Constructing Recursonsby Smilarity

F.J.Galan, J. M. Caneteand V. J. Diaz Madrigal

Dept. of Languages and Computer Systems.
Faculty of Computer Science of Seville
Dept. de Lenguagjesy Sistemas Informéticos.
Av. ReinaMercedess/n. 41012.Sevilla fax:34 954557139
e-mail:gaanm@lsi.us.es

Abstract

A formal specification can describe software models
which are difficult to program. Transformational methods
based on fold/unfold strategies have been proposed to
palliate this problem. The objective of applying
transformations is to filter out a new version of the
specification where recursion may be introduced by a
folding step. Among many problems, the “eureka’ about
when and how to define anew predicateisdifficult tofind
automatically. We propose a new version of the folding
rule which decides automatically how to introduce new
predicatesin aspecification. Our method isbased on finding
similarities between formulas represented as parsing trees
and it constitutes an assistance to the complex problem of
deriving recursive specifications from non recursive ones.

Keywords: specification transformation, program
synthesis, correctness preservation, program specification.

1introduction

Usually, a specification describes software models
which aredifficult to program. Systematic construction of
programs from specifications is known as program
synthesis. A huge variety of synthesis mechanisms have

S ={Types: Nat generated by 0; s

beendeveloped[4],[5],[6].[7],[8].[16],[2]. Inthiswork, we
areinterested in transformational mechanisms; asequence
of meaning-preserving transformation rules (e.g. unfolding,
folding, universal instantiation, abstraction, predicate
definition, etc.) isapplied to aspecification until aprogram
is obtained. The objective of applying transformations is
to filter out a new version of the specification where
recursion may be introduced by afolding step. However,
among many others problems, deciding about when and
how to define a new predicate (i.e. recursive predicate) is
difficult to find automatically. Fold/unfold transformations
represent an important investigation subject intheliterature
[1],15],[13],[15], [14],[18]. Basically, unfolding represents
the replacement of an atom by its definition and folding
representstheinverse operation of replacing asubformula
by an atom. Inthefollowing example, the context s defines
a(many-sorted) first-order language with types Nat (natural
numbers) constructed from the function symbols 0 and s
and Seq(Nat) (sequences of natural numbers) constructed
from the function symbols empty and conc. It defines also
the meaning of relation symbols such as = (identity
between natural numbers), nocc (number of occurrences
of an element in a sequence) and perm (permutations of a
seguence of natural numbers).

Seq (Nat) generated by empty; conc

D-=: 0=0® true0=s(x) < false
s(X)=0& false s(X)=s(y) ® x=y

Dnocc :

nocc (e, empty, 2) < z=0

nocc (e, conc (X, Y), s(2) & x=e A nocc (e, Y, 2)
nocc (e, conc (X, Y), 2) & — x=e A hocc (g, Y, 2)

Dperm :

perm (L, S < (nocc (a, L, 2<> nocc (a, S 2))}

17

F. J. Galéan, J. M. Cafete
and V. J. Diaz Madrigal

Constructing Recursions
by Similarity

Dpermis not closed to the structure of a program (i.e.
there is not any explicit recursion). Following a
transformational synthesis process for Dperm (e.g.
applying universal instantiation on variablesL, Sand zin
Dperm, we obtain D1 and then unfolding D1 w.r.t. nocc(b;
conc(v; V); s(k)) and nocc(b; conc(w; W); s(k))) atomsusing
second axiom in Dnocc) we reach expressions such asD2:

D1: perm (conc (v, V); conc (w,W))
< (nocc (b, conc (v, V), s (K))
&
nocc (b, conc (W,W), s (K)))

D2: perm (conc (v, V'), conc (w,W))
& ((v=b A nocc (b, V, k)
&

(w=b A nocc (b,W, k)))

Two questions arise at this point, (a) Is it possible to
introduce recursive predicatesin D2? and (b) How can we
do it? It is dificult to achieve an “automatic answer” to
these questions. Our method follows a constructive
approach. A comparison based on the notion of similarity
between D2 and Dperm is needed to decide about first
question. Only if first question is answered affirmatively
then asimilarity-based folding ruleisapplied to D in order
to answer second question.

