
Modularizing Communication
Middleware Concerns Using

Aspects
Cristiano Amaral Maffort and Marco Tulio de Oliveira Valente

PUC Minas, Institute of Informatics
Anel Rodoviï£¡rio Km 23,5 - Rua Walter Ianni, 255

31980-110 - Belo Horizonte - MG - Brazil
Phone: +55 (31) 3439-5204

maffort@gmail.com, mtov@pucminas.br

Abstract
Software engineers often rely on communication mid-

dleware platforms to design and implement distributed
systems. However, middleware functionality is usually
invasive, pervasive and tangled with business-specific
concerns. In this paper, we describe an aspect-oriented
distributed programming system that encapsulates mid-
dleware services provided by Java RMI and Java IDL.
The proposed system, called DAJ, handles the basic
service provided by such object-oriented middleware
platforms, i.e., synchronous remote calls using call
by-serialization and call by-remote-reference semantics.
The paper documents our experience in using DAJ to
modularize middleware concerns from three legacy
distributed systems.

Keywords: aspects; separation of concerns; distribu-
tion; middleware.

1. INTRODUCTION
During the last two decades software engineers have

often relied on communication middleware platforms to
design and implement distributed systems. Middleware
platforms, such as CORBA [34], Java RMI [36], and Web
Services [1], encapsulate several details inherent to dis-
tributed programming, including communication proto-
cols, data marshalling and unmarshalling, heterogeneity,
service lookup, synchronization, and failure handling. Al-
though they shield developers from networking details,
middleware systems also require developers to follow
their specific code conventions and protocols. For ex-

ample, programmers must deal with middleware specific
classes, interfaces, and remote exceptions. Moreover,
usually middleware code impacts several classes of dis-
tributed systems and forces such classes to handle more
than one concern simultaneously. In other words, middle-
ware code does not sit only between the network and the
distributed application, but it is also spreaded and tangled
in the latter [12, 29, 32]. The consequence is that dis-
tributed object-based systems do not present expected lev-
els of separation of concerns, making such systems more
difficult to implement, maintain and evolve.

This paper is a revised and extended version of a pre-
vious conference paper describing DAJ (Distribution As-
pects in Java), a system designed to insulate middleware
from business related code [23]. In order to accomplish
its goal, DAJ relies on the synergistic combination of
three technologies: aspects [16, 15], domain-specific lan-
guages [33, 3], and generative programming [8]. In the
proposed system, aspects are used to encapsulate cross-
cutting middleware code, domain-specific languages are
used to elevate the abstraction level when defining dis-
tributed software architectures, and generative program-
ming is used to synthesize aspects and other components.

Particularly, DAJ includes an aspect-oriented frame-
work that encapsulates crosscutting code required by
communication middleware. Moreover, DAJ includes a
generative tool that specializes abstract aspects from this
framework in order to add distribution to a given applica-
tion. The current version of the system generates aspects
for two native JDK middleware platforms: Java RMI [36]
and Java IDL [14]. Java RMI is a middleware often used
in the implementation of Java-to-Java distributed applica-
tions. Java IDL adds CORBA support to the Java plat-

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

Figure 1. Developing distributed applications using DAJ

form, providing interoperability with distributed systems
written in other programming languages.

In DAJ-based applications, business classes do not
need to follow particular programming conventions.
More specifically, they do not need to extend middleware
pre-defined classes, implement remote interfaces or ac-
cessor and mutator methods; they also do not need to
handle remote exceptions. Instead, a domain-specific lan-
guage is used to declare the role that plain Java classes and
objects play in a particular distributed system configura-
tion. From specifications in such language, called distri-
bution descriptors, DAJ generates classes and aspects that
modularize the otherwise crosscutting middleware func-
tionality. The aspects are generated in AspectJ [15, 19].
Figure 1 summarizes the steps proposed by the system
to support the implementation of distributed object-based
applications.

DAJ introduces at least two contributions to the con-
ventional use of middleware platforms. First, and more
important, developers can focus on the functional con-
cerns of the system they are building since DAJ automati-
cally generates aspects that modularize crosscutting code
required by middleware platforms. Second, DAJ users do
not need to master details and idiosyncrasies inherent to
middleware APIs.

The remaining of this paper is organized as follows.
Section 2 presents a motivating example, used in the rest
of the paper to describe the DAJ system. Section 3 de-
scribes the programming interface that must be followed
by DAJ users. Section 4 presents the software architec-
ture and the implementation of the DAJ system, focus-
ing on the abstract aspects defined by the system and the
concrete aspects generated from the information defined
in distribution descriptors. Section 5 describes our expe-
rience in using DAJ to modularize middleware concerns
from three medium-sized distributed systems. This ex-
perimental study constitutes the main contribution of this
work regarding our first paper about DAJ [23]. Section 6

presents a discussion about the lessons learned in DAJ de-
velopment. Section 7 describes related work and Section
8 concludes the paper.

2. STOCKWATCHER SYSTEM
In order to describe the DAJ system, we will use in the

remaining of this paper a distributed application that pro-
vides information about stock prices. The StockWatcher
system consists of a remote object that stores the current
price of a set of stocks. Clients access this object to up-
date the price of a given stock and to subscribe for updates
in the price of stocks. In the latter case, the server object
uses a callback to notify the client.

Although simple, StockWatcher uses the core abstrac-
tions provided by object-oriented middleware systems. It
relies on remote calls using call by-serialization and call
by-remote-reference semantics when objects are used as
parameters. A copy of an object is passed when call by-
serialization semantics is specified (also known as object-
by-value semantics in CORBA). In this case, there is no
relation between the client-side object and the copy that
the server uses during the execution of the remote method.
On the other hand, when using call by-remote-reference
semantics, the remote reference associated with the object
is passed as argument of the remote call. During the ex-
ecution of the remote method, this reference can be used
to callback the object in the client address space.

StockWatcher admits several deployment configura-
tions. For example, a deployment scenario may include
a single RMI server and a number of Java clients. In
another scenario, CORBA may be used in order to sup-
port interoperation with clients implemented in other pro-
gramming languages. In a third scenario, we can have two
servers, one implemented in CORBA and another imple-
mented in Java RMI. In this case, each server handles a
subset of the traded stocks.

82

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

1: <server id="StockMarketA">
2: <interface>stockwatcher.StockMarket</interface>
3: <class>stockwatcher.StockMarketImpl</class>
4: <protocol>javaidl</protocol>
5: <nameserver>skank.pucminas.br</nameserver>
6: </server>
7: <server id="StockMarketB">
8: <interface>stockwatcher.StockMarket</interface>
9: <class>stockwatcher.StockMarketImpl</class>

10: <protocol>javarmi</protocol>
11: <nameserver>patofu.pucminas.br:1530</nameserver>
12: </server>
13: <remote>
14: <interface>stockwatcher.StockListener</interface>
15: <class>stockwatcher.StockListenerImpl</class>
16: </remote>
17: <serializable>
18: <class>stockwatcher.StockInfo</class>
19: </serializable>

Figure 2. A possible distribution descriptor for the motivating example

We describe next the main interfaces and classes of
the system.

