice verifies if the sleep should be called or not,(which was the most common use). Moreover, it was

according to a random choice, and then invogégep not clear for the users which methods exposed by the re-
on the currently executing thread choosing a randommote interfaces should be used. Therefore, we have de-

interval. fined theor g. our gri d. mygri d. ui . Ul Servi ces
Although this aspect was really useful for us in order interface to offer all MyGrid services. This interface is
to find deadlocks, randoml eep calls considerably in- illustrated in Figure 3 and it can be accessed via Java or

creased the execution time of tests. Therefore, the testgsing script wrappers from the OurGrid distribution. My-
should not be executed every time with thedeeep Grid also offers a graphical user interface that accesses th
calls. As we were using AspectJ, in order to perform this, Ul Ser vi ces services. More details about the Ul ser-
we just exclude th@hr eadS| eeper Aspect fromthe vices can be found in the OurGrid manual [35]. Besides
weaving process. To do that, the developers simplyisolating the user interface, we needed to isolate internal
needed to use a different Ant task to compile. concerns of MyGrid. In this isolation, we needed to or-
In order to find a deadlock through a test that some-ganize the application threads and minimize the probabil-
times gets blocked and sometimes passes, the developeity of introducing deadlocks in the evolution of the soft-
must include the aspect and execute the test many timegvare. In order to do that, we have modularized the solu-
The more executions, the more likely a problem is found.tion and employed an event-based architecture for com-
If there is no deadlock suspicion, developers can normallymunication [7]. The salient feature of one event-based
execute their tests without this aspect. However, auto-design is that a thread in a module never wanders into an-
matic tools, such as Linugr ont ab command, must be other module. The first step of this process was to identify
used to invoke the execution of the tests for several timeghe concerns that needed to be modularized in the broker.
using this aspect to assure all tests are passing and thdihen, we implemented each concern with a better control
they are not getting blocked. of its threads and made communication between them use
The use of aspects for threads management during desolely events. The following concerns had to be isolated
bugging and testing aided tremendously in the projectin MyGrid: scheduling, local grid machines provisioning
critic phase. Besides that, they were not very difficult (the local GuUMP), and the execution of replicas.
to be developed since there was someone already famil- In our implementation of the event-based architecture,
iar with AOP in the team. Using the developed aspectswe have noticed a pattern that was repeated in many appli-

26

Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

«interface» receive machines from the local GuUMP, users must define

UlServices their grid machines and the way to access them. This is
+getJobs() performed by invoking théocal Grid Machine Provider
+cancelJob() module. We will consider this operation to demonstrate
+waitForJob() the dynamics of the event-based pattern used in the My-
+addJob() Grid implementation that has proved to ease the evolu-
+getGUMPSpecs() tion of the software. To do this, we will present the dy-
*+setGuMPs() namics of aset Local GuMs call, which is a method
:getLocalGuMP Specs() from the Ul Ser vi ces interface used to configure the

setLocalGuMs() local grid machines of the user. In order to do that, the

+getSchedulerGuMSpecs() . o .
+isHomeMachineUp() implementer of th|s_ mterfacg contacts a rgmote quect,
+getMyGridVersion() a GuMvanager . Figure 4 illustrates this interaction.
+startMyGrid() _Every event to be processed b_y Bwnent Pr ocessor
+stopMyGrid() implements theAct i onEvent interface and therefore
+isExecutingIinHomeMachine() presents gprocess() method. In the creation of

each event, such as tl8et GuMsRequest Event, il-
lustrated by Figure 4, there must be an argument passed
to the object that will actually perform the action rep-
resented by the event. In this figure, this object is the
cation modules and that can probably be applied to otheRequest Manager .