Our work isexplained in thefollowing manner. Section
2 defines the form of our specifications and a non-
constructive characterization of the folding rule is
presented. Section 3 defines the concept of similarity.
Basically, it represents an automatic method for deciding
which subformulas produce recursion. In section 4, we
describe a similarity based folding rule which preserves
correctness, and finally, in section 5 we establish
conclusions.

2 Preliminary Definitions

In this section, the syntax and semantics of our
specifications and a non constructive definition of the
folding rule are presented. The use of the folding rule is
intended to introduce recursion in a specification.

DeriniTiON 2.1 (SYyNTAX OF A FORMULA) Amany sorted
(typed) first order language is assumed to write our

formulas. Aformula (), x;...Q ., v, I where Q) x; isa
universal or existential quantifier defined on a type
Ti, Z;is differentfromx; for 4 # j,andF containsno
quantifier, issaid to bein prenex normal form. e consider

18

that, when possible, all quantifiers in a formula are
ordered following a lexicographic order defined on the
names of their respective types.

For example, vNatavNatzvSeq(Nat) LvSeq(Nat)
S(noce(a, L, z) < noce(a, S, z))isin prenex normal
form where al quantifiers have been ordered following a
lexicographic order defined onthenamesaf their respectivetypes.

Inthefollowing, we assumethat all our formulasarein
prenex normal form, this does not represent any restriction
due to the existence of an effective procedure for
transforming any first-order formulainto an equivaent one
in prenex normal form [12]. For legibility reasons, we omit
7 subscriptswhen atype can beinduced clearly inaformula
and expressions such as (). x...() 2 I can be collapsed
into equivalent expressions (), x, ..., z F'. For example,
the formula VoGV a2V seqNat) I- Vseq(Nat)S
(nocc (a, L, z) < nocc(a, S, z)) canbecollapseinto
the equivalent formula V., ZVSeq(Nat)L,S<T'LOCC
(a, L, z) < nocc(a, S, z)). Inaddition, when possible,
universal quantifiersare omitted in the front of aformula.

DeriniTioN 2.2 (SussTiTuTioN) A (ground) variable
substitution isthe pair (v, t) wherevisavariableandtis
a(ground) term. Asubdtitution ¢ isaset of variablesubgtitutions.
Let X = {zy,...,a,tand Y = {yy, ..., y, } betwo
sets of variables where x; is different from x; and y; is
different fromy; for i # j.let Qx = {Qr, ;.-
Q. }and Qy ={Q;, ,....Qr, } be two sets of
quantifiers for variablesin X and Y respectively. We say
that o = {(x1,91), ..., (Tn,yn)} is a renaming
substitution which agrees wir.t. quantifications iff (a) X
NY={ and (b) Qni = QT'y,L- with; = 1..n.

DeriniTion 2.3 (SpeciFicaTion) Anif-and-only-if axiom
isaformulacftheformr(xs, ..., z,) < R(Y1, s Yin)
(e.g. axioms for =, nocc and permrelation symbolsin S).
The symbol 7 is called the defined symbol. The atom
r(,..;)iscalledtheleft-hand side of theaxiomand the
(sub)formula R(y, ---, Ym) is called the right-hand side
of the axiom. A specification for arelation symbol r isthe
set Dy of all axioms with the same defined symbol. In the

following, we use D, ,, to identify the ;,th axiomin Dr.

Definition 2.4 (Context) A context C isa set of types
and specifications for relation symbols. Types are
constructed from function symbols appearing in C. C is
atomically complete if, for every ground atom
r(t1, ..., tn), €ither C = r(ty,...,t,) or C - —r
(t1,..., n). C hasisoinitial model M iff for every ground
literal [, M = [iff C + [. Therefore, the meaning of

arelationr in ¢ isthe set of all ground literals] defined
onr suchthat ¢ |- |.