Interfaces: The server that stores stock prices imple-
ments the following interface:

interface StockMarket {
void update(StockInfo info);
void subscribe(String stock,StockListener obj);
void unsubscribe(String stock,StockListener obj);
StockInfo getStock(String stock)

throws StockNotFoundException;
}

Clients publish changes in the price of stocks by call-
ing the update method. The class StockInfo is used
to store stock prices in a given date and time:

class StockInfo {
private String stock;
private double value;
private String date_time;

}

Clients register their interest in notifications of price
changes by calling the method subscribe, passing the
name of the stock they are interested in and a reference to
a remote object used by the server to call back the client.
The unsubscribe method is used to cancel the regis-
tration performed by subscribe. In both methods, the
client object that the server calls back must implement the
interface StockListener:

interface StockListener {
void update(String stock, double value);

}

The StockMarket interface also provides the
getStock method used to retrieve the current price
of the stock passed as parameter. If the server does
handle the requested stock, a remote exception of type

StockNotFoundException is raised.

Implementation: In the implementation of the Stock-
Watcher system, the class StockMarketImpl
implements the interface StockMarket and the class
StockListenerImpl implements the interface
StockListener. Different from standard object-
oriented implementations using Java RMI and Java IDL,
the described interfaces and classes do not have any
tangled code related to distribution.

3. PROGRAMMING INTERFACE
This section describes the DAJ programming inter-

face. More specifically, we describe the conventions that
developers must follow in order to define distribution de-
scriptors and to program client and server modules.

3.1. DISTRIBUTION DESCRIPTORS
DAJ hides from business classes programming con-

ventions demanded by the underlying middleware plat-
form. The ultimate goal is to allow developers to focus
on the functional requirements of the applications they
are building, delegating to the framework the implementa-
tion of the aspects related to distribution concerns. How-
ever, developers must define the distributed configuration
of their systems using an XML file called distribution de-
scriptor.

Basically, distribution descriptors contain information
about remote objects of a given distributed application. A
remote object is one whose methods can be accessed from
another address space, possibly from a different host.
In DAJ, remote objects that are registered in a naming
server are called server objects (or just servers). For such
objects, DAJ users must define their names, classes and

83

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

interfaces, the middleware used to access them, and the
host and port number of the naming server where they
must be registered1. Such information is specified using
a server tag in the distribution descriptor. DAJ users
must also define the types that are passed in remote calls
using call by-serialization and call by-remote-reference.
In the case of types passed by-remote-reference (node
remote), developers must inform their interfaces and
classes. In the case of types passed by-serialization (node
serializable), developers must inform their classes.

Example: Figure 2 presents a possible distribution de-
scriptor for the StockWatcher system. This descriptor
assumes an architecture including two servers: the first
uses Java IDL for communication and is registered un-
der the name StockMarketA (lines 1 to 6); the sec-
ond server uses Java RMI and is registered under the
name StockMarketB (lines 7 to 12). Moreover, the
descriptor prescribes that in remote calls objects of type
StockListener are passed by-remote-reference (lines
13 to 16) and objects of type StockInfo are passed by-
serialization (lines 17 to 19).

3.2. CLIENTS
In distributed object-based systems, clients locate

remote objects and then perform remote calls using the
same syntax of local calls. Clients must use the getRef
method from the DAJ API to obtain references to server
objects configured in a given distribution descriptor.
Using such references, clients perform remote calls in
a transparent way, i.e., without having any knowledge
about the underlying middleware platform.

Example: We show next a fragment of a client module of
the StockWatcher system:

1: StockMarket s1,s2;
2: s1= (StockMarket)
3: ServiceLocator.getRef("StockMarketA");
4: s2= (StockMarket)
5: ServiceLocator.getRef("StockMarketB");
6:
7: StockInfo s;
8: s=new StockInfo("sunw",124.6,"10/04/2007");
9: s1.update(s);
10:
11: StockListener listener= new StockListenerImpl();
12: s1.subscribe("goog", listener);
13: s2.subscribe("yhoo", listener);

In lines 1 to 5, the client uses the getRef method to
obtain references to the servers identified by the names
StockMarketA and StockMarketB in the distribu-
tion descriptor presented in Figure 2. Next, the client

1A naming service allows clients to locate objects based on their names.
The current implementation of DAJ is compatible with the standard
naming servers provided by Java RMI and Java IDL, respectively called
rmiregistry and tnameserv.

calls the update method of the first server passing by-
serialization an object of type StockInfo (lines 7 to 9).
Finally, the client subscribes to changes in the price of
two stocks (lines 11 to 13). It is worth to mention that
in both calls the client informs the same object of type
StockListener to receive callbacks from the servers.
As prescribed by the associated distribution descriptor,
the first server will use Java IDL to call back this object
and the second server will use Java RMI.

3.3. SERVERS
DAJ generates for each server defined in a distribution

descriptor an activation class, i.e., a class with a main
method used to create, activate and register the remote
object. This class has the same name of the server with
the suffix _Server.

4. ARCHITECTURE
This section presents the software architecture and the

implementation of the DAJ system, focusing on the ab-
stract aspects defined by the system and the concrete as-
pects generated from the information defined in distri-
bution descriptors. We begin the section describing the
creation of remote interfaces. Next, we describe aspects
used to inject middleware related concerns in business
classes, retrieve remote references and activate remote ob-
jects. Thus, this section assumes that the reader is familiar
with AspectJ syntax and semantics, which includes basic
knowledge of abstractions such as join points, pointcuts,
advices, and inter-type declarations. Such abstractions are
described in details in AspectJ introductory papers [15]
or textbooks [19].

4.1. REMOTE INTERFACES
Interfaces that have middleware related concerns

tangled in their code are called remote interfaces. From
distribution descriptor data, DAJ automatically generates
remote interfaces as required by Java RMI and Java IDL.
Such interfaces have the same name of their associated
business interfaces, but they are created in a different
package to avoid name collision.

Java RMI Remote Interfaces: Remote interfaces
required by Java RMI are similar to their associ-
ated business interfaces, except that they must extend
java.rmi.Remote and their methods must throw
java.rmi.RemoteException. DAJ generates code
for remote interfaces since the static crosscutting features
of AspectJ do not support adding a throws clause in the
signature of methods. This problem was already been re-
ported in other works [29, 32].

