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Abstract

We consider the problem of surface reconstruction of
a geometric object from a finite set of sample points with
normals. Our contribution is to present a new scheme
for implicit surface reconstruction. Similarly to the mul-
tilevel partition of unity (MPU) method we hierarchically
divide the domain obtaining local approximation for the
object on each part, and then patch all together obtain-
ing a global description of the object. Our new scheme
uses ridge regression and weighted gradient one fitting
techniques to get better stability on local approximations.
The method behaves reasonably on sparse set of points
and data with holes as those which comes from 3D scan-
ning of real objects.

Keywords: Computer graphics, Implicit modeling,
Surface reconstruction, Partition of unity, Ridge regres-
sion.

1. INTRODUCTION

Surface reconstruction is playing an important role in
Computer Graphics [6]. Reconstruction is a very com-
plex problem not only because the adjacency and proxim-
ity relations of data are unknown, but also because there
are a lot adversities that need to be faced. The data in
which these algorithms are applied come usually from 3D
scanner. Currently this devices are able to handle real ob-
jects with increasing complexity and the resulting point
clouds of the data acquisition contain fine details, rapid
geometric variations, complex topology and sharp fea-

tures. However, the process of capturing the point cloud
introduces sparse samples, holes (due to the occlusion of
certain part of the object by other ones) and noise.

Several techniques have been studied to solve the sur-
face reconstruction problem along the last two decades
producing a variety of algorithms. Some methods are
based on Delaunay triangulation concepts, among them,
we can cite the works [13| [14! [15]] for clean data and the
works [[12} 21]] for noisy data. Other solutions are based
on local parameterizations of shape like the Moving Least
Square (MLS) approach [20} 10, 11]. Finally, there is also
an important class of methods based on implicit function
approximations. On this class, there are ones that use ra-
dial based functions (RBF) [8} 22} 25] and others based
on domain decomposition schemes [17, |16} [19] 24} [3]].

In this work we will focus on an implicit based scheme
for surface reconstruction. Implicit Surface is a very use-
ful representation for 3D objects, mainly because the in-
ferred shape is computed by a formula which allows the
computation of basic modeling operations in a relatively
easy way [23]. Most of the boundary of man made ob-
jects are compose of several patches which can be approx-
imated by algebraic surfaces. When the object’s shape is
complex, a common procedure is to elevate the algebraic
degree in order to obtain more precision on the approx-
imation. However, in this case due to the ill posedness
of this fitting some spurious connected components ap-
pear on the reconstructed surface [S]. An alternative so-
lution is to decompose the domain hierarchically in com-
pact parts and obtain local approximation for the object in
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each part, and then patch all together in order to obtain a
global description of the object. A practical scheme that
uses such solution is the method of multilevel partition of
unity implicit (MPU) [17]. It provides an adaptive error-
controlled approximation of the signed distance function
from the surface.

Problem description. Given a finite set of points P in
R3 sampled from a surface S in the space, also assume
that for each point p € P the unitary normal vector n to
the surface at p is given. The objective of this work is
to obtain an implicit function F' : R3 — R such that the
isosurface of level zero, F'~1(0), approximates adaptively
S using local error-control.

Contributions. The reconstruction scheme proposed in
this paper is an extension to 3D surface reconstruction of
the work [18] proposed to tackle the 2D case of curve re-
construction. In this extension we introduce a weighted
local algebraic approximation which produces a substan-
tial improvement compared to the original two dimen-
sional method. Our algorithm is based on the main ideas
of MPU [17] that hierarchically subdivides the domain
in several parts and later computes local shape approx-
imations on each part. Our method presents a different
strategy for the local shape approximations and improves
its numerical stability by the use of the ridge regression
technique and weighted gradient one fitting. As a con-
sequence, it avoids the generation of spurious connected
components on the reconstructed implicit surface.

Paper outline. Section 2] introduces some basic con-
cepts. Section [3] describes the main ideas of the original
MPU method. Section @] describes some schemes for im-
plicit surface fitting. Section[fintroduces our new method
and the implementation details. Section[6]shows some re-
sults. Finally, Section [7] concludes and proposes future
directions of this work.