projects. It can be summarized as follows: the services With the event-based architecture divided in modules
provided by a module are offered through a Facade [14]and following a pattern that was repeated in many places,
class. This facade can be accessed by remote objectmaintenance had become easier and threads management
by other facades, or by any element of the facade modtoo. There was a thread in eaEhent Pr ocessor of a

ule. Each fagade operation is converted into an event tanodule and when other internal threads from each mod-
a module, which is abstracted by the facade to its userule were needed, they only changed the internal state of
There is a contract that allows only one event in a mod-the module via the module facade (via an event). Besides
ule to be processed at a time, making the applicationisolating concerns, we had therefore isolated the threads
threads more controllable. These events are processed land decreased the number of synchronized blocks (from
Event Processor s classes and they use specific man-174 in version 2.1.3 to 110 in version 2.2). Another im-
agers from each module, which are classes invoked byportant observation is that many elements of the pattern
the events when they are processed. The event processnplementation can be automatically generated, such as
ing is performed using the Command design pattern [14]the Event Pr ocessor and the basic structure of each
to make theEvent Processor a general entity. The Event used on a module.

basic elements of our pattern are therefore: the fagcade, Although we have focused on the MyGrid part of the
the event processor, the events and the managers. Its dpurGrid solution, the separation of concerns principle
namics is explained next with a concrete example that isyas also applied in other parts of OurGrid, making the

Figure 3. User Interface services offered via MyGrid

illustrated by Figure 4. system evolution possible and less stressing than in the
In MyGrid, three modules were defined; all of them past. We could have avoided redesign and made the isola-
implement the pattern described above: tion mostly using AspectJ, for example, with the code we
had in the past. However, with this solution, we would be
e Scheduler avoiding refactoring, which is necessary in several mo-

ments and cannot be replaced by AOP but aided by it.
Besides the redesign, another aspect that also made
e Replica Executor the software evolution better was the stronger focus on
important XP practices that were not being followed dur-
By well isolating these modules, we have Separated thre%g our deve|0pment process, as we have discussed in
different aspects of the middleware: scheduling, local section 3.2.
gums provisioning, and management of replicas’ execu-
tion.
TheSchedulemodule is responsible for receiving the)
requests for the execution of jobs and allocating replicasd- Evaluation
of the tasks defined in these jobs for machines. The ma- In this section we evaluate the result of applying AOP
chines can be provided by the local GuMP (tleeal Grid in the redesign of OurGrid. We first present a compari-
Machine Provide). After this allocation, the scheduler son between the original and the redesigned versions of
invokes theReplica Executomodule to manage the exe- OurGrid. Then we present the lessons learned from the
cution of a chosen replica at a given machine. In order toredesign process, evaluating the benefits it brought to the

e Local Grid Machine Provider

27

Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

UlServices GuMManager LocalGuMPFacade SetGuMsRequestEvent GuMPEventProcessor

setGuMs(gumSpecs) :

|
l
setGuMSpecs(gumSpecs) :

new (gumSpecs, requestManager)
Ny
|
|
1

T
|
|
|
|
|
:
|
i putEvent(setGumsEvent)
|

|
A
|
|
I
|
|
|

N

Figure 4. OurGrid event-based pattern dynamics

software and the team. an architecture based on the processing of events. Before
redesign, it was really hard to know why a deadlock was
happening. We have designed two aspects to help in iden-

The first analysis we present is a comparison betweer'YINg these problems. Th&hr eadS| eeper aspect

the structure of the OurGrid code before the redesign ancimd theRunni nnghr eadsMoni t-or aspgct helped us
after separating therosscutting concerns improve the quality of our tests with multithreaded code.

. owever, correcting an identified deadlock was really
The aspect that triggered the rework was the th_r(_aa ard, because we had many synchronization blocks and
management problem. Because the tasks of provision-