F. J. Galan, J. M. Cafete
and V. J. Diaz Madrigal

Constructing Recursions
by Similarity

Some authors have studied the problem of the existence
of isoinitial models for theories in general [3] and some
effective criteria have been proposed to construct
consistent theories. Following [11], acontext (¢ admitsan
isoinitial model if and only if itisatomically complete. By
hypothesis, we assume that our contexts are consistent in

this way.

Level 1 AN @
Level 2 B 1

ch’q('\'uE
Level 3 B 32111

=
Level 4 B
4321111 4321112
nocc(a.L,z) nocc(a,S.z)

Fig. 1:

Definition 2.5 (Folding Rule) A folding rule is a
transformation rule intended for replacing a subformula
by an atom. Let § beaformulaand r(z;) < R;(y;)
beanaxiomfor y in ¢. Wesaythat S isobtained from §
folding with respect to r(z;) < R;(y;) if S;
=95 |f(mj)9j where (a) Thereexist subformula R in §
and substitution g suchthat R R;(y;)f; and (b) §
\f(xj)gj representsthetextual replacementof R by r(x;)6;
ing.

For example, theformula S = (noce(b, V. k) <
nocc(b, W, k)) Av = b Aw = b can be folded with
respectto De,., - Applyingthesubstitution §; = {(L, V'),
(S,W),~(2,k),(a,b)} to the right-hand side of the
axiomin D, we obtain the subformula R= noce
(b, V, k)< nocc(b, W, k). Finally, applying textual
replacement, weobtainperm(V, W) Av = b A w = b.

3 Similarity

This section describes an automatic method to
introduce recursion by a folding step. It is based on the
notion of similarity. Basically, similarity represents a
decidable relation between two parsed formulas.

DeriniTioN 3.1 (ParsiNG TRee) Let She a formula in
prenex normal form. We say that Parse(S) (graphical
exampleinfigure 1) isthe parsing treefor Siffitisatree
representation of Swhere (a) each leaf node in Parse(S)
representsaliteral in S (b) each non-leaf nodein Parse(S)
represents either a quantified set of variables Q) z, ..., z
or a logical connective (A, V, =, &) in Sand (c)
each node in Parse(S) has unique identification by means
of anumber withformat [- - - zp. Thedigit | represents
the level where a nodeislocated in Parse(S). The digit p
decides if the node is located either at the left-hand side
(p=1) or at theright-hand side (p = 2) of its parent (if it
exists). By default, nodes without brother nodes have p =
1. The digits g - - - 1 represent the identification of the
parent node. The root node is an exception, it has not any
parent therefore we consider a fixed identification for it
equal to 1. In this way, a node identification determines
univocally the position of a nodein a parsing tree. We say
that a preterminal node in Parse(S) is any non-leaf node
in Parse(S) with at least one leaf node as child.

Two formulas can be compared by the structure of their
quantifiers and logical connectives. These measures are
called similarity with respect to quantification and similarity
with respect to logical connectives respectively. In the
following definitions, we consider that S} and S, aretwo
formulasin prenex normal form.

DeriniTioN 3.2 (SIMILARITY FuncTion) Wesay that fis
a similarity function from the node identification domain
of Parse(,S;) to the node identification domain of
Parse(,S,) iff each non-leaf .y € Parse(,S;) ismappedto
a non-leaf node ny, = f(nl) € Parse(S,) where
guantifier/connective in n, coincides with quantifier/
connective in ny and the level of ny is greater than or
equal to thelevel of 7.

