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Abstract

Non-functional requirements (NFRs) are rarely taken in account in most software development processes.
There are some reasons that can help us to understand why these requirements are not explicitly dealt with:
their complexity, NFRs are usually stated only informally, their high abstraction level and the rare support
of languages, methodologies and tools. In this paper, we concentrate on defining how to reason and how to
refine NFRs during the software development. Our approach is based on software architecture principles that
guide the definition of the proposed refinement rules. In order to illustrate our approach, we adopt it to an
appointmernt system.
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1 Introduction

Functional requirements define what a software is expected to do. Non-functional requirements (NFRs! define
how the software operates or how the functionality is exhibted [4]. Functional requirements typically have localised
effects, i.e., they af ect only the part of the software addressing the functionality defined by the requirement. On the
other h nd, NFRs typically specify global constraints that must be satisfied by the software, e.g., performace, fault-
tolerance, availability, security and so on. During the software development process, functional requirements are
usually incorporated into the software artefacts step by step. At the end of the process, all functional requirements
must have been implemented in such way that the software completely satisfies the requirements defined at the early
stages. NFRs, however, are not implemented in he same way as the functional ones. They are usually satisfied
in a certain degree, or satisficed [28], as a consequence of design decisions taken to implement the software’s
functionality.

NFRs are rarely considered when a software is built, especially in the early stages of the software development
process. There are some reasons that can help us to understand why these requirements are not explicitly dealt with:
NFRs are usually very abstract and stated only informally, e.g., “the system must have a satisfactory performance” or
“the component is secure” are common descriptions of NFRs; NFR are rarely supported by languages, methodologies
and tools; NFRs are more complex to deal with; NFRs are difficult to be effectively carried out during the software
development; it is not trivial to verify wheter a specific NFR is satisfied by the final product or not, i.e., it is difficult
to validate them in the final product; very often NFRs conflict and compete with each other, e.g., availability and
peformance; NFRs commonly concern environment builders instead of application programmers; and the separation
of functional and non-functional requirements is not easily defined.

In spite of these difficulties, the necessity of dealing explicitly with NFRs is apparent [28, 8, 37]. Firstly, there
is an increasing demand for fault-tolerant, multimedia and real-time applications, in which NFRs play a critical

1 Also referred to as goals [28], afunctional qualities[9] , dlities [11], softgoals [8] or software quality factors [15]).



role and their satisfaction is mandatory. Secondly, as a kind of requirement, it is natural their integration into
the software development process. Thirdly, interactions among functional and non-functional requirements are so
strong in most cases that NFRs can not be satisfied just as a consequence of design decisions taken to satisfy the
functional requirements. Finally, an explicit treatment of NFRs enables us to predict some quality properties of
the final product in a more reasonable and reliable way [37].

In order to address the problem of explicitly dealing with NFRs, two approaches have been traditionally adopted:
process-and product-oriented [28]. In the first approach, NFRs are viewed as effective elements in the software
development process as they are considered together with functional requirements to guide the construction of the
software. In the product-oriented approach, NFRs are determined in the final product where they are explicitly
stated. In this approach, NFRs are measured and used to compare quality attributes of the software.

On this scenario, we present a process-oriented approach in which functional and non-functional requirements
are refined together in a semi-formal way. In order to carry out this task, our approach has been defined around
basic abstractions that represent our comprehension of NFRs and implementation elements, together with their
relationships. Additionally, we adopt software architecture principles as the basis of our proposal. In fact, the
software architecture serves as the integration point of functional and non-functional requirements. It is worth
observing that our approach concentrates on structural aspects of software architecture, instead their behaviour.

This paper is organised as following: Section 2 presents our view on how to reason about NFRs. It includes
a set of abstractions and the notion of conflict and correlation between NFRs. Section 3 presents the proposed
refinement rules. Next, in order to illustrate our approach, we adopt it to an appointment system that must be
designed over an object-oriented middleware [16]. Section 5 presents some related works. Finally, the last section
presents the conclusions and some directions for future work.

2 Formalising Basic Concepts

Our approach explicitly addresses non-functional requirements throughout the development of software systems.
It defines how non-functional properties are expressed, integrated into architecture-based development and refined.
In order to address these tasks, we concentrate on the following elements:

e Abstractions: a set of abstractions (NF-Abstractions), namely NF-Attributes, NF-Statements, and NF-
Actions, is provided and systematically defined in order to reason and model non-functional properties [36];

e Integration: NF-Abstractions are integrated into software architectures (elements of the software architec-
ture model functional elements of systems). At the end of the integration, an abstract non-functional software
architecture (NF-Architecture) is defined containing non-functional properties associated with architectural
elements [36]; and

e Refinement: the abstract architecture is refined according to the proposed refinement rules. Structural and
non-functional characteristics of dynamic distributed systems are refined into more concrete elements closer
to actual implementation. From the abstract non-functional software architecture, the refinement yields a
concrete non-functional software architecture that is realisable [37];

There are some characteristics that represent the core of our approach. Firstly, the set of abstractions is the
basis of our approach. Secondly, software architecture is used to represent the structure of the system, while its
abstractions serve as integration points for the non-functional properties. Thirdly, the abstract non-functional
software architecture is the basis of the design steps that follow. Hence, its refinement means that structural
(software architecture) and non-functional issues are taken into account together. Fourthly, the inclusion of non-
functional properties brings additional due when the software architecture has to be actually implemented.

Next, we present the proposed abstractions for modelling NFRs.

2.1 Non-Functional Attribute

Non-functional attributes (NF-Attributes) model non-functional characteristics that can be precisely measured
such as performance; non-functional features that cannot be quantified, but may be defined as required in the final
product to a certain level, such as security and availability; and any non-functional aspect that must simply be
present (without measure or level), like the transaction properties atomicity, consistency, isolation and durability.

Another key characteristic of NF-Attributes is the possibility of decomposing them. An NF-Attribute is usually
decomposed into primitive NF-Attributes that are more detailed or closer to implementation elements. The de-
composition serves to differentiate NF-Attributes referred to simple or composite. A simple NF-Attribute is not
decomposed, while a composite one is broken up into more primitive NF-Attributes. For a composite NF-Attribute,
its primitive components participate in three different ways in order to make up the NF-Attribute:



e all primitive attributes are necessary in the definition of the NF-Attribute;
e at least one (any) primitive attribute is necessary in the definition of the NF-Attribute; and
e exactly one primitive attribute is necessary in the definition of the NF-Attribute.

The degree of decomposition of an NF-Attribute usually depends on both the acquired knowledge about the
application domain and the NF-Attribute itself. For example, a real-time system is expected to demand performance
characteristics in a more detailed manner than most common applications, as it is a key non-functional property
to be considered. Another example is a safety-critical application, in which security aspects must be extensively
known and decomposed in order to be effectively achieved in the final product.