. . : . different objects as locks for these blocks.
ing machines, scheduling and management of executions

were scattered across the code, it was difficult to control ~AS We can observe, a reengineering process was nec-
threads related to each task. The implication was the comgSsary in order to better isolate OurGrid aspects. In AOP
plexity in finding deadlocks and correcting them since Methodology, the crosscutting concerns are modularized
there were many synchronization blocks and different ob-PY identifying a clear role for each one in the system,
jects as locks for these blocks. implementing each role in its own module, and loosely
Before redesign, we can summarize the architecture"®UPing €ach module to only a limited number of other

using Figure 5. As can be seen, Remote Objects (objectgn()dmeS [22].
that implement thg ava. r ni . Renot e interface) re- After redesign, we created a structure to be followed
ceived remote method invocations possibly from differ- by developers, clearly defining the application modules
ent threads. The threads that came from method call@nd the way these modules should interact. In order
to these objects could freely walk along the applicationto better isolate thread management, which was spread
packages. For each thread execution, several synchrghroughout the code using synchronized blocks, we have
nized blocks were visited. In order to illustrate the com- reduced these blocks and we have used an event-based
plexity in extending and debugging OurGrid, Figure 6 architecture. For each module, every invocation per-
shows a sequence diagram representing some intern&rmed to a remote object by a different thread was
method calls that were invoked when the user wantedredirected to the correspondent module facade. The
to add a new grid machine to his personal grid. Infagade then created an event, depending on the method
this sequence of calls, many synchronization actions hapcalled on it, which would be processed later by the
pened and different objects were used as locks. Ini-Event Processor of that module. The necessary
tially, there is a synchronization action on the processorsclasses from the module would be invoked in a secure
list managed by thé.ocal GWProvi der | npl class. Wway since only one event per module would be invoked
Then, there are calls tget | nst ance andi sAl i ve at a time, changing the module state in a consistent way.
methods fromGuMSt at eOr acl e, which are synchro- Figure 8 summarizes the architecture after redesign con-
nized. Synchronized methods are also called on the Prosidering threads execution in a general way. An instan-
cessor classget Gri dMachi ne andacti ve). Be- tiation of a thread execution in the redesigned software
sides that, there is also mewPr ocessor call, from was shown in Figure 4. Although we could obtain a bet-
theRequest Responder class, which is also synchro- ter separation of concerns and a better management of
nized. application threads, we had some impacts on some met-
In order to understand the problem, we made severafif:s= which were calculate'd usi.ng the Eclipse Metrics plu-
drawings using different colors to identify threads behav-9in [1]- They are summarized in Table 1.
ior. In Figure 7, we illustrate one of the drawings that ~ One of the measures considered was the number of
helped us understand all synchronized blocks (includingclasses. It has grown from 277 to 427, representing an
methods) of OurGrid and the objects that were used asncrease of 54.15%. This happened because we needed a
locks in these blocks. In order to isolate threads manageelass for each event to be processed in a module instead of
ment in the redesigned version, developers had to followa single method used in the previous versions. However,

6.1. Comparative analysis

28

Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

r,——AppIicatiun Classes———,

Remote Method
Invocation Threads -——..._____p. -
_——— === L
————————— | 3
——— i ————— | 3
————————— L3
r——— 1',|I
————————— -
I ‘ -
\. y
Figure 5. OurGrid before redesign
GridMachineAdder LocalGuMProviderimpl Processor RequestResponder GuMStateOracle
addProcessor(proc) i

getinstance

i
|
/l> put(proc) i
i
|
|
|

T T T
I I I
| | |
r I I
I I I I
I I I I
I I I
I I I I
I I I I
| Ny
i i getGridMachine | i
| I N | |
| ' | isAlive(gum) i |
I L 1 1 N
I I I I I
I I I I I
I L I I I
| I . | | l
| > e | |
i | active i i i
I | I— N I I
i newProcessor | i
I I

|
|
L L N

Figure 6. Adding a grid machine before redesign

29

Ayla Dantas, Walfredo Cirne, Katia Saikoski

Using AOP to Bring a Project Back in Shape:
The OurGrid Case

it il e ke 1=

Srtiodgumm

hashat) Vaoktwsnmi)

SaiwiTage]) =
Tk e
Sp——

liiah bk « me

s ks

"._]-" kA
Fb. LmrhadTer
- Joutid TLJ(
wbuF
coriul
W
w&f‘ﬁ-ﬁ :_I"J..'_'\q_f'—ﬁ;t :’d