84

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

interface StockMarket extends Remote {
void update(StockInfo info) throws RemoteException;
void subscribe(String stock, stockwatcher.rmi.StockListener obj) throws RemoteException;
void unsubscribe(String stock, stockwatcher.rmi.StockListener obj) throws RemoteException;
StockInfo getStock(String stock) throws StockNotFoundException, RemoteException;

}

Figure 3. Java RMI interface for the motivating example

Another difference between business and remote in-
terfaces is related to call by-remote-reference. Suppose
that a business interface method has a parameter of a type
T declared as remote in the distribution descriptor. In the
remote interface, we must change T to the type of its as-
sociated remote interface. The reason is that Java RMI
transmits the stub of the argument when the formal pa-
rameter implements a Remote interface. Thus, the stub
is not compatible for assignment with business types.

Figure 3 presents the remote interface associated to
the business interface StockMarket. The presented
interface extends Remote. Moreover, its methods de-
clare that they can throw RemoteException. Finally,
the type of the parameter obj in the subscribe and
unsubscribe methods was replaced by the associated
remote interface type.

Java IDL Remote Interfaces: As usual in CORBA-
based distributed applications, remote interfaces must
be specified in IDL – a neutral language proposed by
CORBA to define remote interfaces. Thus, DAJ gener-
ates an IDL specification for business types defined in
the deployment descriptor of a given system. Moreover,
DAJ relies on the idlj compiler that is part of the Java
IDL platform to generate classes and interfaces required
by CORBA implementations. In object-oriented Java IDL
systems, the code of such classes is scattered and tangled
in the business classes of the distributed system under de-
sign.

Figure 4 shows the interface StockMarketOper-
ations, generated by the idlj compiler and that must
be implemented by a business class. In this interface,
business types have also been replaced by their counter-
part remote types, as proposed by DAJ for RMI interfaces.

4.2. REMOTE CLASSES
Remote classes are those that result from the in-

strumentation of business classes with distribution con-
cerns. DAJ makes a distinction between remote classes
whose instances are registered in a naming service and
those whose instances are not registered in such ser-
vice. The former are always specified in a server tag
of distribution descriptors. An example is the Stock-
MarketImpl class. The latter are declared in remote
tags and are used to create objects that are passed using

call by-remote-reference in remote calls. An example is
the class StockListenerImpl.

The remaining of this subsection describes how these
two type of remote classes are instrumented with distri-
bution code required by Java IDL. The instrumentation
required by Java RMI follows the same pattern, and thus
is not be presented in this paper.

Classes that can be located using a naming service: As
any remote class, such classes must implement the remote
interface generated by DAJ. Moreover, for each method in
the remote interface with a parameter of type T, where T
is a remote interface type, the system inserts a counterpart
method in the class. The body of this method just calls the
method that expects the business type associated with T.

In order to illustrate, we show the aspect that trans-
forms StockMarketImpl in a remote class.

1: aspect RemoteStockMarketImpl {
2: declare parents: StockMarketImpl implements
3: StockMarketOperations;
4:
5: public void StockMarketImpl.subscribe(
6: String stock,
7: stockwatcher.idl.StockListener obj) {
8: StockListenerAdapter adapter;
9: adapter= new StockListenerAdapter(obj);
10: subscribe(stock, adapter);
11: }
12: ...
13: }

Lines 2-3 define that the class StockMarket-
Impl must implement the remote interface Stock-
MarketOperations (described in Section 4.1). Since
the subscribe method of this interface expects a
remote interface type as parameter, a method with
the expected signature is also introduced in the class
StockMarketImpl (lines 5 to 11). This introduc-
tion is needed since the subscribe method originally
available in StockMarketImpl expects a parameter of
the type StockListener (instead of the remote type
stockwatcher.idl.StockListener prescribed
by the interface StockMarketOperations).

The method introduced in StockMarketImpl redi-
rects the call to the original subscribe method of the
class (line 10). In order to make the redirection possible
the following adapter is employed:

85

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

interface StockMarketOperations {
void update(stockwatcher.idl.StockInfo info);
void subscribe(String stock, stockwatcher.idl.StockListener obj);
void unsubscribe(String stock, stockwatcher.idl.StockListener obj);
stockwatcher.idl.StockInfo getStock(String stock)

throws stockwatcher.idl.StockNotFoundException;
}

Figure 4. Java IDL interface for the motivating example

class StockListenerAdapter implements StockListener {
stockwatcher.idl.StockListener adaptee;
StockListenerAdapter (

stockwatcher.idl.StockListener adaptee) {
this.adaptee= adaptee;

}
public void update(String stock, double value) {

adaptee.update(stock,value);
}

}

Essentially, this adapter conforms the Stock-
Listener remote interface to its counterpart business
interface.

Classes that are not bound to a naming service: In
such classes, the same inter-type declarations described
previously are applied. Moreover, two new compo-
nents are introduced by the associated aspect: a method
export2IDL responsible for the activation of the re-
mote object, and a reference refIDL to the stub cre-
ated by the activation method provided by Java IDL. The
export2IDL method uses the value of refIDL to de-
cide whether the object needs to be activated or not. If the
value is null, the method activates the object and stores
its remote reference in refIDL.

The following aspect is created by DAJ to transform
the business class StockListenerImpl into a remote
class.

1: aspect RemoteStockListenerImpl {
2: declare parents: StockListenerImpl implements
3: StockListenerOperations;
4:
5: StockListener StockListenerImpl.refIDL= null;
6:
7: StockListener StockListenerImpl.export2IDL() {
8: // activates remote object using Java IDL API
9: }
10: }

Line 3 defines that the class must implement the
StockListenerOperations interface. The remain-
der of the aspect introduces in StockListenerImpl
the refIDL field (line 5) and the export2IDL method
(lines 7 to 9).

4.3. OBTAINING REMOTE REFERENCES
As defined in Section 3.2, clients obtain references to

server objects by calling the getRef method. The im-

plementation of this method basically retrieves the infor-
mation about the requested object from the distribution
descriptor and uses this information to perform a lookup
operation in the naming server of Java RMI or Java IDL.

However, the getRef method does not return a ref-
erence to the stub of the remote object, but to a proxy
for this object. This proxy is generated by DAJ and acts
as representant for the remote object. The proxy im-
plementation assumes the task of activating remote ob-
jects when they are passed as arguments of remote calls.
In order to support this feature, the proxy relies on the
export2IDL and export2RMI methods.

The following example presents the proxy returned
when the client requests a reference to a server object of
the type StockMarketImpl:

1: class StockMarketProxy implements StockMarket {
2: stockwatcher.idl.StockMarket server;
3:
4: void subscribe(String stock, StockListener obj) {
5: stockwatcher.idl.StockListener _obj;
6: _obj= ((StockListenerImpl) obj).export2IDL();
7: server.subscribe(stock, _obj)
8: }....
9: }

The proxy subscribemethod exports the object as-
sociated with its obj parameter (line 6) before redirecting
the call to the remote object (line 7).