2. IMPLICIT SURFACE AND PARTITION OF UNITY

2.1. IMPLICIT SURFACE

A subset O C R3 is called an Implicit Surface if there
is a function F : U — R, O C U, and a real number ¢ €
R such that © = F~!(c). The implicit surface F'~*(c)
is regular if F is differentiable and satisfies the condition
that at each point x € F'~1(c) the gradient of F' at x does
not vanish.

A polynomial of degree d defined on R? is a function
P, : R?® — R given by the following expression:

Pi(z,y,2) = Z

0<i+j+k<d

iy gk
a; jkx' Yy 2"

An algebraic surface of degree d is the implicit sur-
face P, 1(0). Tt is convenient to adopt a suitable notation
for P;. We adopted the vectorial one proposed by Tas-
dizen et al. in [[18]], which is:

Py(z,y,2) = vfm’yyz)a, )
where
_ t
V(a:7y7z):|:la7dyl'd 1yZZd} (2)
and

t
a= [ao,o,o ©++0ad,0,0a0,1,0 " " aAd—1,1,0 * * - A0,0,1 * ** ao,o,d]

The elements of the vector a € R! are the coefficients
aijr (0<6,0<5,0<kand0<i+j5+k<dof
Py, and the elements of the vector v(; , -) € R! are the
monomials of P;. The dimension [ of the vectors a and
V(z,y,2) depends on the degree d and is obtained by the

. c g (d41)(d+2)(d+3)
following expression: | = ~————="—-".

2.2. PARTITION OF UNITY

A partition of unity (PU) [1]],[4] is a mathematical tool
very useful to combine local approximation in order to de-
fine a global one. Important properties such as the global
maximal error and the convergence order could be inher-
ited from the local approximation. The basic ideas behind
the global approximation construction using partition of
unity are the following:

i. divide the domain in parts,

ii. obtain a local approximation for each part using a
subset of the data that belongs to it,

iii. obtain a global approximation by the use of a
weighted combination of local solution through the
use of smooth non-negative functions that corre-
spond to the weights. In each point of the domain,
the sum of these weight functions should be one.

More precisely, consider a compact domain Q@ C R?
and denote by {¢;}i=1.... ,, the set of non-negative func-
tions with compact support such that:

n

Z vi(z,y,z) = 1 for all points (z,y, z) € Q.
i=1

Let F; be a set of functions defined in supp(p;). Each
function in F; represents a local approximation for the
points of P that belong to supp(p;). A global approxi-
mation for the function f : 2 — R could be obtained as
following:

n

f(xvyaz)"N‘Z@i(ajvyaz)fi(xvyaz)' 3

=1
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where f; € F;. Consider {w;};=1.... , a set of non-
negative functions with compact support such that:

QcC U supp(w;).

j=1

The partition of unity functions ¢; could be generated
by the following equation:

( ) wi(xvyvz)
i\, 7Z = <=n 7
P ) S (@, )

“

The main idea of partition of unity could be resumed
by the equations (@) and {@). Such equations form the ba-
sis of the algorithm Multilevel Partition of Unity Implicit
(MPU) proposed by Ohtake et al. in [17].

3. MULTILEVEL PARTITION OF UNITY

The method called Multilevel Partition of Unity
(MPU) was proposed by Ohtake et al. in [[17] originally to
build an implicit surface approximation of a set of points
and normals in R3. The MPU uses a partition of unity
to obtain a global implicit surface approximation for the
boundary of the object combining local approximations.
It uses an octree as an hierarchical scheme to guide the
domain subdivision.

Follows a concise description of how the MPU builds
an implicit function that globally approximates the points.

The method initially centers the point of P at the ori-
gin. After that, the points are scaled in such a way that
the square = = [—1, 1]3 contains all points of P. We will
adopt the same name P for the set of points after these
two transformations.

The method builds an octree by the use of recursive
procedure where the subdivision of each node is con-
trolled by the error of the local approximation. In other
words, the refinement criteria for a node ¢ of the octree
consists of computing the local error of the approxima-
tion and when this error is greater than a given tolerance,
then the node is subdivided in eight new nodes and recur-
sively the same test is again used for each one of its child
nodes.

Each node 7 on the octree is associated to a weight
function w; with a compact support that is used for the
partition of unity global approximation. The compact
support of w; is defined as a circle of radius r; centered
on the middle of the node ¢. Such radius is chosen pro-
portionally to the size of the diagonal of the square corre-
sponding to the node i, denoted by d;.