. gl 4
*00 - Mol Tones od I T2
 cwrit Rulaf 2l s ¢ o odd Q;f;;{;;‘-
o8 Ruoday™
Carrtif D,J”Q_M!
G“KErﬂb'\j . thin

ioch) S bed

- aAllocated
.. nﬂu% W%—a;
Tmt':’r\ﬂa “.tu.arMJ t T e r‘
Qo ;g‘hfbr 3hny) i a‘ﬁ%

Job

-ﬂ:‘ #J“W l-i'd'ﬂ" ;.._

Wﬁ-:z, { F-:-L:Id/

“raplicaty

Figure 7. Attempt to understand OurGrid threads before igdes

Remote Method
Imvocation Threads

Scheduler
Facade

Replica
Executor
Facade

Figure 8. OurGrid after redesign

30

Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

0G2.1.3| OG22 through an event-based architecture.
Total Lines of Code 33156 34734
Number of classes 277 427 Avoid developers resistance of introducing a new
Afferent Coupling 21.577 | 20.721 technology, such as AOP, during a critical phase of a
Efferent coupling 9 8.581 project by introducing it in a transparent way: If de-
Lack of cohesion of methods | 0.339 0.249 velopers have a little time to finish up something and a
Number of synchronized blocks 174 110 new technology is introduced, there might be some re-

sistance. We have avoided that resistance by introducing
Aspect-Oriented Programming use as a new call to the
Ant tool that would replacant conpi | e call and by
part of the code regarding events creation and processProviding a class witfThr eads utilities that looked like
ing can be automatically generafedRegarding the total & normal Java class. Behind it, there was an aspect re-
number of lines of code, they had only increased 4.75%. Sponsible for performing this class functionality due to
The Afferent Coup“ng average, which is the number its power of knowing the application threads states. With
of classes outside a package that depend on classes iguch approach, developers used AOP without compromis-
side the package, had decreased 4% after redesign. THeg too much time in learning a new technology in a crit-
Efferent Coupling average, which indicates the numberical phase of the project.
of classes inside a package that depend on classes outside
the package, had decreased 4.6%. These metrics are inter-Automatic tests are vital to get a software project
esting, but do not completely express the gains obtainedack in shape and AOP provides a good support in
regarding less coupling between classes, as these metrithe development of automatic tests: Developing tests
are based on packages. The Lack of Cohesion of Methfor grid computing solutions is hard, especially because
0ds(LCOM?*) is a better metric as it considers methods sometimes they impact in the implementation, since the
and attributes. It is a measure for the Cohesiveness of gode needs to be changed. By using AOP, it is possi-
class calculated with the Henderson-Sellers method [19]ble to have more testable applications without directly
If m(A) is the number of methods accessing an attributechanging them, improving test quality. For example, the
A, this metric calculates the average of m(A) for all at- wai t Unti | Wor kl sDone method that we have pro-
tributes, subtract the number of methods m and divide thevided helped us to test multithreaded code.
result by (1-m). A low value indicates a cohesive class.
We obtained that the redesigned version LCOM* value is Really follow the development process you have
26.54% lower than the previous one. adopted: We had serious problems in integration. In
Besides these metrics, we have considered that the rex003, we had 6 different groups implementing new fea-
duction of synchronized blocks was the better result fortyres for OurGrid, each one with a different version of
us, which had made programming more secure regardinghe system. These versions started to be integrated at the
the danger of including deadlocks. The number of syn-end of the year in a serial manner. Each integration pro-
chronized blocks was 36.78% smaller after redesign. cess was hard and the existing tests were of bad quality
and they took too much time to execute. The code being
6.2. Lessonslearned integrated was not known by all the development team,
We have learned some lessons while applying AOPmaking maintenance very difficult. Sometimes, only one
to a project that was in trouble due to the complexity in person knew part of the code because pair programming
threads management. Next we analyze them in a generigras not used during development. In fact, we were us-
form so that they can be applied to other projects in simi-ing an XP-based process, but we were not following most
lar situation. of its practices. From the XP practices [5], the ones that
caused more damage for not being followed were:

Table 1. OurGrid 2.1.3 and 2.2 comparison

Use AOP to get a better control of multithreaded
code: We have lost the control of the multithreaded code. ® Continuous integration: New code is integrated
Our first step was to find the easiest way to identify the ~ With the current system after no more than a few
problems regarding threads execution. Our approach was ~ hours. When integrating, the system is built from
to provide a set of tools for testing that would make it scratch and all tests must pass [3].
easy to identify bugs regarding certain threads execution
order and without directly changing the code. With such
approach we could deliver a better version of OurGrid to
final users, without many of the problems that existed. Af-
ter that, we have made the redesign to better isolate the ap-
plication concerns and specially its threads management,

e Testing: Programmers continually write unit tests,
which must run flawlessly for development to con-
tinue. Customers write tests demonstrating that fea-
tures are finished.

e Collectiveownership: Anyone can change any code
ZCode generation for event handling is expected for OurGfd 4 anywhere in the system at any time.

31

Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

e Pair programming: All production code is written several points of the execution that varied in time, increas
with two programmers at one machine. ing the probability of different threads configurations for

] .] . each test run. The interesting point was to use aspects,

* Refactoring: Changes in the code to improve its de- \yhich made this implementation easier, modularized and
sign and that do not change its functionality. did not introduce complexities to the normal application

As we gave a greater attention to these practices, W@Ode' h K 123 h ¢ in th
could get control about our code again and improve de- ~Another work [23] proposes the use of aspects in the
testing process. The focus is on using aspects to avoid

velopers’ confidence with it. Besides that, due to these 4 X) ,
practices, the redesign process was faster than expectedcnanging the code just to make the implementation of a
test possible, especially considering the use of a teckniqu
called Mock Objects for isolating application units during
tests. We have also explored aspects for tests in our work,
7. Related Work focusing in testing multithreaded code. We have also cre-
Several aspects of AOP have been subject of researctated a general package for thread management that can be
However, we are particularly interested in comparing ourused for testing, debugging and even in the normal execu-
work with those projects that have applied AOP as thetion of the application if such management is necessary.
solution for reorganizing existing code. Other works, such as [36], also present their cases of
Although general aspects of refactoring and AOP havegrid middleware development. In our work, besides pre-
been addressed in several works (e.g., [6,38]), we needegenting our history, and how we got into trouble during
some real examples to be able to compare the resultghe development, we also provided a useful technique for
of our efforts. Scenarios where real systems had to beseparation of concerns in such systems that focused on
(re)organized vary from interface implementations [37], isolation of the user interface and on the use of an event-
reduction of middleware complexity [41], experiment based pattern in the implementation of each concern mod-
with AOP in large scale middleware [11], comparison of ule. Besides that, we have provided reusable aspects and
the use or not of AOP in a component-based web crawlingclasses to aid testing and debugging.
system [26] and others ([4,28,32]). None of them, how- Event-based communication is not new for large-scale
ever, deal with the reorganization of a system in a critical distributed applications [7]. As this style brings some
phase of a project. complexity to the code, we have tried to simplify the pro-
An interesting result was presented in Coady & Kicza- gramming model by providing Fagades that have hidden

les [10] where parts of the FreeBSD operating systemthe use of events from the users of the modules.
were refactored and the result was a software better or-