Finally, as there is a great number of NF-Attributes and their variety is enormous, we have decided to focus on
those related to runtime issues. For example, performance, availability and security are perceived when the software
is already running, rather than issues of its development (non-runtime quality attributes [9]) such as reusability,
testability and modifiability. The decision to select runtime properties has been motivated by certain facts: most of
them are included in the software requirement specification [17]; they are more visible to user application than that
of developers (e.g., the modularity typically concerns only application developers, whilst the usability is essential to
users); their satisfaction has been increasing in most WEB applications such as the Internet search engines; they
are critical factors for the proper functioning of real-time and safety-critical systems; and they are directly affected
by functional requirements.

NF-Attributes are defined as follows.

Definition 2.1 (NF-Attribute) An NF-Attribute is a tuple att = (S, Cont), where

e S is a subset of the primitive runtime attributes (S C RT _ Attributes) that composes att, where

— RT _Attributes is a subset of attributes related to execution time (RT _ Attributes C Attributes), where

x RT _Attributes = {accessibility, accountability, accuracy, adaptability, auditability, availability, con-
fidentiality, configurability, consistency, controllability, efficiency, fault-tolerance, flexibility, genera-
bility, integrity, maturity, mobility, performance, reconfigurability, recoverability, reliability, repleace-
ability, robustness, safety, security, space-performance, throughput, time_ performance, tolerance,
traceability, transparency} [8],

e Cont (Cont € Acont) defines the kind of contribution of primitive attributes to att

X

— Acont = {all,onet, one™ ,none}, where

* all: att is completely defined by composing all its primitive attributes,

* onet: att is completely defined by one or more of its primitive attributes,

x oneX : att is completely defined by exactly one (any) of its primitive attributes,
* none: att has no primitive attributes, i.e., it is already completely defined.

Two operators are defined in order to access the elements of the NF-Attribute:
e attribute.att yields S,
e compositionOfAttributes.att yields Cont.

Three basic rules are derived from the previous definition:
e R1 att = (S,Cont), Cont # none < S # 0, att is a composite NF-Attribute,
e R2 att = (5, Cont), Cont = none < S = 0, att is a simple NF-Attribute,

e R3 Two composite NF-Attributes att, atty € RT _Attributes, att; # atts, have no primitive NF-Attributes
in common: attributes.att; N attributes.att, = 0.

Example 2.1 (Performance) The NF-Attribute performance is (S, Cont), where
o S = {time_ per formance,space_per formance},
e Cont = all,
e attributes.per formance = {time_per formance, space_ per formance},
e compositionOfAttributes.per formance = all.

Per formance is typically decomposed into more primitive NF-Attributes with respect to processing time
(time_per formance) and storage needs (space_per formance).



2.2 Non-Functional Action

A Non-Functional Action (NF-Action) models either any software aspect or any hardware characteristics that
affect the NF-Attribute. Software aspects mean design decisions, algorithms, data structures and so on, while
hardware features concern computer resources available for running the software system. For instance, the NF-
Attribute performance is decomposed into two additional more primitive NF-Attributes, namely space_ performance
and time_performance. An algorithm used to compress data has a direct influence on the primitive NF-Attribute
space__per formance, meanwhile hardware characteristics such as size of the main memory and the secondary
storage capacity also affect the space per formance.

An important issue to be considered in the previous definition of the NF-Action is the meaning of the statement
“an NF-Action affects an NF-Attribute ”. A more precise consideration of “affects” reveals that it refers to having
an “effect on” or “realise” a non-functional aspect. By realising, the NF-Action acts in order to operationalise what
is defined in the NF-Attribute. In relation to “effect”, it refers to having an influence, i.e., an action whose effect
on the NF-Attribute cannot be neglected. The effect on an NF-Attribute is either against or in favour of it. For
instance, a good performance is not implemented directly, but there are NF-Actions that affect the performance
and may be implemented in order to achieve it. Unlike performance, security is not simply affected by encryption
algorithms or authorisation access, but it is actually implemented by them.

Another basic issue related to NF-Actions is the notion of “correlation”. Correlation refers to the fact that an
NF-Action implementing or affecting a particular NF-Attribute may also have (or may be correlated with) an effect
on other NF-Attributes. Again, the NF-Action may act against or in favour of other NF-Attributes. For instance,
NF-Action encryption algorithm implements aspects of the NF-Attribute security. However, this NF-Action also
interferes in the NF-Attribute performance, as it is necessary to spend time to execute the encryption.

As mentioned before, there are very often conflicts between NFRs. These conflicts appear as the result of
correlations between NF-Attributes. For instance, if an NF-Action is essential for implementing good performance,
but has a strong negative effect on another NF-Attribute, may it be implemented or not? We deal with this
kind of situation by allowing the definition of priorities in how the constraints imposed on NF-Attributes must be
considered. Thus, whatever the impact of an NF-Action on an NF-Attribute, it must be implemented according to
the priority assigned to the NF-Attribute.

NF-Actions are defined as follows:

Definition 2.2 (NF-Action) An NF-Action is a tuple act = (A, I,e), where

o A is the set of NF-Attributes affected by act,
o [ is the set of NF-Attributes that are directly realised by act,

® ¢, a function that defines the kind of effect of act on the NF-Attributes, is defined as e : A = Agfect
XApegree, Where (given att € A)

— Agffect = {against,inFavour }, where

* against: the implementation of the act causes a negative impact on att,
* inFavour: the implementation of the act causes a positive impact on att.

- ADegree = {+3,+2,+1,—1,-2,—3}, where

+3 a high inFavour effect on att,
+2 a medium inFavour effect on att,
+1 a low inFavour effect on att,

-1 a low against effect on att,

-2 a medium against effect on att,

* K K X X *

-3 a high against effect on att.

It is worth pointing out that the levels of effect introduced in the previous definition have been proposed by
adopting a basic criteria: an step necessary to effectively treat NFRs consists of defining mechanisms that can be
used to precisely quantify (as much as possible) them. Hence, it is necessary to define degrees of effect of NF-
Actions over the NF-Attributes, instead of simply to identify in favour and against effects, i.e., it is also necessary
to quantify this effect.

Additionally, some auxiliary elements are defined in order to access the elements of the NF-Action:

o affectedAttributes.act yields A,



implementedAttributes.act yields I,

kindOfEffect.act(att) yields first(e(att)), where first(RXT) returns r € R,
degreeOfEffect.act(att) yields second(e(att)), where second(RXT) returns t € T,
Let att € Attributes, IsAf fected(att) returns true if att € A,

Let att € Attributes, IsImplemented(att) returns true if att € 1.