DeriNiTION 3.3 (SIMILARITY W.R.T. QUANTIFICATION) e
say that S, is similar to S; w.r.t. quantification iff for
each non-leaf node n; € Parse(S;) containing the
quantified set of variables ()21, ..., z,, there exists a
non-leaf node ny = f (nl) € Parse(,S,) containing
the quantified set of variables ()..y1, ..., y,, such that
(a) m> nand (b) there exist two sequences of nodes,)/,
from Parse(S;) and M, from Parse(,S,), with M
= M2‘1 where)], contains n; and its predecessors
(from bottom to up) and)/, contains ng and its
predecessors (from bottom to up). (1\/_[2‘1 is obtained by
applying f‘l,when defined, to elementsin)/,). If S, is
similar to S; w.r.t. quantification then f induces a set of
possible renaming substitutions for variablesin §; (from
variables in S,) which agrees w.r.t. quantification. If
QX istheset of quantified variablesin n, and (), Y is

19

F. J. Galéan, J. M. Cafete
and V. J. Diaz Madrigal

Constructing Recursions
by Similarity

the set of quantified variables in n, = f(n;) then f
induces substitutions of the form {(z;.y;)} with
T; € X and Yk € Y.

Infigure5, S, issimilar to S w.r.t. quantification:
épa-sovhe gxampl esOf-supat tufiondinduddd By tare:}

{(a,0), (2, k), (L, V), (S, W)}
{(a, k), (z,0), (L, W), (S, V)}

Definition 3.4 (Similarity w.r.t. Logical Connectives)
We say that S, isin-depth similar to S iff for each non-
leaf node n, € Parse(,S;) containing alogical connective
there exists a non-leaf node ny = f(n;) € Parse(S,)
and there exist two sequences of nodes, }/; from
Parse(S,) and)M, from Parse(S,), with M, = M, *
where)/, contains 1, and its predecessors (from bottom
to up) and], contains 12, and its predecessors (from
bottomto up). We say that ,S,, isin-breadth similar to S
iff for eachlevel | > 1 of Parse(S)) with N7 ; ={lx1py,
.., lzypy } asthe set of all nodesin] containing logical
connectives, there exists a set of nodes in Parse(,S,),
possibly from several levels, say [;.[;, of the form
Nogir ety = AT f(2)pise,- Tf (22) Prsi}
where m; and ¢; (i = 1..k) are (sub)sequences of
numbers. If the node with identification 1 (level | = 1) of
Parse(,S;) contains a logical connective then there exists
anodeidentificationin Parse(S,) of theform 7 f (1)< in
Parse(,S,) where 7 and ¢ are (sub)sequences of numbers.
Wesaythat S, issimilar to SLw.r.t. logical connectivesiff
Sy isin-depth similar and in-breadth similar to 5.

2

20

For example, infigure 2 we show an exampleof similarity
with respect to logical connectives between the formulas
S; and S, (for legibility reasons, each r; represents a
ground literal):

S] : ('r’l /\TQ) 54 (’T‘g\/’f'4)
SQI ((T5/\T6)\/(T7/\T8))<=>(7’9\/7“10))

f() =1 M; = {1}
My = {1}
M;* = {1}

f(211) = 32111 M, = {211,1}
My = {32111, 211,1}
M,*' = {211.1}
M, = {212,1}
M, = {212,1}
M, = {212.1}

£(212) = 212

In general, if f exists then it may not be unique. For
example, thenode 151, € Parse(S;) can also be mapped

tothe ngoq12 € Parse(,S,) obtaining inthisway another f.
In-breadth similarity (in relation to the definition 3.4,
bold numbers have been used for Z;p; in Ny ; and for

f(zj)p;jin NZ,{ll,...,zj}):

[=2 (level 2), xy =1, p; = 1,
zo =1. py = 2. Nyp = {211,212}
=1 m=32 ¢g=1, m
=2, ¢ =10, Nopagy = {32111,212}

In figure 3 we show an exampl e of non-similarity (non
in-depth similarity) with respect to logical connectives
between the formulas 55 and S,

53 : (7’1 A 7'2) = (7’3 V 1’4)
54 : ((’7‘5 A ’7‘6) V (7‘7 A\ 7’8)) <> Tg

F. J. Galan, J. M. Cafete
and V. J. Diaz Madrigal

Constructing Recursions
by Similarity

Non in-depth similarity:

f(1)=1 M, = {1}
M, = {1}
M;!' = {1}
f(212) =211 My = {212.1}
M, = {211,1}

M,' = {212.1}
f(211) = 32111 M, = {211.1}
My = {32111,211,1}
M, ' = {211,212,1}

f(211) = 32112 M, = {211,1}
My = {32112, 211,1}

M;' = {211.212,1}

)