ganized and easier to evolve and maintain, similar to the
results we found.)
Although there are methodologies for finding cross- 8- Conclusions
cutting aspects, we did not explore them since we had a We have concluded that aspect-oriented programming
very specific initial need. In this area, proposals such ashas been a useful mechanism in the maintenance and
concern graphs [29] and aspect browser [16] could helpreengineering process of OurGrid. Besides helping in the
us in the process of finding more crosscutting aspects irdebugging process and improving the quality of tests for
addition to the specific issues we have selected based omultithreaded code, the focus on separation of concerns,
practical experiences. especially crosscutting ones, was very important for bet-
Even though our selection of aspects was ad-hoc, wéer designing our software.
addressed a very interesting issue in our AOP experi- Modularized implementation of concerns results in
ence with OurGrid. This same issue was identified in easier-to-understand and easier-to-maintain systers [22
the literature. Schwanninger el al [31] have pointed outWhen new concerns emerge, refactorings may be done
that software often present one or more crosscutting conto guarantee we keep the code simple and understand-
cerns, including optimization of resource management,able. Besides that, changes occur all the time in a research
e.g. memory management or thread management. Gibbgroject, requiring good automatic tests. Aspects helped in
& Coady [15] present a case study where AOP has beenmproving the testing of parallel and distribute applica-
applied in a memory management system to help flex-tions. By using AspectJ, we have provided services for
ibility in terms of evolution and adaptation. Walker et controlling the state of application threads and for mak-
al [39] present an experiment with the objective of identi- ing existing deadlocks of the code more prone to happen
fying if AOP could be used to help bug finding and fixing during the execution of tests.
in multithreaded code. More specifically, a methodology = We have also observed that the isolation of the user
for testing multithreaded programs was proposed in [13].interface is really important in order to provide a software
The method proposes reruns of existing tests in order teevolution that does not harm so much the developer. Be-
detect synchronization faults. In our work, besides rerun-sides that, we also believe that the pattern we have used
ning the existing tests, we have introduced sleep calls inn each OurGrid module can be easily applied to other

32

Ayla Dantas, Walfredo Cirne, Katia Saikoski

Using AOP to Bring a Project Back in Shape:
The OurGrid Case

concerns that can come in the future for the project and
even for other projects based on multithreaded code. As a
future work, we want to apply the pattern for other parts
of the middleware being developed and formally describe
this pattern. We also plan to have automated support to it.

Another future work is to explore AOP in other as-
pects of grid computing. We believe AOP can improve
the implementation of some crosscutting concerns such as
grid monitoring, failure detection, accounting and adapt- [8] Walfredo Cirne, Francisco Brasileiro, Nazareno
ability. The implementation of these concerns is difficult
to modularize using pure object-oriented techniques to-
day and if not well modularized, will lead to maintainabil-
ity problems when incorporated into the code. As there
are open issues in grid architecture, we believe AOP can
give an important contribution in this field.

9. Acknowledgments

We would like to thank the whole OurGrid team, in
particular to Erica Gallindo and Lauro Costa, for impor-
tant comments and suggestions to this paper. We also
thank the anonymous reviewers for the insightful com-
ments and questions. This work has been developed in
collaboration with HP Brazil R&D.

References

[1]

(2]

3]

[4]

[5]

[6]

Eclipse Metrics plugin. At

http://metrics.sourceforge.net/.

Nazareno Andrade, Francisco Brasileiro, Walfredo
Cirne, and Miranda Mowbray. Discouraging Free
Riding in a Peer-to-Peer CPU Sharing Grid.FAro-
ceedings of the 13th High Performance Distributed
Computing Symposium (HPDC'200£2004.

Nazareno Andrade, Walfredo Cirne, Francisco
Brasileiro, and Paulo Roisenberg. OurGrid: An ap-
proach to easily assemble grids with equitable re-
source sharing. IRroceedings of the 9th Workshop
on Job Scheduling Strategies for Parallel Process-
ing, June 2003.

Elisa L. A. Baniassad, Gail C. Murphy, Christa
Schwanninger, and Michael Kircher. Managing
crosscutting concerns during software evolution
tasks: an inquisitive study. IfProceedings of
the 1st international conference on Aspect-oriented
software development (AOSD’'Q3)ages 120-126,
April 2002.

Kent Beck. Extreme Programming Explained: Em-
brace ChangeAddison-Wesley, 2000.

Paulo Borba and Sergio Soares. Refactoring and
code generation tools for AspectJ.Rroceedings of
the Workshop on Tools for Aspect-Oriented Software

33

Development (with OOPSLASeattle, Washington,
USA, November 2002.