Five basic rules are derived from the previous definition:

R1 att € A, kindOfEffect.act(att) = against = degreeOfEffect.act(att) € {-1,-2,-3},
R2 att € A, kindOfEffect.act(att) = inFavour = degreeOfEffect.act(att) € {+1,+2,+3},

R3 An NF-Action either implements or affects an NF-Attribute att: att € implementedAttributes.act = att
¢ affectedAttributes.act or att € affectedAttributes.act = att ¢ implementedAttributes.act,

R4 An NF-Action acts either implements or affects at least one NF-Attribute: 3 att € RT _Attribute att €
affectedAttributes.act or att € implementedAttributes.act,

R5 An NF-Action act affects or implements simple NF-Attributes: V att € RT _ Attributes, att € {imple-
mentedAttributes.act U affectedAttributes.act} = attributes.att = §).

Example 2.2 The NF-Action uselndexing [8] is an act, where

A = {time_per formance},

I={},

e = {(time_per formance,inFavour, +3)},
affectedAttributes.act = {time_per formance},
implementedAttributes.act = {},
kindOfEffect.act(time_per formance) = inFavour,
degreeOfEffect.act(time_per formance) =+3,
IsImplemented(time_per formance) = false,

IsAf fected(time__per formance) = true.

In this example, the implementation of useIndexing acts in order to improve time_ per formance and its effect
is high (+3). It is worth observing that useIndexing does not implement time_ per formance, but only affects it.

Example 2.3 The NF-Action AuthoriseAccess is (A,I,e), where

A = {time_per formance},
I = {security},

e = {(time_per formance,against,1)}.

In this example, AuthoriseAccess is an effective implementation of a security mechanism, while it also affects
the time_ performance. Observing examples 2.2 and 2.3, it is important to note the difference between an NF-
Action that acts in order to implement an NF-Attribute and an NF-Action that affects an NF-Attribute. Unlike
NF-Actions related to security, ones associated with performance only act inFavour or against it. This is often
the kind of situation in which non-functional properties are considered.

Definition 2.3 (Correlation) Two NF-Attributes att1, atty are correlated if given an NF-Action act then atty,
atty € (affectedAttributes.act U implementedAttributes.act).

Example 2.4 A well-known example of correlated NF-Attributes is performance and security. An NF-Action that
implements an authorisation access necessary to achieve a certain level of security acts against per formance, i.e.,
the time spent in the authorisation affects per formance.
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Figure 1: Constraints imposed by NF-Statements and their consequence on the selection of NF-Actions

2.3 Non-Functional Statement

A Non-functional statement (NF-Statement) represents constraints on possible design decisions taken to imple-
ment a software system. It means that every design decision made in order to implement any functionality of the
software must respect the constraints imposed by the non-functional part of the requirements.

NF-Statements represent those constraints over the NF-Attributes, e.g., good performance is a constraint on the
NF-Attribute performance. In practical terms, the constraint imposed by the NF-Statement defines a subset of
NF-Actions that can be used to satisfy it. For example, any NF-Action that affects the NF-Attribute performance
may be implemented or not depending on the NF-Statement.

As mentioned before, our approach adopts the notion of satisfiability proposed in [28], in which NF-Statements
are achieved to a certain degree, rather than absolutely. Essentially, given a set of NF-Actions that affect /implement
an NF-Attribute, the satisfaction of an NF-Statement consist of implementing the NF-Actions, according to the
following kind of constraints:

e strong: the strong constraint defines that the satisfaction of an NF-Statement requires to every NF-Action
that realises the NF-Attribute must be considered, every NF-Action that has an inFavour effect (+3,+2,+1)
over the NF-Attribute must be considered and no NF-Action that has an against effect (-1,-2,-3) over the
NF-Attribute is considered.

e medium: the medium constraint defines that the satisfaction of an NF-Statement requires to every NF-Action
that realises the NF-Attribute must be considered, every NF-Action that has an inFavour effect (+3,+2,+1)
over the NF-Attribute must be considered and every NF-Action that has an against effect of kind -1 and -2
over the NF-Attribute must be considered,

o weak: the weak constraint defines that the satisfaction of an NF-Statement requires to every NF-Action that
realises the NF-Attribute must be considered, every NF-Action that has an inFavour (4+1,+2,43) effect must
be considered and every NF-Action that has an against effect (-1,-2,-3) must be considered,

e present: the present constraint defines that the satisfaction of an NF-Statement requires to only NF-Actions
that realise the NF-Attribute must be considered.

For instance, the NF-Statement secure may be defined as a strong constraint over the NF-Attribute security, while
the NF-Attribute atomicity may be defined as present in the NF-Statement ACID. Another main issue to be
considered refers to NF-Statements that constrain more than one NF-Attribute. It is necessary to define priorities
that can be used to solve conflicts caused by correlated NF-Attributes.

Figure 1 shows an example in which a NF-Statement (S1) defines which NF-Actions must be considered according
to the constraint imposed over the NF-Attribute Al:

e a strong constraint over Al means that the NF-Actions T2, T3, T5 and T6 must be realised;

e a medium constraint over Al means that the NF-Actions T1, T2, T3, T5, T6 and T7 must be realised;



e a weak constraint over A1l means that the NF-Actions T1, T2, T3, T4, T5, T6 and T7 must be realised;

e a present constraint over Al means that the NF-Actions T2, T5 and T6 must be realised.
An NF-Statement is defined as follows:
Definition 2.4 (NF-Statement) An NF-Statement is a tuple sta = (S,c,p), where

e S (S C RT_Attributes) is the set of NF-Attributes constrained by sta,

e ¢, a function that specifies the kind of constraint imposed on each NF-Attribute, is defined asc : S = Aconstraint
— AConstraint = {weak,medium,strong,present},

e p, a function that defines the priority of each NF-Attribute constrained in the NF-Statement, is defined as p
;8 = APT’iOT‘ity

— Apriority = {low,medium,high}.
Some operators have been defined in order to access the elements of the NF-Statement:

e constrainedAttributes.sta returns S,
o kindOfConstraint.sta(att) returns the kind of constraint over att,

e priority.sta(att) returns the priority of att.
Three basic rule has been derived from the previous definition of the NF-Statement:

e R1 An NF-Statement sta constrains at least one NF-Attribute: 3 att € RT _ Attributes | att € constrainedAttributes.sta,

e R2 Given the NF-Statement sta = (S, ¢, p), an NF-Action act and att € constrainedAttributes.sta, the NF-
Actions actually taking into account (Actions) in order to achieve the constraint imposed by sta are defined
as follows:

1. c(att) = strong

— Implemented Actions = {V act € Actions | att € implementedAttributes.act V (att € affectedAttribute.act
A kindOfEffect.act(att) = +3) V (att € affectedAttribute.act A kindOfEffect.act(att) = +2) V (att €
affectedAttribute.act A kindOfEffect.act(att) = +1)}.

2. c(att) = medium

— Implemented_Actions = {V act € Actions | att € implementedAttributes.act V (att € affectedAttribute.act
A kindOfEffect.act(att) = +3) V (att € affectedAttribute.act A kindOfEffect.act(att) = +2) V (att €
affectedAttribute.act A kindOfEffect.act(att) = +1)} U {3 act € Actions | (att € affectedAttribute.act
A kindOfEffect.act(att) = -1) V (att € affectedAttribute.act A kindOfEffect.act(att) = -2) }.