\

. :
/211 212 NEE
(- . Y)

31 2112
A A

Fig. 3:

Thereisnot any f suchthat)/, =)/, * for the

node 1911 € Parse(Ss;).
In figure 4 we show another example of non-similarity
(non in-breadth similarity) with respect to logical

connectives between the formulas S5 and S:

55 : (7'1 A 7’2) <~ (7’3 V 7‘4)
Sg : (7”5/\7’6)\/<7"7<=> ((7”8\/7’9)/\ (7"10/\7"]1)))

In-depth similarity:

F(1) =211, M, = {1}
M, = {211},
M, = {1}

f(211) = 4321222, M, = {211,1}
M, = {4321222,32122,212, 1},
M,*' = {211,1}
f(212) = 4321221, M, = {212,1}
M, = {4321221,32122,212, 1},

M;! = {212,1}

Non in-breadth similarity:
I=2(evel 2), x1 =1, p1 =1, 23
= 1, P2 = 2, NLQ = {211,212}

f(l) = 212, T = 43, G = 1, o = 437 Gy = 27
N,y = {4321221,4321222)

DeriniTion 3.5 (SIMILARITY) Let S, be similar to S
w.r.t. quantification and logical connectives by a function
f.Let L betheset of all literalsin S;. LetN Lea f, bethe
set of all preterminal nodesin Parse(S,). LetNLea f, be
theset of nodes o € Parse(S,) withny, = f(n;)and
ny € NLeaf,.LetLea f, bethe set of leaf nodesin

subtrees of Parse(S,) with root node n, € N Lea f,.
We say that S, is similar to S iff there exist a
SLeaf, C Leaf,, withK astheset of literalsin nodes
of SLea f5, and a substitution & induced by f such that
Lo =K-

For example, infigure 5, we show the similarity between

S1 = nocc(a, L, z) <noce(a,S,z) and S2
= (v =b A noce(b,V, k))& (w = b Anocc(b, W, k))

Similarity w.r.t to quantification:
f(l) =1 f(211) =211

Similarity w.r.t. logical connectives (In-depth similarity):

21

F. J. Galéan, J. M. Cafete
and V. J. Diaz Madrigal

Constructing Recursions
by Similarity

£ '

211 212
(211 /2\1/21 @ (@

f(32111) = 32111 M; = M3' = {32111,211,1}

Similarity w.r.t. logical connectives

(In-breadth similarity):
[=3 f(211) =211 Ny3
= {32111} N, 3 = {32111}

NLeaf; = {32111} NLeaf, = {32111}

Leaf, = {543211111, 543211112,
543211121, 543211122}
SLeaf, = {543211112, 543211122}

Substitution ¢ induced by f:

o ={(a,b),(z,k),(L, V), (S, W)}
L = {nocc(a, L, z),nocc(a, S,)},

K = {nocc(b,V, k),nocc(b,W,k)}, Lo =K

22

3.1 ALGORITHMIC JUSTIFICATION FOR SIMILARITY

The constructive nature of definitions 3.3, 3.4 and 3.5
can bejustified in an algorithmic way. Different searching
algorithms can be proposed for the construction of the
similarity function f. We propose a construction following
anincrementa style. Firgt, fisconstructed in order to decide
only about similarity w.r.t. quantifiers. Then, we search for
a substitution induced by (this incomplete) f. Finally, we
search for aremaining part of f which decidesabout similarity
w.r.t. logical connectives. Our searching algorithm follows
a generate-and-test strategy. It is possible to explore the
complete search space due to the finite number of
guantifiersand logical connectivesin aformula

Initially, asequence of non-leaf node identificationsis
constructed by traversing Parse(,S) in abreadth-first way.