[7] Antonio Carzaniga, Elisabetta Di Nitto, David S.

Rosenblum, and Alexander L. Wolf. Issues in Sup-
porting Event-based Architectural Styles. mPmo-
ceedings of the Third International Software Archi-
tecture Workshop (ISAW-3)lovember 1998.

Andrade, Lauro Costa, Alisson Andrade,
Reynaldo Novaes, and Miranda Mowbray.
Labs of the World, Unite!!! Accepted for
publication in Journal of Grid Computing

<http://lwww.springerlink.com/link.asp?id=111140
Springer. 2006.

[9] Walfredo Cirne, Daniel Paranhos, Lauro Costa,

[10]

[11]

[12]

[13]

[14]

[15]

Elizeu Santos-Neto, Francisco Brasileiro, Jacques
Sau, Fabtcio Alves Barbosa da Silva, Carla Os-
thoff Barros, and Cirano Silveira. Running Bag-
of-Tasks Applications on Computational Grids:
The MyGrid Approach. InProceedings of the
International Conference on Parallel Processing
(ICCP’2003) October 2003.

Yvonne Coady and Gregor Kiczales. Back to the
future: a retroactive study of aspect evolution in op-
erating system code. IRroceedings of the 2nd in-
ternational conference on Aspect-oriented software
development (AOSD’'03pages 50-59, March 2003.

Adrian Colyer and Andrew Clement. Large-scale
AOSD for middleware. IfProceedings of the 3rd in-
ternational conference on Aspect-oriented software
development (AOSD’'04pages 56—65, March 2004.

Daniel Paranhos da Silva, Walfredo Cirne, and Fran-
cisco Vilar Brasileiro. Trading Cycles for Informa-
tion: Using Replication to Schedule Bag-of-Tasks
Applications on Computational Grids. Proceed-
ings of the Euro-Par 2003: International Confer-
ence on Parallel and Distributed Computingages
169-180, 2003.

Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden
Nir, Gil Ratsaby, and Shmuel Ur. Framework for
Testing Multi-threaded Java Prograr@ancurrency
and Computation: Practice and Experiences(3-
5):485-499, 2003.

Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software Addison-
Wesley, 1994.

Celina Gibbs and Yvonne Coady. Aspects of Mem-
ory Management. IiProceedings of the 38th An-
nual Hawaii International Conference on System
Sciences (HICSS’'05) - Track Big Island, Hawaii,
2005.

Ayla Dantas, Walfredo Cirne, Katia Saikoski

Using AOP to Bring a Project Back in Shape:
The OurGrid Case

[16] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo [30]

[17]
(18]

[19]

(20]

[21]

[22]

(23]

(24]

Kato. Exploiting the map metaphor in a tool for
software evolution. InProceedings of the 23rd
International Conference on Software Engineering
(ICSE’01) pages 265—-274, 2001.

William Grosso.Java RMI O'Reilly, 2001.

Erik Hatcher and Steve Loughranlava Develop-
ment with Ant Manning Publications Co., 2004.

Brian Henderson-Seller©bject-Oriented Metrics:
Measures of Complexityrentice Hall, 1995.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William Griswold. Get- [
ting Started with AspectJCommunications of the
ACM, 44(10):59-65, 2001.

Gregor Kiczales, John Lamping, Anurag Mend-
hekar, Chris Maeda, Cristina Videira Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. IrEuropean Conference on Object—
Oriented Programming, ECOOP’9Q1LNCS 1241,
pages 220-242, Finland, June 1997. Springer—
Verlag.

Ramnivas LaddadAspectJ in ActionManning Pub-
lications Co., 2003.

Nicholas Lesiecki. Test flexibly with AspectJ and
mock objects. At ftp://www6.software.ibm.com/-
software/developer/library/j-aspectj2.pdf.

Vincent Massol.JUnit In Action Manning Publica-
tions Co., 2004.

[31]

3] Peri Tarr and Harold Ossher.