3. c(att) = weak

(a) Implemented_Actions = {V act € Actions | att € implementedAttributes.act} V {3 act € Actions |
(att € affectedAttribute.act A kindOfEffect.act(att) = +3) V (att € affectedAttribute.act A kindOfEffect.act(aitt)
= 42) V (att € affectedAttribute.act A kindOfEffect.act(att) = +1)} U {3 act € Actions | (att €
affectedAttribute.act A kindOfEffect.act(att) =-1) V (att € affectedAttribute.act A kindOfEffect.act(att)
= -2) V (att € affectedAttribute.act A kindOfEffect.act(att) = -3)}.

4. c(att) = present
(a) Actions = {V act €Actions | att € implementedAttributes.act}.

R3 (Conflict) Given the NF-Action act, NF-Statement sta and atty, atty € constrainedAttributes.sta,

e act € Implemented_Actions,

e kindOfEffect.act(att;) # kindOfEffect.act(atts).
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Figure 2 shows a situation of conflict between the constraints imposed over Al and A2. In this case, the constraint
imposed over Al (strong) defines that T1 cannot be implemented, whilst the constraint imposed over A2 (low)
defines that T1 must be implemented. The priority assigned to each NF-Attribute may solve the conflict, e.g.,
if the priority assigned to Al is higher than one associated to A2 then T1 is not implemented, otherwise T1 is
implemented.

Example 2.5 The NF-Statement Fast_High_Secure is (S,c,p), where

e S = {per formance,security },
e ¢ = {(per formance, medium), (security,high)},
e p = {(per formance, low), (security,high)}.

In this example, every NF-Action that realises the NF-Attribute security must be considered, every NF-Action
that affects positively the NF-Attribute security must be considered and no NF-Action that affects negatively (-
1,-2,-3) the NF-Attribute security must be considered (high constraint imposed over the NF-Attribute security).
On the other hand, every NF-Action that realises the NF-Attribute performance must be considered, every NF-
Action that affects positively (+1,+2,+3) the NF-Attribute per formance must be considered and every NF-Action
that has an against effect of kind -1 and -2 over the NF-Attribute per formance must be considered (medium
constraint imposed over the NF-Attribute per formance). Additionally, the priority assigned to security is higher
than one defined to performance, which means that the NF-Actions related to (affect/implement) security must
be considered prior to ones related to per formance.

Figure 3 shows the relationship between the abstractions presented in the previous sections. According to this
figure, it is possible to observe that:

e the NF-Attributes A1l and Al2 are primitive NF-Attributes of the NF-Attribute Al,
e Al12 and A221 are correlated,

there is a conflict in the implementation of T3,

the NF-Actions T1 and T2 realise the NF-Attribute All,
e the NF-Action T3 affects the NF-Attributes A12 and A221,

the NF-Actions (T1,T2,T4,T5) only implement and affect simple NF-Attributes (A11,A221),

the NF-Statement S2 constrains the NF-Attributes Al and A2.
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2.4 Integration with Software Architecture

In this part of our approach a strategy on how to integrate functional and non-functional elements is defined.
It defines that NF-Statements (defined in Section2.3) are assigned to architectural elements, namely connectors,
components, ports and the entire configuration. In terms of development, it means that the functional part comes
to be constrained by the non-functional one. From this point, any development of components and connectors
must respect the constraints imposed by the NF-Statement. We name non-functional software architecture (NF-
Architecture), a software architecture in which non-functional properties are explicitly defined. Similarly, we
designate NF-Port, NF-Interface NF-Component and NF-Connector to refer to Port, Interface, Component and
Connector that have non-functional properties assigned to them, respectively.

Prior to present the integration, we firstly define the architectural elements mentioned above.

Definition 2.5 (Port) A port is a tuple p = (type), where
e type € {entry,exit} defines the kind of the port.
Definition 2.6 (Interface) An Interface is a set of ports int = {p1,...,pn}, where
® p; is a port.
Definition 2.7 (Component) A component is a tuple comp = (I..), where
e I. is an Interface.
An operator is defined to access the elements of the component as follows:
e ports.comp yields the set of ports of the component comp.
Definition 2.8 (Connector) A connector is a tuple conn = (I;), where
e I; is an Interface.
An operator is defined to access the elements of the connector as follows:
e ports.conn returns the set of ports of the connector conn.
Definition 2.9 (Architecture) An architecture is a tuple arc = (Cmp, Cnt,Cnc), where

o Cmp={c1,...,cn} is the set of components that make up the architecture,



o Cnt = {t1,...,tn} is the set of connectors that make up the architecture,

o Cnc = {(ci, tk,¢j), - (Crytm, Cs)} is the set of connections of the software architecture.
Additionally, some architectural operators are defined as follows:

e components.arc returns the set of components that make up the software architecture arc,
e connectors.arc returns the set of connectors that composes the architecture arc,

e connections.arc returns the connections of the architecture arc.

Definition 2.10 (NF-Element) A NF_ Element = Element > sta is a non-functional architectural element,
where

e Element € {p, int, comp, conn, arc}, where p, int, comp, conn and arc are the architectural elements port,
interface, component, connector and architecture, respectively.

The semantics of the “integration” operator > is informally stated as “Element is implemented respecting the
constraints imposed by the NF-Statement”. The NF-Architecture is the coarse-grain non-functional element, while
the port represents the fine-grain one. In this way, the basic idea is that constraints imposed on the Architecture
are applied to their Components and Connectors. Similarly, constraints imposed on Components and Connectors
are applied to their respective Ports, and constraints imposed on the interface are also applied to their Ports.

Formally, the integration of architectural and non-functional properties is defined through the following rules:

R1 (Interface integration) Let Int = {p1,...,pn} and the NF-Statement sta,
nf_int = int > sta defines that
int > sta = p1 > sta A ... A\ pp > sta.
This rule defines that the constraint imposed on the interface is also applied to each port that make up the
interface.
R2 (Component integration) Let comp = (I.) and the NF-Statement sta,
nf comp = comp > sta defines that
comp > sta = I. > sta.
This rule defines that the constraint imposed on the component is applied to its interface.
R3 (Connector integration) Let conn = (I;) and the NF-Statement sta,
nf conn = conn > sta defines that
conn = sta = I; = sta.
In a similar way as the previous rule, the constraint imposed on the connector is also applied to its interface.
R4 (Architecture integration) Let arc = ({ci,-...cn},{t1,--tm },{(Cistj,Ci+1),-,(Cit2,tjs1,cit3)} and the NF-
Statement sta,
nf arc = arc > sta defines that
arc > sta = c; > staNcy ... ¢cp > sta Aty > stay A ... A\t > sta.