For example, for Parse(,S;) infigure5weobtain Seqg;:

= {1,211,32111}

From this sequence, the subset of nodes containing
guantified set of variables is selected. Then, a generate
and test strategy is sutce to construct (an incomplete due
to the incremental construction) f which decides about
similarity w.r.t. quantifiers. The generate-part generates a
tentative f for each node in this subset. Hence, each node
containing aquantified set of variables of theform () . X
in Parse(,S,) isbounded to a node containing a quantified

set of variables of the form (), Y. The test part decides
about conditions (&) and (b) in definition 3.3. If it is not
possible to construct an f in these terms then we conclude
that thereisnot any similarity w.r.t. quantification and then
thereisnot any similarity f. For example, for Parse(SL) in
figure 5, the subset of nodes containing quantified set of

variablesisequal to {1,211}.

Se(]Sl

f(]-) =1 QT = vNoz.t

X ={a.z} Y={bkvu}
f(211) =211 QT = vSeq(Nat)
X={LS} Y={V.W}

The set of al tentative substitutions 0, induced by
(our incomplete) fiscomputed in thefollowing manner. For
each pair of quantified set of variables (). X and (), Y"
by f, the set of all possible substitutions is calculated by
means of a cartesian product.

Then, the set of all tentative substitutions 0 induced
by f is calculated by the cartesian product of these
subgtitutions. The calculation of 0, isaterminating problem
due to the finite number of variables in a formula. For
example, inour example(fig. 5):

F. J. Galén, J. M. Cafete
and V. J. Diaz Madrigal

Constructing Recursions
by Similarity

For the pair Vyqa, z and Vb, k, v. w:

Orve = {H{(a,), (2 K)}
{(a,), (z,0)}
{(a,b), (z, w)}
{(a.k), (2. 0)

—

{(a,0). (2, k)}

{(@0). (5 0)}
{(a,w),(z,b)}
{(a,w), (2, k)}
{(a,w), (z,v)}}

FFor the pair Vgeyvay L, S and Vgeg(nva L, W

- {{(L’ V)’ (‘97 VV)}
(L. W), (5. L)}}

OV eq(Nar)

Op = OVpnar X OV geqNat) -
op = {{(ab).(z,k), (L, V), (5. W)}
{(a,0), (2 k), (L, 7). (S, L)}

Then, we select the sets of literals L from Parse(S,)
and K from Parse(,S,). Then o isany substitutionin o,
suchthat [, — K .A generateand test strategy issuffice
to explore the o, search space. Only if K does not exist or
thereisnot any ¢ such that [, — [then we conclude
that there is not similarity w.r.t. quantification and then
thereisnot any similarity f.

In asimilar way, we construct the remaining part of f
which isintended to decide about similarity w.r.t. logical
connectives. A generate and test strategy is suffice to
explore the search space. The generate-part generates a
tentative (remaining part of) f. A breadth-first search is
sufficeto construct tentative f's. The test-part decides about
in-depth and in-breadth similarities induced by each
tentative f. The search space for the remaining part of fis
finite due to the finite number of logical connectivesin a
formula. In our example, the remaining part of f is only
determined by the selection f (32111) = 32111. Finally, for
our example(fig. 5):

fo=Ar =1

f(211) =211
f(32111) = 32111}

Only if the remaining part of f can not be constructed
then we conclude that there is not similarity w.r.t. logical
connectives and then there is not any similarity f.

4 Similarity-based Folding Rule

Inthissection, asimilarity-based folding ruleis defined.
Basicaly, itisaconstructive definition of thefolding rule
indefinition 2.5.