In the MPU original method, a quadratic spline func-
tion b : R — R is used to build the weight function w;:

3|(ﬂc,y,z)—ci |)

wi(z,y,2z) = b(

where ¢; is the center of the corresponding node ¢ in the
octree. The value of w; is zero outside the support re-
gion. According to the equation (@), the partition of unity
function ¢; associated to the node 1 is defined as:

Wy (:E Y, 2 )

9075(1'7ya Z) = an

— ) i=1...n (6)
7=1 U}j($7y,2)

where n; is the number of leaves on the octree.

The MPU method uses a quadric (degree 2 polyno-
mial function) to locally approximate the signed distance
function to the boundary of the object. According to the
distributions of the normal in a node of the octree either
a 3D quadric or bivariate quadric polynomial are used to
approximate the local shape. To find the coefficients of
the quadric function Q; : supp(¢;) C R3> — R for the
node ¢, Ohtake et al. [[1'7] used a least squares scheme that
will be reviewed in subsection .11

At each node, a least squares problem is solved con-
sidering only the points on P that belong to its support
region as input. Sometimes (especially when the density
of P is not uniform) the circle of radius r; of a node i
doesn’t contain a sufficient number of points to estimate
robustly the quadric that approximates such points. If the
number of points on the support region of a node is not
sufficient to solve the minimization problem, then they
adopted a solution that increases the radius of the support
region until such minimal condition is guaranteed.

They suppose that the surface S from where the points
are sampled is a level 0 isosurface of a function f : R? —
R. Then, they can use the partition of unity equation (@)
to obtain a F' : R? — R that globally approximates f:

f(x7yvz) ~ F(m,y,z) = Z@Z(-T,y,Z)Qz(Qf,y7Z)
i=1
(7

For more information of this method, see [17]].

4. IMPLICIT SURFACE FITTING

Follows the description of some methods to obtain an
implicit surface approximation.

4.1. MINIMIZING THE ALGEBRAIC DISTANCE
Suppose that a set of ¢ points P =
{p1,p2,...,Pq} C R3 sampled from a 3D surface
S is given. A simple way to obtain an algebraic surface
P;1(0) that approximates S is to minimize the total
sum of the squared algebraic distance, denoted by eqq,
from each point p; € P to the curve P; '(0). Using the
vectorial representation of P, in (), we can write €alg aS:

q
€alg = at(z vivf)a, )
i=1
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where v; corresponds to the evaluation of the vector v,
see equation (), at the points p; = (z;, ¥s, z;). This min-
imization is subject to the constraint that the sum of the
squared coefficients of P; is equal to one (||al|? = 1).
Note that without this constraints the minimum of e is
reached at the null vector. A more robust approximation
measure is to consider the weighted algebraic distance

a' (i, wivivi)a
> wi ’

where w; = w(p;) > 0 is a set of weight and w(z,y, z)
is a positive weight function such that w(x) approaches
to zero when ||z|| goes to infinity or a compactly support
function. To improve the notation, define the matrices M
of size | X g and S of size [ x [ as follows:

€alg =

M:[Vl Vo

vq |,

and . .
i=1 wivivi

S = MM — = L
D i1 Wi

Thus, the minimization problem we have to solve is
the following:

mina{a‘Sa},
subject to:||a||? = 1.

By the use of the Lagrange multiplier A, the con-
strained minimization problem is rewritten as:

mina{a‘'Sa+ \(a'a—1)}.

Its solution is the unitary eigenvector of S associated to
the eigenvalue of S with smallest value [[7]).

Although this method is invariant to affine transfor-
mations [7]], it has some delicate problems. Its results are
sensitive to small perturbations on the input data. More-
over, the algebraic surface P, 1(0) doesn’t consider the
points continuity. Thus, it could generate undesired con-
nected components or glue components that are originally
separated. For more details see [2, 18, [7].

4.2. GRADIENT ONE FITTING

To avoid the problems of continuity and of sensitiv-
ity caused by small perturbation on the input data [2]
proposed a new method that considers not only the set
P but also a given set of normal unitary vectors N =
{n1,ny,...,n,}, where the vector n; is the normal vec-
tor to the surface S at the sampled point p; € P.

The gradient
0Py 0Py
aiy (pz)a g (pz)>

of P, at the point p; = (x;, Y, 2;), will be used by this
method to approximate the direction of the given normal.
It is important to notice that if the gradient of Py at p;

oy

VPq(pi) = (

10

(24, yi, 2;) is not equal to zero, then it is perpendicular to
the tangent plane of the level surface P, that pass through
the point p;.