4.4. ACTIVATING REMOTE SERVERS
DAJ generates aspects that are responsible for creat-

ing, enabling and registering remote servers, thus remov-
ing this concern from business classes. Particularly for
Java RMI, the following abstract aspect defines pointcuts
and advices for handling these concerns:

1: abstract aspect RMIServer {
2: abstract pointcut ServerMainExecution();
3: abstract String getServerName();
4: abstract String getRegistry();
5: abstract Remote getInstance();
6:
7: void around(): ServerMainExecution() {
8: // code to create, activate, and register
9: // remote objects
10: }
11: }

In this aspect, the abstract pointcut ServerMain-
Execution includes the join points where remote

86

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

servers should be created (line 2). The abstract method
getServerName (line 3) returns a string that contains
the name under which the object must be registered. The
abstract method getRegistry returns the host name of
the naming server (line 4). The getInstance method
is a factory method responsible for the creation of remote
objects (line 5). The aspect also contains an around
advice associated with the ServerMainExecution
pointcut (lines 7 to 10). This advice contains code to cre-
ate, activate, and register remote objects, by using meth-
ods provided by Java RMI.

DAJ also provides an abstract aspect called
CORBAServer, that is similar to the aspect RMI-
Server.

Example: The concrete RMIServerStocketMar-
ketB aspect created by DAJ activates and registers an
instance of the StockMarketB server object defined in
the distribution descriptor of the StockWatcher system.

aspect RMIServerStockMarketB extends RMIServer {
pointcut ServerMainExecution: execution(

public static void ServerStockMarketB.main(..));
String getServerName() {

return "StockMarketB";
}
String getRegistry() {
return "patofu.pucminas.br:1530";

}
Remote getInstance() {

return new StockMarketImpl();
}

}

The information needed to generate this aspect – in-
cluding the name of the remote object, the host name of
the RMI Registry and the class of the remote object – was
retrieved from the distribution descriptor of the Stock-
Watcher system.

4.5. EXCEPTION HANDLING
This section describes how DAJ handles middleware

concerns tangled in remote exception classes.

Exception handling in Java IDL: In Java IDL, ex-
ceptions must be specified in the IDL signature of re-
mote methods. From IDL interfaces, the idlj tool
generates classes that represent such exceptions in Java.
However, the generated classes present tangled Java IDL
code to handle the serialization of the exception, so that
it can be propagated from the server to the client ad-
dress space. For example, such classes must extend
org.omg.CORBA.UserException.

On the other hand, the StockWatcher system
also includes its own plain Java StockNotFound-
Exception class:

class StockNotFoundException extends Exception {
public StockNotFoundException(String msg) {

super(msg);
}

}

Since we do not want to create any explicit middle-
ware interference in core classes, DAJ generates an aspect
that handles remote exceptions in the client and server
sides of distributed applications. This aspect includes
an advice that catches business exceptions raised by
methods of the StockMarketImpl class and throws
an equivalent remote exception. The system then relies
on the CORBA layer to propagate remote exceptions to
the client side. Another advice catches remote exceptions
when they arrive in the client proxy class. This advice
then throws an equivalent business exception.

Exception handling in Java RMI: In Java RMI, busi-
ness exceptions raised by remote methods are seamlessly
propagated to client objects, using the Java built-in se-
rialization mechanism. Therefore, there is no dichotomy
between business and remote exception classes, as in Java
IDL. However, Java RMI requires remote method signa-
tures to declare a RemoteException checked excep-
tion, that is used to signal communication failures. In or-
der to eliminate the need for handling such exception in
the client code, DAJ generates an aspect that transforms
it into an unchecked exception.

5. EXPERIMENTAL STUDY
This section describes the use of DAJ in the modular-

ization of distribution concerns from three applications:

• HealthWatcher: a Web-based information system
used by citizens to register complaints about the san-
itary conditions of restaurants and food shops. A
first experience on using AspectJ to modularize Java
RMI concerns of HealthWatcher has been conducted
by Soares, Borba and Laureano [30, 29]. In this pa-
per, we have repeated this experience, but using DAJ
instead of manually extracting aspects from Heath-
Watcher.

• Network Pricing System (NPS): a distributed system
used to update and monitor stock prices. NPS has
been originally designed as a text book example of a
distributed application using many features provided
by the Java IDL middleware platform [20].

• Library: a Java-RMI library management system
with functions for handling customers, titles, copies,
making reservations etc. Library has also been used
to evaluate an instrumentation infrastructure for re-
verse engineering of UML sequence diagrams pro-
posed by Briand, Labiche and Leduc [4].

87

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

In the study, we have initially refactored the original
implementation of these systems, in order to remove dis-
tribution code from their business classes. Afterwards, we
have defined distribution descriptors for the evaluated sys-
tems. The tool dajc was then used to generate aspects
including both Java RMI and Java IDL code.

The central idea of the study was to illustrate the abil-
ity of the system to handle distribution concerns from
real-world applications. Since distribution is widely con-
sidered a crosscutting concern and thus a natural candi-
date for aspect-oriented approaches [30, 29, 32, 5, 21, 18],
we only present information about the number of classes,
interfaces and lines of code (LOC) regarding the original
and refactored versions of the evaluated systems. Further
studies may consider other object-oriented metrics in or-
der to better demonstrate the advantages of using aspects
for handling distribution.

5.1. HEALTHWATCHER
The object-oriented version of the HealthWatcher

system relies on Java RMI for communication. Ta-
ble 1 presents quantitative information about the system.
HealthWatcher core has 78 classes and 13 interfaces. Dis-
tribution concerns, such as service lookup, remote excep-
tions and synchronization, are implemented by 4 classes
and 2 interfaces. The main modularization drawback of
this version of the system is the fact that code related to
distribution is tangled in the classes and interfaces of the
core.

Classes Interfaces LOC
Core 78 13 4976
Distribution 4 2 153
Total 82 15 5129

Table 1. RMI-based HealthWatcher

DAJ-based HealthWatcher: Initially, a distribution de-
scriptor was defined considering a deployment configura-
tion employing two servers: one using Java RMI and the
other relying on Java IDL. In this deployment descrip-
tor, 25 classes designate objects passed by-serialization.
HealthWatcher does not use call by-remote-reference.

Table 2 summarizes the components generated by the
DAJ compiler from the HealthWatcher distribution de-
scriptor. The new core of the system – after removing
RMI classes and statements – has 410 lines less than the
original core. Moreover, the original HealthWatcher has
a very rigid architecture, including only one Java RMI
server. On the other hand, the DAJ-based system presents
a more flexible architecture that supports easily changing
the underlying middleware.