DeriniTion 4.1 (EvaLuation RuLe) Let (11, [y, ..., 1,
lpi1, ..., l,) beaformulain the language of the context
C constructed fromliterals 1y, ly, ..., {p, lp41, ..., L. We
say that Sg,,({l1,l2,...,1,}) is obtained from S
evaluating the set of literals {{y, [, ..., [, } if and only if

Sevat({l1: 2, ..., 1, }) isof the following form:

Se’ual({llt l27 ceey lp}) =
(S(true, true, ..., true, ly1q, ..., 1)

A LALA L AL) v
(S(false,true,true, lyq,.... 1)

A =l AL A ALYV
(S(true, false,true, lyty, ... 1)

A LA A ALV

(S(false, false..., false, lyq. ..., 1n)
A _'11 A _'12 AN _|[p) vV

For example, let S = (v = b A noce(b, V. k))
& (w = b A noce(b,W, k)) be aformulain the
languageof S.Let]; = v = band[3 = w = b betwo
literalsinS.

Then

Sewal({ll, 15}) =
(true A noce(b, V. k) < true A noce(b, W, k))

AN v=bAw=0b \Y,

(false A noce(b, V, k) < true A noce(b, W, k))
AN w=bAhw=>b V

(true A noce(b, V, k) < false A noce(b, W, k))
AN v=bA-w=0b V

(false A noce(b,V, k) & false A noce(b, W, k))
AN v=bA-w=1>

23

F. J. Galéan, J. M. Cafete
and V. J. Diaz Madrigal

Constructing Recursions
by Similarity

THeOREM 4.1 (CORRECTNESS OF THE EVALUATION RULE)
Let S(ly, ..., Ly, ..., ,,) be aformulain the language of
C congtructed fromliterals {y, ..., I, ..., (5.

Let Separ({l1, ..., 1, }) betheformula obtained from
S evaluating the set of literals {1, ..., [, }.

Let M be an isoinitial model for (. Then

M |= S -~ chal({ll) 7l10})

Proof 41Proofof Al |= S = Sepa({l1, ..., 1 })-
Theevaluation rule (definition 4.1) constructs Se.,,.; ({ /1,
... [, }) by means of 9» mutually exclusive disjunctions

representing all possible evaluation cases for [y, ..., [,

literals in §. Suppose (by absurdum) that)/ is model
for a ground instance of S and it is not model for the

respective ground instance of S, ({l1,...,l,}). By

hypothesis, ¢ is atomically complete (definition 2.4) and
then there existsa proof in ¢ for the ground instance of S
but there is not a proof in ¢ for the ground instance of
Sevat({l1, .-, 1,}). Hence, we conclude that
Sevat({1, ..., 1, }) does not consider all possible

evaluationsfor [y, ..., [,, literalsin S

Proof of M = Sepu({l1;--,1p}) = S.1fMis
model of a ground instance of S,q; ({1, ..., [, }) thenM

is model of only one instance of their disjunctions and
then, by construction, itisamodel of therespective ground
instance of S.

Definition 4.2 (Rewrite Rules) In order to simplify
specifications, we consider a set of rewrite rules of the

form {l — 'r'} in presence of negations and false and

true propositions. A formula S(true, false,
lp+1, ..., L) constructed from literals I, .1, ..., [,, and
propositions true, false is transformed into the formula
Srewby application of rewrite rules repeatedly.

(1) =true — false, (2) —false — true,
(3) true V F — lrue

(4) falsevV F'— F, (5) true NF — F,
(6) false N\ F — false

(7) false = F — true,
9) false & F — —F
10) F' = true — true,
12) true & F — F
13) ~—F — F, (14) ~(F = G) — F A -G,
15) =(FANG) — =F V-G

(8) true = F — F,

(11) F = false — —F,

16) =(F V G) — —=F A =G,

(
(
(
(
(16)

(17) ~(F & G) — =(F = G)V~(G = F)

24

AformulaS(true; false; [, 1, ..., l,) constructed from
literals [, 41, ...,{, and propositions true, false is

transformed into the formula Srew by application of
rewrite rules repeatedly.

For example, let S = ((false A noce(b,V. k))
& (true A noce(b, W, k))) beaformula. S, =

—nocc(b, W, k) represents the simplified form of S
obtained after the application of (6), (5) and (9) rewrite
rules.