This rule defines that the constraint imposed on the software architecture is applied to all its components and
connectors.

In the integration process, it is worth observing that: NFRs are usually assigned to components and connec-
tors, rather than ports, interfaces and configuration; and the integration must occur before any refinement of the
functional part, as the constraint imposed by the NFRs can affect the design of architectural elements.

3 Refining Non-Functional Software Architectures

After being described and integrated with software architecture elements, it is time to refine the non-functional
software architecture. In order to do this, some points must be considered:

e non-functional software architectures are (in practice) designed incrementally yielding a hierarchy (see Figure
4). As each design decision is made, the hierarchy is transformed to reflect the current state of the design.
If all transformations of the hierarchy preserve its correctness, and the starting point is a trivially correct
refinement-free hierarchy, then the completed hierarchy that eventually results is guaranteed to be correct by
construction [32];

e an architecture transformation rule is correct if and only if, whenever it is applied to a correct hierarchy, a
correct hierarchy results [32], i.e., correct transformation rules preserve hierarchy correctness;
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e Moriconi [27] defines that architectural elements (components, connectors and interfaces) are refined by
replacing, decomposing, aggregating and removing them.

Considering these points, we introduce in a semi-formal manner some transformation rules that can be adopted to
refine the non-functional software architecture. Essentially, these transformation rules place together non-functional
properties and architectural elements, i.e., Components, Connectors, Architecture, NF-Attributes, NF-Actions and
NF-Statements that are present in the non-functional software architecture.

The following sections present the proposed transformation rules, which are divided into four main classes: de-
composition, aggregation, elimination and replacement rules. The description of each rule contains four parts that
includes: an informal introduction of the transformation rule (Informal Description); a justification that indicates
which concrete situation is envisaged for it (Motivation); a semi-formal description of the transformation including
basic concepts, the input of the transformation, the expected result of the transformation (Semi-Formal Descrip-
tion) and requirements that must be satisfied before the transformation can be applied (Rule Requirements); the
transformation itself (Solution); and an example whose primary purpose is to clarify the transformation (Example).

3.1 Decomposition Rules

Decomposition rules are applied for decomposing non-functional and architectural elements into more concrete
ones.

3.1.1 Decomposition of NF-Attributes

Informal Description
This rule decomposes an NF-Attribute into more primitive NF-Attributes. The architectural elements that have
assigned constraints on the NF-Attribute (NF-Statement) comes to share the new primitive NF-Attributes.
Motivation
The usual early description of NF-Attributes simply defines general constraints on them without any additional
information about how to achieve the desired constraint. This fact is also normal as the notion of NF-Attributes
differs from one domain to another. For instance, at a first stage, good performance means to do something as
fast as possible, but they have different interpretations according to the part of the application it is assigned to.
A server (component) with a good performance may be interpreted as one that processes as many transactions as
possible and a middleware (connector) [40] with good performance typically defines one able to transmit as many
message as possible between two or more components (throughput).
Semi-formal Description
Auxiliary Concepts
sta = (Ssta,0,p) is a NF-Statement, where
¢ = {...,(att,cqatt),-..} defines the constraints imposed over the NF-Attributes,
p = {...,(att,patt),...} defines the priority of the NF-Attributes,
att = (Sau,cont) is a NF-Attribute (att € attributes.sta),
nf comp = comp > sta is the NF-Component,
Actions is the set of NF-Actions.
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Input
att is an NF-Attribute.

Output
att’' and att” are the NF-Attributes that result from the decomposition of att.
Rule Requirements

e the NF-Attribute being refined (att) must belong to the set of NF-Attributes (attributes.sta) that are con-
strained by the NF-Statement (sta), i.e., att € attributes.sta,

e no NF-Action (act) may have already been defined that implements or affects the NF-Attribute being refined,
i.e., V act € Actions, att ¢ affectedAttributes.act and att & implementedAttributes.act.

Solution (77)
att — 1, (att’,att”), where

e att’ belongs to the set of NF-Attributes constrained by the NF-Statement sta, att’ has the same kind of
constraint and priority of the original NF-Attribute (att) and the set of NF-Attributes that make up att’
is empty (it has been just defined), i.e., att’ € constrainedAttributes.sta, (att’,cqai:) € kindOfConstraint.sta,
(att’,pait) € priority.sta and attributes.att’ = 0,

e att” belongs to the set of NF-Attributes constrained by the NF-Statement sta, att” has the same kind of
constraint and priority of the original NF-Attribute (att) and the set of NF-Attributes that make up att’
is empty (it has been just defined), i.e., att” € constrainedAttributes.sta, (att”,c.s:) € kindOfConstraint.sta,
(att”,pass) € priority.sta and attributes.att” = 0.

Example

performance = ({},none) is the NF-Attribute to be refined,

good_ performance = ({performance},{(performance,strong)},{(performance,high)}) is the NF-Statement,

nf server = server > good_ performance is a NF-Component,

performance —1; (space_performance, time_performance) is the application of the transformation rule that
decomposes the NF-Attribute performance into space performance and time_ performance, where

o space_performance = ({},none) is the first NF-Attribute that results of the transformation,
o time_performance = ({},none) is the second NF-Attribute that result of the transformation,

e good_ performance = ({performance, space_ performance, time_ performance}, {(space_ performance, strong),
(time_ performance, strong)}, {(space_ performance, high), (time_ performance, high)}) is the NF-Statement
after the transformation of a NF-Attribute that is constrained by good_ performance.

3.1.2 Decomposition of NF-Components

Informal Description
This rule decomposes a Component into two other ones preserving the NF-Statement associated with the original
component.
Motivation
NF-Components are usually defined abstractly, while they are subsequently refined into more concrete compo-
nents. However, this particular decomposition takes into account that NF-Statements are present and must be
respected. This means that the decomposition yields NF-Components with similar NF-Statements as the original
component.
Semi-formal Description
Auxiliary Concepts
nf_comp = comp > stacomp is an NF-Component,
nf _arc = arc > stagrc is an NF-Architecture.

Input
nf _comp is an NF-Component.

Output
nf _comp' and nf comp” are the NF-Components that from the decomposition of nf _comp.
Rule Requirements
none.
Solution (73)
nf comp —7, nf comp’, nf comp’, where
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o nf_comp’ =comp’ > stacomyp is the first component of the decomposition, which has the same NF-Statement
as the original component, i.e., stacomp = St@comp,

o nf_comp’ = comp” > stacomp is the second component of the decomposition, which also has the same
NF-Statement as the original component, i.e., stacomp” = Stacomp-

Example nf server = server > secure is the NF-Component to be refined. It has the NF-Statement secure
assigned to,

nf server — 7, (nf_requestReceiver,nf requestResponse) is the application of the transformation rule that
decomposes the component nf server into nf requestReceiver and nf requestResponse, where

o nf requestReceiver = requestReceiver > secure is the new element that make up the nf server, which also
has the same NF-Statement (secure) as the nf server,

o nf requestResponse = requestResponse > secure is another new component that make up the nf server,
which also has the same NF-Statement (secure) as the nf server.