[34]

[35] OurGrid Team.

Elizeu Santos-Neto, Walfredo Cirne, Francisco
Brasileiro, and Aliandro Lima. Exploiting Repli-
cation and Data Reuse to Efficiently Schedule Data-
intensive Applications on Grids. IRroceedings of
the 10th Workshop on Job Scheduling Strategies for
Parallel ProcessingJune 2004.

Christa Schwanninger, Egon Wuchner, and Michael
Kircher. Encapsulating Crosscutting Concerns in
System Software. IRroceedings of the Third AOSD
Workshop on Aspects, Components, and Patterns
for Infrastructure SoftwareLancaster, UK, March
2004.

] Sergio Soares, Eduardo Laureano, and P. Borba.

Implementing distribution and persistence aspects
with Aspectd. InProceedings of the 17th Annual
ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA
2002) pages 174-190, Seattle, Washington, USA,
November 2002.

Advanced Sep-
aration of Concerns in Software Engineering.
In Workshop on Advanced Separation of Con-
cerns in Software Engineering at ICSE 2001
2001. At http://lwww.research.ibm.com/ hyper-
space/workshops/icse2001.

Aspectd Team. The Aspectd Programming Guide.
At http://www.eclipse.org/aspectj, 2003.

Ourgrid 3.0 user manual. At
http://www.ourgrid.org.

[25] Raissa Medeiros, Walfredo Cirne, Francisco [36] Douglas Thain, Todd Tannenbaum, and Miron

(26]

[27]

(28]

(29]

Brasileiro, and Jacques Sd&uv Faults in Grids:
Why are they so bad and What can be done about it?
In Proceedings of the 4th International Workshop
on Grid Computing (Grid 2003)November 2003.

Odysseas Papapetrou and George A. PapadopOL[—37]

los. Aspect Oriented Programming for a component
based real life application: A case study. Pro-
ceedings of the ACM Symposium on Applied Com-
puting, Nicosia, Cyprus, March 2004.

Manish Parashar and Craig A. Lee. Scanning thel38]

Issue: Special Isssue on Grid-Computifgoceed-
ings of the IEEE93(3):479-484, March 2005.

Awais Rashid and Ruzanna Chitchyan. Persistence
as an aspect. IRroceedings of the 2nd interna-

tional conference on Aspect-oriented software de-[39]

velopment (AOSD’'03pages 120-129, March 2003.

Martin P. Robillard and Gail C. Murphy. Con-
cern graphs: Finding and describing concerns using
structural program dependencies.Aroceedings of

the 24th International Conference on Software En- [40]

gineering (ICSE"02)Orlando, Florida, USA, 2002.

Livny. Distributed Computing in Practice: The Con-
dor Experience. Concurrency and Computation:
Practice and Experienc®004.

Paolo Tonella and Mariano Ceccato. Migrating In-
terface Implementation to Aspects. Rroceed-
ings of the 20th IEEE International Conference on
Software Maintenance (ICSM'0AChicago lllinois,
USA, 2004.

Arie van Deursen, Marius Marin, and Leon Moo-
nen. Aspect mining and refactoring. Broceedings
of the 1st International Workshop on Refactoring:
Achievements, Challenges, Effects (REFAGH)-
terloo, Canada, November 2003.

Robert J. Walker, Elisa L. A. Baniassad, and Gail C.
Murphy. Assessing Aspect-Oriented Programming
and Design: Preliminary Results. Workshop on
Aspect-Oriented Programming (In ECOOP’1998)
Brussels, Belgium, July 1998.

Robert J. Walker, Elisa L. A. Baniassad, and Gail C.
Murphy. An Initial Assessment of Aspect-Oriented

Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

Programming. IrProceedings of the 21st Interna- ing Middleware With AspectsIEEE Transactions
tional Conference on Software Engineeringages on Parallel and Distributed Systes4(11), 2003.
120-130. IEEE Computer Society Press, 1999.

[41] Charles Zhang and Hans-Arno Jacobsen. Refactor-

35