It is worth to mention that Java IDL requires the gen-
eration of much more code than Java RMI (5671 lines

C I A LOC
Core 78 13 0 4566
DAJ internal components 6 0 0 244
Java RMI generated code 2 1 21 191
Java IDL generated code 103 29 38 5671
Total 189 43 59 10672

Table 2. DAJ-based HealthWatcher (C= Classes; I= Interfaces; A=
Aspects)

for Java IDL and only 191 lines for Java RMI). The main
reason is that the Java IDL compiler must generate several
components that are mandatory in CORBA implementa-
tions, including stubs, portable adapters, classes responsi-
ble for IDL-to-Java mappings etc. The same difference in
the number of lines between the two middleware systems
will be observed in the following systems.

5.2. NETWORK PRICING SYSTEM (NPS)
NPS functionality is very similar to the motivating ex-

ample used in this paper. However, we choose to refactor
NPS because it was originally implemented using Java
IDL and uses many of the features provided by this mid-
dleware technology. Table 3 presents information about
the original version of the system.

Classes Interfaces LOC
Core 18 1 1279
Distribution 61 14 3138
Total 79 15 4417

Table 3. Java IDL-based NPS

DAJ-based NPS: First, Java IDL code was fully removed
from NPS core. In this step, we also needed to incorpo-
rate new classes in the core in order to replace classes
generated by the Java IDL compiler that have been used
in the implementation of functional requirements of the
system. This is the case, for example, of classes repre-
senting objects that are passed by-serialization in remote
calls. Such classes are generated by the idlj tool and
thus they have methods and fields required by Java IDL
programming conventions. After replacing idlj gener-
ated classes by plain Java classes, the core was converted
into an application that is independent from any middle-
ware technology.

Table 4 summarizes the components generated by the
DAJ compiler from the NPS distribution descriptor. As
can be observed, the new core – considering the compo-
nents added to replace Java IDL functional components –
has 1210 lines, which is almost the same size of the orig-
inal core. However, the new core does not depend any-
more on any particular distribution technology. We were
also able to change the communication middleware em-

88

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

ployed to access the two NPS server objects. In this way,
it was very simple to build versions of NPS based on Java
RMI only, on Java IDL only or on both platforms – for
example, one server can be configured to use Java RMI
and the other one to use Java IDL.

C I A LOC
Core 25 8 0 1210
DAJ internal components 6 0 0 244
Java RMI generated code 7 7 18 355
Java IDL generated code 65 18 15 3744
Total 103 33 33 5553

Table 4. DAJ-based NPS (C= Classes; I= Interfaces; A= Aspects)

5.3. LIBRARY SYSTEM
The original version of the Library system uses Java

RMI as the underlying communication infrastructure.
Table 5 presents information about this version of the
system. As can be observed in this table, the system
does not have any class addressing distribution concerns
(such as classes denoting remote exceptions). Basically,
Library relies only on standard Java RMI classes that
however are spreaded and tangled in the core functional-
ity of the system.

Classes Interfaces LOC
Core 66 4 4997

Table 5. Java RMI-based Library System

DAJ-based Library: First, we removed all RMI related
concerns from the core. We had also to refactor remote
method signatures when they include built-in classes from
the Java API (such as java.util.Vector). The rea-
son is that such classes are not supported by Java IDL –
since Java IDL is a language neutral middleware platform.
This restriction required us to implement new collection
classes independent from the Java API.

The Library system has three remote servers. The
first one handles functionality related to library employ-
ees. The second server handles tasks related to reserva-
tions, loans and payments. Finally, the last one is used
by customers to search the library collection. Moreover,
the system has 27 classes describing objects that must be
passed in remote calls using call by-serialization. It does
not make use of call by-remote-reference.

Table 6 summarizes the components generated by the
dajc compiler from the Library distribution descriptor.
It is worth to mention that the new core – including the
new collection classes – has 193 more lines of code than
the original one. However, this core is fully independent

both from middleware technology and Java API compo-
nents. Moreover, by just changing the middleware proto-
col in the distribution descriptor we were able to deploy a
Java IDL version of the Library System.

C I A LOC
Core 70 5 0 5190
DAJ internal components 6 0 0 244
Java RMI generated code 6 3 26 309
Java IDL generated code 98 32 34 5427
Total 180 40 60 11170

Table 6. DAJ-based Libray (C= Classes; I= Interfaces; A= Aspects)

6. DISCUSSION
This section discusses the solution proposed by DAJ

considering the following criteria: separation of con-
cerns, usability and flexibility, portability, obliviousness
and alternative implementation technologies.

Separation of Concerns: Using DAJ we were able to
synthesize aspects and classes that modularize distri-
bution concerns in the three evaluated systems. After
refactoring, distribution concerns were completely re-
moved from the core of these applications. However, we
had to replace concrete components generated by Java
IDL to components independent from any middleware
technology. The same was required when remote method
signatures rely on components from the Java API. A
core independent from middleware concerns is more
simple to understand, test and evolve. Particularly,
tests can be performed without considering distribution,
which is critical for example to the success of test-driven
development.

Usability and Flexibility: Our experience demon-
strates that defining distribution descriptors is fairly
straightforward. It is very simple for example to change
distribution parameters, such as the underlying middle-
ware platform, naming servers location, remote object
names etc. Moreover, it is also possible to reconfigure
the distributed architecture of the base system. For
example, we have rapidly reconfigured HealthWatcher to
use two remote servers, instead of a single one. On the
other hand, since it is based on XML, the distribution
descriptorï£¡s syntax is not as legible and concise when
compared with concrete syntax based on non-markup
languages. Another drawback is that middleware pa-
rameters are hard-coded in distribution descriptors.
Thus, DAJ does not provide support for example to
applications that dynamically discover information
about remote services. In the future, we have plans to

89

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

tackle this problem. A possible solution is to extend
the current API of the system, providing methods that
allow clients to set up middleware parameters at run-time.

Performance: In order to evaluate the performance of the
system, we have measured the time to execute the remote
calls included in the StockWatcher system. This system
was executed 20 times. In each execution, each remote
call of the system was dispatched ten thousand times. We
then calculated the average time to perform the dispatched
calls considering the sequences of 20 executions. More-
over, we have evaluated four versions of StockWatcher:
based on Java RMI (using DAJ and using object-oriented
code) and on Java IDL (using DAJ and object-oriented
code). The results are presented on Tables 7 and 8. We
run client and server processes on a Pentium 4 3.2 GHz, 1
GB RAM, Microsoft Windows XP Service Pack 2, JDK
1.6 and ajc version 1.5.4.c.