3.1.3 Decomposition of NF-Actions

Informal Description
This rule decomposes NF-Actions that affect or implement NF-Attributes into NF-Actions closer to actual
implementation elements.
Motivation
The decomposition of an NF-Action is important as it represents an advance on the implementation elements
that realise or affect NF-Attributes.
Semi-formal Description
Auxiliary Concepts
att = (Sqt,cont) is a NF-Attribute,
act = (Agct Lact,€act) is @ NF-Action.
Input
act is the NF-Action to be decomposed.
Output
act’ and act” are the NF-Actions that result from the decomposition of act.
Rule Requirements
none.
Solution (73 )

act —7; act’, act”, where

o act' = (AactJactr,€act) 18 the new NF-Action that results from the decomposition of act, act’ also af-
fects/implements at least (additional NF-Attributes may also be affected by the new NF-Action) the NF-
Attibutes affected /implemented by act, i.e., affectedAttributes.act C affectedAttributes.act’ and implementedAttributes.act
C implementedAttributes.act’,

o act” = (AgctrsIactr €acerr) is the new NF-Action that results from the decomposition of act, act” also af-
fects/implements at least (additional NF-Attributes may also be affected by the new NF-Action) the NF-
Attibutes affected /implemented by act, i.e., affectedAttributes.act C affectedAttributes.act” and implementedAttributes.act
C implementedAttributes.act”.

Example

authoriseAccess = ({},{ confidentiality},{}) is the NF-Action to be decomposed,

authoriseAccess — 7, (identifyUser,authenticateUser) is the application of the transformation rule that decom-
poses authoriseAccess into identifyUser and authenticateUser, where

o identifyUser = ({},{ confidentiality},{}) is the first NF-Action that results from the decomposition of autho-
riseAccess,

o authenticateUser = ({},{confidentiality},{}) is the second NF-Action that results from the decomposition of
authoriseAccess.

3.2 Aggregation Rules

Aggregation rules are defined in order to enable architectural elements to be put together.
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3.2.1 Aggregation of NF-Components

Informal Description
This rule aggregates NF-Components in order to compose them into a more complete NF-Component.
Motivation
The necessity to compose may be motivated by the necessity to eliminate communication between two compo-
nents. For instance, if two components communicate a lot, it may be interesting put both in a single component.
However, as in the decomposition, non-functional properties must be preserved.
Semi-formal Description
Auxiliary Concepts
sta = (Ssta,c,p) is a NF-Statement,
nf — comp = comp > sta is a component that has assigned the NF-Statement sta.
Input
nf comp’ = comp’ = sta' is first of the component to be aggregated,
nf comp’ = comp” > sta” is the second component to be aggregated.
Output
nf comp is the component that results from the aggregation.
Rule Requirements
sta’ and sta” are compatible in the sense that they do not cause a conflict as stated in Definition 2.4.
Solution (73 )
nf comp’mf comp” — 7, nf comp, where

e nf comp = comp > sta is the new component that has assigned the NF-Statement sta, where sta is the union
of the two NF-Statements of the original components (nf _comp’ and nf _comp”), i.e., constrainedAttributes.sta
= (constrainedAttributes.sta’ U constrainedAttributes.sta”), kindOfConstraint.sta = (kindOfConstraint.sta’ U
kindOfConstraint.sta”) and priority.sta = (priority.sta’ U priority.sta”).

Example

nf _requestReceiver = request_receiver = secure and nf replyTransmitter = reply transmitter > secure are the
components to be aggregated,

(nf_requestReceiver,nf replyTransmitter) —1, nf server is the application of the aggregation rule, where

e nf server = server > secure is the new server that results from the aggregation of the components nf requestReceiver
and nf replyTransmitter .

3.3 Elimination Rules

Elimination rules are used to remove parts of the design that are not necessary in the software development.
Reasons for the elimination comes from the fact that other components incorporate the functionality that is im-
plemented by the component.

3.3.1 Elimination of NF-Components

Informal Description
This rule eliminates an NF-Component of the software architecture.
Motivation
Necessity to remove unnecessary parts of the software architecture during the development.
Semi-formal Description
Auxiliary Concepts
nf_comp = comp > stacomp is a component that has assigned the NF-Statement stacomp,
nf _arc = arc > staq. is the software architecture that has assigned the NF-Statment stag.
Input
nf _arcis the NF-Architecture to be altered,
nf comp is the NF-Component to be removed.
Output
nf _arc’ is the NF-Architecture with the NF-Component removed.
Rule Requirements
none.
Solution (—7; )
nf arc —, nf _arc, where nf compy, is removed
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o nf_arc=({nf_compi,...,nf_compy, ..., nf_compy,}, {nf_conni,...,nf_connny}, {(nf_comp;,nf_connj,
nf _compit1), ..., (nf_compy, nf conny, nf compyy1)} > stagrc is the new software architecture in which
the component nf compyp, has been removed.

Example
nf client_server arc= ({nf_client,nf main_server,nf secondary server}, {nf request reply}, {(nf_client,
nf_request_reply, main_server), (nf_client, nf request_reply, nf_secondary_server)}) = secure is the
software architecture and secondary _server is the component to be removed,
(nf_client_server _arc, nf _secondary _server) — 1, nf_client_server _arc' is the application of the elim-
ination rule, where
nf client server _arc ={nf _client, main_server}, {nf request reply}, {(nf client,nf request reply,
nf main_server)}) = secure is the new architecture without nf secondary server.

3.4 Replacement Rules

Replacement rules are applied to substitute a component with another, more refined, one. Basically, the new
component must satisfy the constraints imposed by the NFRs.

3.4.1 Replacement of NF-Components

Informal Description
This rule replaces the NF-Component with another one.
Motivation
The motivation to replace a component appears when a new solution (approach), better than the previous one,
is found to perform a specific task.
Semi-formal Description
Auxiliary Concepts
nf arc = arc > sta is a software architecture that has assigned the NF-Statement sta.
Input
nf arcis the NF-Architecture to be altered,
nf comp, nf comp’ are the old and new components, respectively.
Output
nf _arc’ is the NF-Architecture after the replacement of a component.
Rule Requirements
The NF-Statements (sta, and stap’) assigned to the replaced component must be preserved in the updated
architecture.
Solution (75 )
nf _are,nf comp — 7, nf arc isthe application of the replacement rule (nf _compy, is replaced by nf compy’),
where

e nf_arc=({nf_compi,...,nf_compp,..,nf_compy}, {nf_conni,..,nf_conny}, {(nf_comp;,nf_conn;,

nf _compii1), ..., (nf_compg, nf conny, nf compyy1)} = Stagr is the original architecture.
e nf_arc ={nf_compi,..,nf_compp,...,nf_compp}, {nf_conni,..,nf_conny}, {(nf_comp;,nf_conn;,
nf _compit1), ..., (nf _compg, nf conny, nf compry1)} = stagre. is the new architecture with nf compy,

has been replaced by nf compy’.