The gradient one fitting (GOF) method [2] is in fact an
unconstrained least square problem. We have introduced
a modification in the original GOF method that consist of
a weighted least square problem as follows

q
€grad = Zwi[(Pd(fEi,yi, Zi)2+ﬂ(n§vpd(xia Yi, Zi)*1)2]

i=1

©))
where p is the weight given to the terms that approximates
the normals and w; is a set of weight depending of each
p;. In order to follow the vectorial representation of Py,
we define the following matrices and vectors:

Bvi
ox

Bvi
Oy

Bvi
0z

The matrix D; = [ } of size [ x 3:

The gradient vector V Py:
VP; =V(via) = (D;)a.

The matrix S of size [ x [:

q

=1

The vector g of size [:

q
gN = E w;Dyn;.
i=1

Therefore, the weighted GOF optimization problem
can be rewritten as:

mina{a'(S + uSn)a — 2ua’gn + pg}.

And its solution is obtained by solving the following sys-
tem of linear equations:

(S + pSn)a = ugN. (10)
4.3. MPU 3D FITTING

The MPU 3D fitting is based on the minimization of
the squared algebraic distance e,y (8) plus an energy
term e,,,,, which in some way tries to favor a local ap-
proximation of the signed distance function to P by 3D
quadric.

The e, depends on the set of auxiliar points Q =
{q1,92,*+,qm} Which is a subset of the vertices of the
node in the subdivision octree, and this implies that the
maximum cardinality of Q is eight. Following [17] a ver-
tice ¢ of the node is reliable for computing the approxi-
mated average signed distance, d = 1/3 Z?:l n;(q—pi)
(where p1, po and p3 are its three near sample points on
P) if n1(q — p1), na(q — p2) and n3(g — ps) have the
same sign.
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Then the energy e, is defined as
(11

1
Empu = a Z (Pd(qj) - dj)2’
q;€Q

where d; is the approximated average signed distance of
gj to P. The combination of e, with GOF is a good
way to determine local shape approximation which takes
advantage of the benefits of () and (L))

(12)

€ = €grad + empu-

The minimization of (I2)) conduces to the following linear
optimization problem

mina{a’(S+uSn+p1Smpu)a—2a’ (ugn+p1gmpu) b

(13)
where Sppu and ghvpu are defined as follows:
SMpPU = Z Vg, Vh (14)
q;€Q
and
gmpu = Y d;jvy,. (15)

q; €2

The minimization problem (I3) conduces to the fol-
lowing linear system

(S + S~ + p1Smpu)a = ugn + pigmpu.  (16)
4.4. RIDGE REGRESSION

When the matrix S = S + USN + p1Smpu doesn’t
have a maximal rank or is ill conditioned then the tech-
nique called ridge regression (RR) can be used. Statis-
ticians use it frequently to remove the collinearity of the
input data. The first proposal to obtain algebraic surfaces
that fits better was done by Tasdizen et al. in [[18]]. The RR
technique basically modifies the optimization problem of
the gradient one fitting method by adding a new term:

mina{a‘Sa —2ua‘'gn — 2 a’gmpu + pg + ka' Aaj,

where A is a diagonal matrix of size [ x [ and the real
constant x determines the weight given to the new term.
The minimization problem solution is obtained by solving
the following system of linear equations:

(S+ rA)a = pugn + p18MPU

5. PROPOSED RECONSTRUCTION SCHEME

We propose in this section a new method for implicit
surface fitting. It combines the MPU scheme and the gra-
dient fitting one and ridge regression methods to improve
the implicit surface approximation.

11

Data input. Our algorithm considers as input data a set
of ¢ points P, and a set of the corresponding ¢ unitary
normal vectors .

We are assuming that the points of P have been trans-
lated in such a way that the center of mass is the origin of
the coordinate system, and also that they have been scaled
in such a way that all points are contained in the square
= = [~1,1]3. Such square = is the starting region for the
hierarchical adaptive space subdivision guided by the use
of an octree data structure.

Support regions. We use the same octree support re-
gion scheme of the MPU method. The support region for
each node 7 is the disk of radius r; = «ad; centered at c;.