The experiment demonstrates that DAJ does not
impact significantly middleware performance. The per-
formance overhead is negligible in most of the measured
calls, both for Java RMI and Java IDL versions of the
system. The only exception is when the getStock
method raises a StockNotFoundException in the
Java IDL-based version of StockWatcher. The perfor-
mance overhead in this case is higher than 8%, compared
with the original implementation of the system using
scattered and tangled OO code. This overhead is due to
the need of using aspects to handle such exception both
on the server and on the client side of the distributed
system, as described in Section 4.5.

Portability: Using DAJ, we were able to deliver versions
of the evaluated systems for a different middleware plat-
form than the one supported by their original implementa-
tion. However, DAJ only provides support for the “lowest
common denominator” between Java IDL and Java RMI.
Basically, this translates to synchronous remote calls us-
ing call by-serialization and call by-remote-reference se-
mantics. DAJ does not provide support for example to
features available only in CORBA systems, such as asyn-
chronous calls, oneway calls, portable interceptors, dy-
namic invocation interfaces etc. On the other hand, we
envision that the system can be extended to support other
CORBA ORBs, besides Java IDL.

Another challenge is to provide support for Web Ser-
vices in DAJ. In fact, we have already investigated this is-
sue, considering Apache Axis as the middleware platform
for supporting Web Services [2]. Basically, we faced two
problems. First, Apache Axis generates its own classes
for types used in remote service invocations. Such classes
contain methods that serializes and deserializes objects
according to Web Services standards. Thus, supporting
Web Services in DAJ would require several inter-type

declarations to transpose such methods to the classes of
the base system. Another challenge is that Web Services
do not support call by-remote-reference, since this would
require the deployment of an HTTP server in each Web
Service client. For this reason, we decided to do not sup-
port Web Services in the first DAJ implementation.

In summary, we consider that DAJ is a solution
that targets only crosscutting concerns inherent to dis-
tributed object architectures. Particularly, we do not ex-
pect that the proposed system can handle concerns related
to other middleware paradigms, such as service-oriented,
message-oriented or event-based.

In the future, we consider that DAJ can be extended
to generate code for other programming languages,
such as C++ or C#. The only requirement is that aspect
extensions for such OO languages become more mature.

Obliviousness: Although DAJ fully insulates middleware
code from application components, it is worth to men-
tion that DAJ requires client modules to rely on its own
getRef method to retrieve remote references. Thus,
it can be argued that DAJ replaces middleware tangling
code by its own. However, this degree of tangling is mini-
mal and it can be eliminated by creating an extra aspect, as
illustrated below for an hypothetical StockWatcher client:
1: class MyClient {
2: StockMarket s1,s2;
3:
4: }
5: aspect MyClientDependencyInjection {
6: after(MyClient c):
7: execution(void MyClient.new(..)) && this(s) {
8: c.s1= (StockMarket)
9: ServiceLocator.getRef("StockMarketA");
10: c.s2= (StockMarket)
11 ServiceLocator.getRef("StockMarketB");
12: }
13: }

The proposed aspect, as happen in dependency injec-
tion frameworks [24, 6], assumes the charge of retrieving
and binding remote references to instance variables s1
and s2 (lines 8 to 11). In this way, the class has remained
oblivious to DAJ concerns.

Alternative Technologies: Instead of aspects, at least
two other technologies could have been used to modu-
larize distributions concerns required by middleware plat-
forms:

• Bytecode manipulation frameworks: Frameworks
such as BCEL [9] could have been used to instru-
ment the bytecode of the core classes with middle-
ware related programming conventions. However,
aspect-oriented languages, such as AspectJ, provide
high-level abstractions to perform the same kind of
instrumentation. Such abstractions have contributed
to simplify the design and implementation of DAJ.

90

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

Remote Call RMI-DAJ RMI-OO DAJ / OO (%)
update 2767 2698 2.56
subscribe 5901 5803 1.69
unsubscribe 3010 2989 0.70
getStock returning StockInfo 2631 2648 -0.64
getStock returning an exception 5089 5045 0.87

Table 7. Average time (in ms) to perform ten thousand remote calls in the Java RMI-based versions of the StockWatcher system (using DAJ and
using tangled and spreaded OO code)

Remote Call IDL-DAJ IDL-OO DAJ / OO (%)
update 6473 6450 0.36
subscribe 13809 13634 1.28
unsubscribe 6428 6289 2.21
getStock returning StockInfo 6326 6332 -0.09
getStock returning an exception 6401 5893 8.62

Table 8. Average time (in ms) to perform ten thousand remote calls in the Java IDL-based versions of the StockWatcher systems (using DAJ and
using tangled and spreaded OO code)

• Model-based Development: As promoted by model-
driven approaches [25], CASE tools can be aug-
mented to support the generation of class skele-
tons incorporating middleware required code. Such
classes can be generated from models, such as
UML class and sequence diagrams, or from domain-
specific languages. However, this approach usually
generates code that is hard to understand and evolve.
Moreover, since application logic is embedded in
the synthesized class skeletons, it is usually hard
to achieve round-trip engineering, i.e., moving back
and forth between models and generated code [13].

7. RELATED WORK
Soares, Borba and Laureano have reported their ex-

perience using AspectJ to provide an aspect-oriented im-
plementation for the HealthWatcher system [30, 29]. Re-
garding their work, DAJ presents at least three contribu-
tions:

• DAJ supports modularization both for Java RMI and
Java IDL communication concerns. Supporting Java
IDL is important to provide interoperability with
clients and servers written in other programming lan-
guages. The challenge in this case was to avoid col-
lisions and interferences among aspects specific to
each middleware system. For example, when the
aspects proposed by DAJ require inter-type decla-
ration, interface implementation was preferred since
Java only supports simple inheritance.

• DAJ supports parameter passing in remote calls
using call by-serialization and call by-remote-
reference semantics. Instead, the aspects proposed

by Soares, Borba and Laureano only handle call by-
serialization, since this was the only evaluation strat-
egy employed in HealthWatcher. However, call by-
remote-reference is extensively used in other dis-
tributed object-based systems to support the imple-
mentation of callbacks [11].

• DAJ is compatible with different software architec-
tures employed in the design of distributed systems.
On the other hand, the solution proposed by Soares
and colleagues is restricted to the original architec-
ture employed by the HealthWatcher system. For
example, their solution assumes that there is a sin-
gle server object of type HWFacade. The proposed
pointcuts rely on this particular type to capture re-
mote calls. For this reason, aspects used in Health-
Watcher do not apply for example to clients that ref-
erence multiple server objects.

Kulesza et al. have conducted a quantitative study to
assess the positive and negative effects of using AOP in
the HealthWatcher system [18]. Their study was driven
by a suite of metrics for separation of concerns, coupling,
cohesion and size. The conclusion is that the AO ver-
sion of the system presents better results for almost all
the considered metrics. Other works also report the ad-
vantages of using aspects to modularize distribution con-
cerns [32, 5, 21].