Example

nf client_server _arc = ({nf _client, nf server}, {nf request reply}, {(nf_client, nf request reply,
nf_server)}) > secure is the initial software architecture,

nf _server = server > secure is the component to be replaced,

nf powerful server = server > secure_and_ fast is the new component,

(nf_client_server _arc, nf server, nf server_powerful) Ts nf client server arc’ is the application of
the replacement rule, where the NF-Statement of the original component (secure) is preserved in the new component
nf _server_power ful (secure and_ fast).
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4 Case Study: An Appointment System over an Object-Oriented Middleware

The Appointment System is a client-server application that carries out distributed appointment scheduling and
executes over an object-oriented middleware (OOM) [16]. The clients and server communicate through an OOM
that provides synchronous communication and distributed services such as transaction and security. The server
must provide operations that can be used to add and remove an appointment, while it also defines an operation
that returns the current time schedule. The system must be secure and fast, while all operations must be executed
respecting the ACID transactional properties atomicity, consistency, isolation and durability. Additionally, the
server may be dynamically replaced at any time during its execution.

4.1 Non-Functional Aspects

According to the Appointment System’s description, three NF-Attributes are involved in its development: ACID
for transactional properties, performance and security. They are initially defined as follows:

ACID = ({},none),
performance = ({},none),

security = ({}, none).

The constraints defined in the system description (“the system must be secure and fast, while all opera-
tions must be executed respecting the ACID transactional properties”), are modelled through the NF-Statements
Acid__Property, Fast and Secure:

Acid_Property = ({ACID},{(ACID,present)},{(ACID,high)}),
Fast = ({performance}, {(performance, strong)},{(per formance, medium)}),
Secure = ({security},{(security, strong)}, {(security, high)}),
(

Fast_Secure = ({performance,security},

{(per formance, strong), (security, strong)},
{(per formance, medium), (security, high)}).

4.2 Architectural Aspects

The abstract software architecture derived from the Appointment System description is shown in Figure 5.
In order to define the architecture, we adopted the client-server style, which means that only client and server
components are allowed. Three kinds of components, namely client (Client 1, Client 2), server (Server) and
database (Database), and two kinds of connectors (Middleware, ODBC) make up the software architecture. Requests
originating from clients are handled by the server, which accesses the database to store or retrieve the information.
The communication between clients and the server is performed through the connector Middleware, while the
connector ODBC is used to communicate the server and the database.

Formally,
Client_1 = (intaicnt 1),
Client_2 = (intclient_2),
Server = (intserver),
Database = (intgatabase),
Middleware = (mtc 1),
ODBC = (int. 2),
AppointmentSystem = ({Clzent 1,Client_2, Server, Database},

{Middleware, ODBC'},
{(Client_1, Middleware, Server),
(Client 2, Middleware, Server),
(Server, ODBC, Database)}).
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4.3 Integration of Architectural and Non-Functional Aspects

Considering the software architecture presented in Figure 5 and the non-functional elements defined previously,
the NF-Statement Good_ Per formance _Secure is associated with the Server. This decision is motivated by the
fact that it is the main processing element in the software architecture. The clients must also be secure, but
not necessarily fast, as they are not central processing elements. Meanwhile, to the Database is assigned the
transactional properties ACID Property and Secure.

Formally,

NF _AppointmentSystem AppointmentSystem < Secure,

NF_Server = Server < Fast_Secure,
NF _Database = Database < ACID _Property A Secure.

According to the integration rules, the NF-Statement Secure is defined for every element of the software archi-
tecture. Hence,

NF Client 1 = Client_1 < Secure,
NF Client 2 = Client 2 < Secure.

In terms of connectors, we consider that they must be secure. Hence,

NF _Middleware = Middleware < Secure,
NF ODBC = ODBC < Secure.

In this particular case, an object-oriented middleware that provides the security service, e.g., CORBA (Commom
Object Request Broker Architecture) [31] may be adopted in the implementation of the appointment system.

4.4 Refinement of the Abstract Software Architecture

The initial specification of the NF-Attributes per formance and security and the NF-Architecture NF__AppointmentServer
can be refined according the rules presented in Section 3.

The first rule used (— 7; ) decomposes the NF-Attributes per formance, ACID and security into more primitive
NF-Attributes:

performance —7; (space_ performance,time_ performance),

ACID — 1, (atomicity,consistency,isolation,durability),

security— 7, (data_ confidentiality,integrity).

The next refinement consist of decomposing the NF-Component NF _Server into two components, one for
receiving the requests from a NF_Client and another for sending the result (received from NF_Database) to the
caller. In this case, the rule — 7, is applied as shown in the following:
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NF_Server— 7, (NF_ Receiver,NF_Sender),
where, NF'_Receiver and NF _Sender also have the same NF-Statement assigned to the NF_Server. Hence,

NF Receiver = Receiver < Fast Secure,
NF_Sender = Sender < Fast_Secure.

NF-Actions related to security are shown in the following:

accessControl ({}, {security}, {}),

intrusionDetection ({}, {security}, {}),

authentication = ({}, {security},{}),
encryption = ({}, {security}, {(per formance,against,—1)}).

In order to refine the NF-Actions authentication and intrusionDetection, we apply the rule — 7; that decom-

poses NF-Actions:
authentication— 7, (userldRequest,passwordRequest),
intrusionDetection — 7, (verifyAccessFromStrangeSites,
checkAskingFor ManyQuestions,
checkPasswordAttempts),

encryption — 1, (algorithmRSA,usel28bits)
After the refinement, we have the concrete software architecture shown in Figure 6 .

5 Related Work

The related work have been divided into three categories that are most closely related to the subject in hand:
the treatment of non-functional requirements, the formalisation of non-functional requirements and the checking of
software properties during runtime changes. The treatment of non-functional properties includes researches related
to software development such as the NFR Framework, while also present those that concentrate on the description
of non-functional properties once the software is already built such as the NoFun notation. We will further discuss
the formalisation of non-functional aspects.

Efforts for treating NFRs begin by taking them in account during software development. At this time, some
approaches try to define how to incorporate these requirements into the software development until their realisation.

Our presentation begins with the introduction of the NFR framework.
The NFR Framework The NFR Framework [4, 28, 8] concentrates on the explicit representation and analysis of

NFRs during software development. In order to carry out this task, the framework first gives the meaning of NFRs
and provides a set of abstractions for modelling them. It then defines how to record the design process considering
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design decisions that can be taken for accomplishing the NFRs. It includes the definition of the relationships
between the NFRs and their refinement. Finally, the framework performs an evaluation procedure that decides
whether each design decision is good enough, i.e., whether it meets a softgoal sufficiently or not. This framework has
been used to deal with NFRs such as accuracy [4], security [5], performance [29] (see Figure ??) and modifiability
[3]. Some of these requirements have been evaluated from a more practical view in Chung [6], where the framework
is used to treat NFRs in credit card, health insurance and government systems. In addition, the framework has
been used to show how the record of the treatment of NFRs can help to deal with changes in the software? [7].