Local approximations. In our method, we adopt the
mpu 3d fitting, gradient one fitting and ridge regression
techniques to obtain the coefficients of a degree d al-
gebraic function Pg; for the local approximation at the
node 7. The local approximation is only computed when
the node contains sample points on its support region.
To do this task, we consider the set of points P; =
{Pji, -+ pj, } C P that are on the support region of the
node ¢, in case that we have enough points (a number big-
ger than N,,;, = 15), otherwise we grow the support
region until we get a minimum number of points. To run
the RR method, we have also to equip each point of P;
with its unitary normal vectors. Thus, using the same in-
dexes of these vectors we construct the sets \; C AN for
each node 1.

To determine the local approximation to the shape of
the surface on the node ¢ we take a similar strategy to the
MPU algorithm, i.e, two types of local approximations are
computed: 1) a 3D quadric, 2) a bivariate quadratic poly-
nomial in local coordinates. The first is used to approxi-
mate parts of the surface composed of more than one sur-
face sheet and the second to approximate a local smooth
patch. To determine which of these kinds of approxima-
tion we will compute we apply the same method proposed
in [[17] which roughly speaking is based on computing an
average normal direction on M, if the maximum devia-
tion of the normals to the average normal n,. is bigger
than 7/2 then we compute 1) otherwise we compute 2),
for more detail, see [17].

In the first case the coefficient of 3D quadric are de-
termined minimizing the objective function:

a'(Si+uSN i+ Smpu i+kl)a—2a’ (ugN i+ EMPU i)

where the matrices S;, Sn,;, Smpu,i and the vectors
gN.i>» 8MPU,; are computed for the node 7 using the ex-
pressions presented in Section [l However, we consider
as input for this computation the sets P; and N;. The so-
lution to the minimization problem is obtained by solving



B. Mederos, M. Lage, S. Arouca, F. Petronetto,
L. Velho, T. Lewiner and H. Lopes

Regularized Implicit Surface Reconstruction

the following system of linear equations:

(Si+ pSni+ iSmpu,i + £l)a = ugNi + 118MPU

In the second case a bivariate quadratic polynomial is
determined with the domain being the plane II; orthogo-
nal to ngye passing through the centroid of the points in
‘P; minimizing

> wil(Puliy, §;) — %) + p(nki; — 1)) (17)
p; €P;
where
iy = (1,0, 22T 0, gy OPlT 3,

Or dy

and (Z;,y;, Z;) are the coordinates of the points p; € P;
in an orthogonal system of coordinates (u, v, 14y ) Where
u,v is an orthogonal base in the plane II;. Py(z,y) is a
bivariate polynomial of degree d, the minimization of (I'7)
conduces to solving a 2 x 2 linear system of the same type

of (I0).

Octree construction. The octree is built using a recur-
sive procedure, whose refinement criteria is the local ap-
proximation error. Consider a tolerance e for the local
error. The condition that determines whether node 7 of
the octree at level I; should be refined is the following
boolean expression:

((:’Z‘ > E) and (ll < lma:z:) and (Qi > Nmin)7

where the local approximation error e; at node % is the
widely known Taubin error metric and also the mean
squared algebraic distances from the points P; to the ob-
tained surface has been considered. It seems that the
Taubin error metric produces good result in less time.

Parameters of the method. In conclusion, the parame-
ters of the method are the following:
e d € N: degree of the algebraic surface.

® ez € N: maximum level for the octree

e o € R: constant that multiplies the diagonal size of
the node to obtain the radius of the support disk.

e 1, € R: weight given to the GOF term on the objec-
tive function.

11 € R: weight given to the MPU term on the ob-
jective function.

e 1 € R: : weight given to the ridge regression addi-
tional term on the objective function.

e € R: threshold value for the refinement condition
controlled by the local approximation error.

12

Notice that with this set of parameters we can unify
several methods presented in this paper. For example: if
we want to run the original GOF method we have to as-
sign l,q, = 0 and Kk = 0; if we want the original RR
method we have only to assign l,;,4 = 0.

Global approximation and function evaluation. We
have supposed that the surface can be written as S =
f~1(0) for some function f : R®> — R. Thus, by the
use of the partition of unity equation (7)) we can obtain a
function F : R? — R that globally approximates f:

f(xayvz) ~ F(xayaz) = Z‘Pz(%y)sz(m»y)
=1

Figure 1. Bunny model, with parameters l,,q, = 30, = 0.01,
p1 = 1.0, e = 0.0005 and x = 0.0.