Ceccato and Tonella have proposed an aspect-oriented
framework to support the migration of a non-distributed
application to a distributed architecture [5]. Similar to
DAJ, the object-oriented code remains oblivious to the
injected distributed behavior and the proposed aspects
are generated automatically. However, their solution is
restricted to Java RMI. Moreover, the configuration file

91

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

that guides the generation of aspects is just a list of class
names, which does not contain information about param-
eter passing strategies, naming servers, etc. In their so-
lution, call by-remote-reference is applied to all invoca-
tion parameters. Certainly, this decision is not adequated
when the target of the modularization is an existing dis-
tributed application whose semantics depends on call by-
serialization. Additionally, using only call by-remote-
reference impacts the performance of the system, since
the execution of remote methods must call back the client
address space to access any argument.

Reflective middleware systems rely on the application
of reflection to achieve customizable, open, and adaptive
middleware platforms [17]. For example, UIC CORBA
supports the concept of personality, that allows users to
specialize middleware systems according to the require-
ments of a given distributed application or domain [28].
It is possible for example to configure skeletons that sup-
port communication with different middleware systems.
Pluggable protocols aim to support custom middleware
protocol stacks in TAO, a well-known CORBA middle-
ware framework [27]. The system targets mainly applica-
tions with sensitive time constraints, such as real-time and
embedded systems. However, as usual in object-oriented
middleware systems, both UIC and TAO require devel-
opers to follow their specific programming conventions,
which usually lead to code scattering and tangling [22].

Ghosh and colleagues have proposed a middleware
transparent approach to support the implementation of
distributed systems [12]. Similar to DAJ, they rely on
aspects to decouple business concerns from middleware-
specific functionality. Moreover, they propose a model-
driven approach to distributed systems development. A
middleware transparent design (MTD) is a model of the
system that do not address middleware concerns. Aspects
are weaved to such model to derive a middleware spe-
cific design (MSD) that addresses both business and dis-
tribution concerns. Accordingly to Model Driven Archi-
tecture (MDA) principles [25], a MTD corresponds to a
PIM (Platform Independent Model) and a MSD to a PSM
(Platform Specific Model). DAJ is a system that imple-
ments and puts into practice many principles and ideas
proposed by Ghosh and colleagues in their proposal.

Zhang and Jacobsen have quantified the crosscut-
ting nature of several features of CORBA based middle-
ware [37]. They have measured the scattering degree of
features such as portable interceptors, dynamic program-
ming invocations, collocation optimizations, and asyn-
chronous calls. They have also showed that such features
can be modularized using aspect-oriented programming.
From this experience, they have proposed the horizon-
tal decomposition method [38]. Horizontal decomposi-
tion advocates the use of traditional modularization tech-
niques, such as vertical decomposition, to implement a

minimal but well-modularized core middleware system.
Aspects should then be used to superimpose orthogonal
features to this core. They have assessed the effective-
ness of their method by re-implementing as aspects cross-
cutting features of the original implementation of OR-
Bacus [26]. AspectJRMI is another middleware system
whose design has been guided by horizontal decompo-
sition principles [10]. Colyer et al. have conducted an
aspect-oriented refactoring of a large scale middleware
product-line [7]. They have identified many crosscutting
concerns in the product-line, including homogenous con-
cerns (tracing, logging, error analysis and reporting, mon-
itoring, and statistics) and heterogeneous concerns (EJB
support). Similar to Zhang and Jacobsen, Colyer work
aims to modularize crosscutting concerns that are internal
to the middleware layer.

In DAJ-based distributed systems, the language em-
ployed in the specification of distribution descriptors can
be considered as a domain-specific aspect-oriented lan-
guage. Recently, some works have proposed the use of
domain-specific languages to describe crosscutting con-
cerns, since such languages rely on abstractions and vo-
cabulary that is closer to the concern they intend to mod-
ularize. Moreover, they are less susceptible to critics
commonly related to general purpose aspect-oriented lan-
guages. For example, many researchers consider that lan-
guages such as AspectJ defeats basic software engineer-
ing principles, such as modular reasoning, parallel devel-
opment and encapsulation [35, 31]. Certainly, such critics
are less important when using domain-specific aspect lan-
guages. It is also worth to mention that the first generation
of aspect languages was defined for domain-specific pur-
poses, including RIDL (for remote interface specification)
and COOL (for coordination and synchronization) [21].

8. CONCLUSIONS
In this paper, we have described a system called DAJ

that provides middleware independence in distributed,
object-oriented systems. For this purpose, DAJ relies on
the combination of three technologies: aspects, domain-
specific languages and generative programming. DAJ
also supports two native, object-oriented JDK middleware
platforms: Java RMI and Java IDL. The system modu-
larizes the basic service provided by these middleware
platforms, i.e. synchronous remote calls using call by-
serialization and call by-remote-reference semantics. Par-
ticularly, DAJ does not provide support to features avail-
able only in CORBA systems, such as asynchronous calls,
oneway calls, portable interceptors, dynamic invocation
interfaces etc.

In order to evaluate the proposed system, we have
refactored three medium-sized distributed applications:

92

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

HealthWatcher, Network Pricing System, and Library.
DAJ was able to modularize middleware code tangled in
the business components of these three systems. We have
also been able to deploy a new version of the evaluated
systems using a different middleware platform than the
original one.

As future work, we have plans to investigate the use
of DAJ in other distributed systems, including applica-
tions designed to rely on DAJ since the design phase.
We also have plans to consider other object-oriented
metrics in the investigated systems, including metrics
that evaluate important software engineering attributes,
such as cohesion, coupling and separation of concerns.

Acknowledgments This work has been funded by
FAPEMIG (process CEX-817/05). We would like to
thank Sergio Soares for providing the source code of the
HealthWatcher system and Mariana Sharp for providing
the Library system source code.

REFERENCES
[1] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay

Machiraju. Web Services: Concepts, Architecture and Ap-
plications. Springer Verlag, 2004.

[2] Apache Axis. http://ws.apache.org/axis/.

[3] Jon Bentley. Programming pearls: little languages. Com-
munications ACM, 29(8):711–721, 1986.

[4] Lionel C. Briand, Yvan Labiche, and Johanne Leduc. To-
ward the reverse engineering of UML sequence diagrams
for distributed Java software. IEEE Transactions on Soft-
ware Engineering, 32(9):642–663, 2006.

[5] Mariano Ceccato and Paolo Tonella. Adding distribution
to existing applications by means of aspect oriented pro-
gramming. In 4th IEEE International Workshop on Source
Code Analysis and Manipulation, pages 107–116. IEEE
Computer Society, 2004.