The Injectors Approach The Object Infrastructure Project (OIP) presented in Filman [11, 12] refers to NFRs
as ilities. Ilities (NFRs) are manifestations of properly defined and implemented requirements. Unlike previous
approaches, this one concentrates on the realisation phase only. It considers that certain ilities such as security,
reliability, manageability and quality of service are achieved through controlling both the communication between
components and significant events of an object’s life-cycle.

According to this approach, security is primarily viewed as the combination of access control, intrusion detection,
authentication and encryption; manageability is implemented by generating events related to performance measure-
ment, accounting, failure analysis and intrusion detection; reliability is simply realised through the implementation
of replication; and quality of service is implemented by calling system quality of service primitives, using side-door
mechanisms to efficiently transport large quantities of data, using queue control to identify the most worthwhile
thing to do next and by choosing among multiple ways of problem solving.

In practice, this strategy works intercepting and manipulating the communication between components. The
interception is performed by objects named injectors, which take responsibility to provide (combined with others
or not) the required ility. The injectors are inserted into functional components and may be assigned to a single
operation or to an entire component. This is performed by giving a functional code, ility specification and the
ility service implementation (injector), which are weaved together into the actual system code. In order to express
these elements, the Pragma Language [13] is provided. A specification in Pragma consists of the identification of
required ilities and for each ility the actions (e.g., a set of algorithms) that can be taken to achieve it.

The Aster Approach In a similar way to the previous approach, the Aster framework [18, 19] also concentrates
on the implementation of NFRs. This task is carried out by customising distributed runtime systems according
to NFRs required by distributed applications. In the heart of the Aster framework is the notion that satisfying
application’s requirements relies on the use of an appropriate or customised distributed runtime system?®.

The runtime-distributed system is a middleware used to communicate components during runtime. The cus-
tomised middleware best maps an application with specific requirements (NFRs) onto an execution platform with
specific constraints. The basic task of this approach consists of matching NFRs required by the application against
ones provided by the composition of available software components and middleware. The outcome of this matching
is a customised middleware, made up of the selected components and base connectors, which implements the NFRs
required by the application.

In order to carry out the customisation, the first task is to describe the application, together with its NFRs.
An architecture-based approach is adopted, in which a notation, namely Aster language, is proposed for describing
software architectures. This language, however, has extra skills for expressing NFRs. The second task is responsible
for taking this description and tries to find software components (stored in a database) that can be composed for
matching the NFRs defined in the software architecture. The last task takes the selected software components and
puts them together to make up the middleware in which the application will execute.

The Aster framework has been used to implement transactional properties [41, 42, 39|, security [1, 2|, fault-
tolerance [38, 21|, dynamic property that express the possibility of the dynamic binding of a client with a file server
[20], reliability [43], efficiency [14] and dependability [22].

The Aspect-Oriented Approach Another approach to dealing with NFRs adopts Aspect-Oriented Program-
ming (AOP) principles. According to this approach, an application is decomposed into functional components and
aspects, where aspects model concerns that occur throughout the entire application and therefore cross functional
element? boundaries, e.g., dependability, real-time performance and security [24]. Each aspect is programmed in a
particular language suitable for expressing it and then distributed into the proper places throughout the application.

Based on this paradigm, Loyall [26] proposes the QuO framework (Quality Objects) for developing distributed
systems (client-server applications) with QoS (Quality of Service) requirements. In order to do this, two aspect lan-
guages are proposed for specifying QoS requirements, together with a runtime support for their monitoring, control

2 Adding or modifying NFRs or changes in the design.
3 Also referred to software bus [19].
4Procedures, objects, modules, etc.
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and adaptation to changing levels. QoS requirements are specified through contracts described in CDL (Contract
Description Language) and SDL (Structure Description Language). The specification of QoS requirements consist
of defining predicates on system conditions, e.g., for a high availability the predicate MeasuredNumberReplicas >
1 must be true. The contracts contain the QoS desired by clients, the level of QoS a server expects to provide,
operating regions representing possible states of QoS (system conditions), transitions between the states and actions
that have to be taken when the level of QoS changes.

Other Approaches The approach proposed by Justo [23] describes a Java-based framework to support the
definition and control of NFRs of distributed component architectures. The essence of the proposed approach is to
demonstrate how the existing concepts of components services and architectures can be extended to support the
NFRs description and control at run-time.

Another approach to integrating NFRs into software architecture is proposed by Robben [33]. In this approach,
NFRs such as reliability and security are individually realised by single components and properly integrated into
software architectures. NFRs have also been addressed in the development of knowledge-based systems [25], dis-
tributed systems built from mobile agents [14], network management systems [30], COTS selection in a component-
based software [34] and Avionics Control System [10].

6 Conclusion

This paper has presented a semi-formal approach for reasoning and refining non-functional requirements. Essent
ially, it proposed a set of abstractions to reason about non-functional requirements together a set of refinement
rules for refining non-functional requirements during the software development process. Non-functional properties
are expressed through three abstractions, NF-Attribute, NF-Statement and NF-Action. These abstractions are
incorporated into software architecture element and then refined.

The primary contribution of this paper is the explicit treatment of NFRs during the development of software
systems. The set of actions taken to perform this explicit treatment makes contributions in three main points: the
general foundations of non-functional properties, the integration of these properties with functional elements and
the their refinement.

There is a growing body of work on understanding the foundations of non-functional aspects of software systems.
Using our abstractions, we clearly define how to reason about these aspects as an initial step towards a better
comprehension of what non-functionality means. Their explicit relationship enables us to reason about their
correlation and conflicts. Additionally, our approach is not related to any particular non-functional property.
This fact allows us to reason about non-functional properties in general, without trying to focus on particular
characteristics that can blur their treatment.

In terms of refinement, refinement rules help to understand and trace the trajectory of non-functional properties
during software development. Our contribution to this particular point concentrates on the exploitation of the
refinement of software architecture, taking into account the constraints imposed by the non-functional aspects.
This approach has been adopted in the refinement of software radios [35] and an appointment system.

This approach is an initial contribution to the complex task of the treatment of non-functional requirements. It
serves as a general guideline on how to consider NFRs and creates the possibility of some interesting future work:
the definition of the formal semantics of the proposed notations; tools that enable the developer to check properties
of the non-functional properties, e.g., the automatic verification of conflicts and correlation between them; and the
formalisation of the notion of satisfaction that can enable us to precisely define the degree of satisfaction of the
non-functional requirements in the final product.
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