6. RESULTS

Our method has been tested with several sparse data
sets, Figures [I (3] and [ show the reconstruction of the
points sets sampled from the bunny, knot and armadillo
surface respectively using our method. In all these ex-
amples the ridge regression parameter have been fixed to
k = 0.0. The surfaces were tiled using an implementation
of Topological Marching Cubes [9]. The time involved is
very similar to the original MPU [[17]]: within 1% for the
optimization, and identical for the evaluation. The typical
parameters of our method are p; = 1.0, = 0.01,xk =
0.001, lnas € [20,30], € € [0.0005,0.005] and ov = 0.75.

In Figure 2]in the left we have the result of our imple-
mentation of the MPU algorithm on the dragon data set in
which we can see a small connected component and some
artifacts on the model surface, the right picture shows the
results of our method (MPU + gradient one fitting + ridge
regression ) we gain more numerical stabillity and we are
able to remove the spurious small connected component
and some of these artifacts. We tested the algorithm on
this data set for different values of x ranges from 0.005,
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Figure 2. Dragon model: (left) result of the MPU algorithm which corresponds to our method for parameters l,,q. = 30, © = 0.0, u1 = 1.0,
€ = 0.0005 and k = 0.0. (right) result for parameters l;pqz = 30, # = 0.01, u1 = 1.0, € = 0.0005 and < = 0.001: small artifacts are removed

0.001, 0.0005, 0.0002 and for these values we were able
to remove this small connected component and some of
these artifacts, for x = 0.0001 a small spurious com-
ponent appear on the reconstructed surface. The use of
ridge regression is necessary to remove the artifacts and
the connected component a combination of (MPU + gra-
dient one fitting) is not enough to get a good result.

The effect of gradient one fitting is illustrated on the
squirrel model (Figure [3), with incomplete point cloud,
similarly to the usual output of laser scanner: the whole
bottom part and details of the eyes and on the top are miss-
ing. Subfigures ¢ and e show the results of the only MPU
method. Observe that, due to the big hole on the head, the
MPU alone generated a bump and also inaccuracy on the
right eye. The combination of the MPU with gradient one
fitting (Subfigures d and f) is able to reconstruct the model
without bump on the head and has a greater accuracy on
the eyes. In this example the use of the ridge regression
does not significantly alter the results with gradient one
fitting. In general, the use of the gradient one fitting can
be useful in the presence of small holes since it uses the
neighboring normals.

7. CONCLUSIONS AND FUTURE WORKS

‘We proposed a new method that combines two power-
ful techniques: the weighted gradient one fitting + ridge
regression and the multilevel partition of unity. On one
side, the ridge regression method has been considered by
the pattern analysis community as one that gives a bet-
ter fitting, since it tries to have a correct topology on the
surface reconstruction. However, when the surface has
a complex shape it is necessary to elevate the degree of
the algebraic surface to get a good result. On the other
side, the multilevel partition of unity is an implicit method

13

that is now one of the most important reconstruction tech-
niques. In order to compute local approximations, it uses
a complicate objective function. Thus, our surface recon-
struction scheme not only takes the advantage of these
two well recognized methods, but also unifies those meth-
ods in a simple setting.

We plan to continue this work in several directions:
one possible direction is to determine an approximated
tangent plane 7" to the samples on the node of the tree and
over this plane we consider the surface as a height field
and determine a bivariate local approximation Q(z,y) :
T — R. Also over T we can consider better approxima-
tions like for example using wavelets method in order to
be able to faithfully reproduce the oscillations and details
(texture) on each region.

Figure 3. Knot model, with parameters [0z = 30, u = 0.01,
p1 = 1.0, e = 0.0005 and k = 0.0.
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Figure 5. Squirrel model. Figures a) and b) show the Squirrel point cloud, notice the holes on the top and the front, also there are small holes in the
eyes. Pictures c) show the results of the MPU method lnq2 = 20, 4 = 0.0, 41 = 1.0 and € = 0.005 and picture d) shows the conbination of the
MPU and gradient one fitting with parameters (I;az = 20, 4 = 0.01, u1 = 1.0 and € = 0.005) respectivetly. Pictures e) and f) show the results of
pictures ¢) and d) from some inclination angle
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