[6] Shigeru Chiba and Rei Ishikawa. Aspect-oriented pro-
gramming beyond dependency injection. In 19th Euro-
pean Conference on Object-Oriented Programming, vol-
ume 3586 of Lecture Notes in Computer Science, pages
121–143. Springer, 2005.

[7] Adrian Colyer and Andrew Clement. Large-scale AOSD
for middleware. In 3rd International Conference on
Aspect-Oriented Software Development, pages 56–65.
ACM Press, 2004.

[8] Krysztof Czarnecki and Ulrich Eisenecker. Genera-
tive Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[9] Markus Dahm. Bytecode engeeniering with the BCEL
API. Technical report, Freie Universitt - Institut fur In-
formatik, 2001.

[10] Marco Tulio de Oliveira Valente, Fabio Tirelo, Di-
ana Campos Leao, and Rodrigo Palhares. An aspect-
oriented communication middleware system. In Inter-
national Symposium on Distributed Objects and Applica-
tions, volume 3761 of LNCS, pages 1115–1132. Springer-
Verlag, October 2005.

[11] Frantisek Plasil and Michael Stal. An architectural view
of distributed objects and components in CORBA, Java
RMI and COM/DCOM. Software Concepts and Tools,
19(1):14–28, 1998.

[12] Sudipto Ghosh, Robert B. France, Devon M. Sim-
monds, Abhijit Bare, Brahmila Kamalakar, Roopashree P.
Shankar, Gagan Tandon, Peter Vile, and Shuxin Yin.
A middleware transparent approach to developing dis-
tributed applications. Software Practice and Experience,
35(12):1131–1154, October 2005.

[13] Aniruddha S. Gokhale, Douglas C. Schmidt, Balachandran
Natarajan, and Nanbor Wang. Applying model-integrated
computing to component middleware and enterprise ap-
plications. Communications of the ACM, 45(10):65–70,
2002.

[14] Java IDL. http://java.sun.com/products/jdk/idl.

[15] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Ker-
sten, Jeffrey Palm, and William G. Griswold. An overview
of AspectJ. In 15th European Conference on Object-
Oriented Programming (ECOOP), volume 2072 of LNCS,
pages 327–355. Springer Verlag, 2001.

[16] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. In 11th
European Conference on Object-Oriented Programming
(ECOOP), volume 1241 of LNCS, pages 220–242.
Springer Verlag, 1997.

[17] Fabio Kon, Fábio Costa, Roy Campbell, and Gordon Blair.
The case for reflective middleware. Communications of the
ACM, 45(6):33–38, June 2002.

[18] Uirá Kulesza, Cláudio Sant’Anna, Alessandro Garcia,
Roberta Coelho, Arndt von Staa, and Carlos José Pereira
de Lucena. Quantifying the effects of aspect-oriented pro-
gramming: A maintenance study. In 22nd IEEE Interna-
tional Conference on Software Maintenance, pages 223–
233, 2006.

[19] Ramnivas Laddad. AspectJ in Action Practical Aspect-
Oriented Programming. Manning, 2003.

[20] Geoffrey Lewis, Steven Barber, and Ellen Siegel. Pro-
gramming with Java IDL. John Wiley & Sons, 1997.

[21] Cristina Videira Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, College of Com-
puter Science, Northeastern University, December 1997.

[22] Neil Loughran, Lionel Seinturier Geoff Coulson, Renaud
Pawlak, Eddy Truyen, Frans Sanen, Maarten Bynens,
Wouter Joosen, Andrew Jackson, Siobhan Clarke, Neil
Hatton, Monica Pinto, Lidia Fuentes, Mercedes Amor, Tal
Cohen, Adrian Colyer, and Christa Schwanninger. Re-
quirements and definition of aspect-oriented middleware
reference architecture. Technical report, AOSD Europe,
oct 2005.

93

Cristiano Amaral Maffort and Marco Tulio de
Oliveira Valente

Modularizing Communication Middleware
Concerns Using Aspects

[23] Cristiano Amaral Maffort and Marco Tulio de Oliveira Va-
lente. Aspectos para construção de aplicações distribuí-
das. In XX Simpósio Brasileiro de Engenharia de Soft-
ware, pages 271–286, 2006.

[24] Martin Fowler. Inversion of control con-
tainers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html.

[25] OMG Model Driven Architecture.
http://www.omg.org/mda.

[26] Orbacus. http://www.orbacus.com.

[27] Carlos O’Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama
Othman, and Jeff Parsons. The design and performance of
a pluggable protocols framework for real-time distributed
object computing middleware. In International Middle-
ware Conference, volume 1795 of Lecture Notes in Com-
puter Science, pages 372–395. Springer, 2000.

[28] Manuel Román, Fabio Kon, and Roy Campbell. Reflective
middleware: From your desk to your hand. Distributed
Systems Online, 2(5), July 2001.

[29] Sergio Soares, Paulo Borba, and Eduardo Laureano. Dis-
tribution and persistence as aspects. Software Practice and
Experience, 36(7):711–759, 2006.

[30] Sergio Soares, Eduardo Laureano, and Paulo Borba. Im-
plementing distribution and persistence aspects with As-
pectJ. In 17th ACM Conference on Object-Oriented pro-
gramming systems, languages, and applications, pages
174–190. ACM Press, 2002.

[31] Friedrich Steimann. The paradoxical success of aspect-
oriented programming. In 21st Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), pages 481–497, 2006.

[32] Eli Tilevich, Stephan Urbanski, Yannis Smaragdakis, and
Marc Fleury. Aspectizing server-side distribution. In Auto-
mated Software Engineering Conference, pages 130–141.
IEEE Press, October 2003.

[33] Arie van Deursen, Paul Klint, and Joost Visser. Domain-
specific languages: an annotated bibliography. ACM SIG-
PLAN Notices, 35(6):26–36, 2000.

[34] Steve Vinoski. CORBA: integrating diverse applications
within distributed heterogeneous environments. IEEE
Communications Magazine, 14(2), 1997.

[35] Mitchell Wand. Understanding aspects: extended abstract.
In 8th International Conference on Functional Program-
ming, pages 299–300. ACM Press, August 2003.

[36] Ann Wollrath, Roger Riggs, and Jim Waldo:. A distributed
object model for the Java system. In 2nd Conference on
Object-Oriented Technologies & Systems, pages 219–232,
1996.

[37] Charles Zhang and Hans-Arno Jacobsen. Refactoring mid-
dleware with aspects. IEEE Transactions Parallel and Dis-
tributed Systems, 14(11):1058–1073, 2003.

[38] Charles Zhang and Hans-Arno Jacobsen. Resolving fea-
ture convolution in middleware systems. In 19th ACM
SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, pages 188–205.
ACM Press, 2004.

94

	Texto1: Aspects, Separation of concerns, Distribu-
	Texto2: tion, Middleware.