DeriniTiON 4.3 (SIMILARITY-BASED FoLDING RULE) Let
Sheaformulainthelanguageof C. Let y bearelationin
C-Letr(z;) < R;(y;)beanaxiomin D,. Wesay that
Sj is obtained from Sfolding by similarity with respect to
r(x;) & Ri(y;) iff Sj = (Sevar(IX — Kj)) rew
Iﬁg(j’)g)f] where
1. The variables appearing only in Rj(yj) but not in
7(x;) do not appear in S

2. Kistheset of all literalsin S

3. Sissimilar to R;(y;), where Lj is the set of all
literalsin Rj(yj) and K; isa (sub)set of literals
of S and Qj is the substitution such that
L;0; = K;.

4. (Sgpu (KX — Kj))rew is obtained from S

evaluating (definition 4.1) literals not in K ; and

then applying rewrite rules (definition 4.2)
repeatedly.

For example, let S = (v = b A noce(b,V, k))
& (w = b A nocec(b,W, k)) be aformulain the
language of S. Let perm(L,S) < (nocc(a, L, 2)
< noce(a, S, z)) be the axiom in Dpepp,. K =
{v = bnoce(b, V. k),w = b,nocc(b,W,k)} is
the set of all literalsin S Sis similar to nocc(a, L, 2)
< noce(a, S, z) (definition 35). Let L = {nocc
(a, L, z),nocc(a, S, z) }be the set of literals in the
right-hand side of the axiom in D,..,, and let
K = {nocc (b, V. k), nocc(b, W, k)} bethe set of
literalsin g suchthat I,,60, = K, with ;= {(L, V),
(S, W), (z,k),(a,b)}. Then, let

F. J. Galén, J. M. Cafete
and V. J. Diaz Madrigal

Constructing Recursions
by Similarity

Sen’al([{ -]&71) =
(true A noce(b, V, k) & true Anoce(b, W, k))

AN v=bAw=5b \%
(false Anoce(b, V, k) < true A noce(b, W, k))

AN v=bAw=b V
(true A noce(b, V, k) & false A noce(b, W, k))
AN v=bA-w=b V
(false Anoce(b,V, k) & false A noce(b, W, k)))
AN v=bA-w="b

be the formula obtained [rom S evaluating
literals not in Ay (i.e. v = b and
w = b). Applying (repeatedly) rewrite rules:

Sevat(IX — K1))pew = (noce(b, V, k) < noce(b, W, k))
AN v=bAw=1b Vv

—noce(b, W, k)
A v=bAw=>b V

—noce(b, V. k)
AN v=bA-w=>b V

—v=bA—-w=1">

Considering (noce(a. L, 2) < noce(a, S, 2))0,
= nocc(b. V. k) < nocc(b, W, k) and
perm(L, S)0, = perm(V, W) then

- noce(b,V,k)noce(b,W,k) __
(Seual(.[{ - I&1>>rew ‘perng(v’m/);::) ():

perm(V.W)Av=bAw =bV

—nocc(b, W, k) N —v =bAw = bV

—noce(b, V, k) Nv=0bA —w = bV
—v=bA-w=">

is obtained from S folding by similarity with
respect to Dyperm,1-
Finally and rcconsidering specification Dy in

section 1 (introduction) we obtain:

Dy perm(conc(v. V), conc(w, W)) <

(perm(V,W)Av=bAw=">bV
—nocc(b, W, k) N—v =bANw=0bV
—nocc(b, V. k) Nv=>bA —w = bV
v =bA-w="0)

THEOREM 4.2 (CORRECTNESS OF THE SIMILARITY-BASED
FoLbing RuLE) Let Sbe a formula in the language of .
Let r be the relation in ¢. Let r(x;) < R(y;) bean
axiomin D,.. Let S; betheformula obtained from Sfolding
by similaritywithrespecttor () <> R(y,) (definition4.3).

Then

M= S < S; where Sj = (Seoat(K — K;))rew |7(x,y)Je)ej

Proof 4.2 Thesimilarity between Sand R; (y])lmphee
the existence of a substitution 6? such that L
where L; representstheset of aII literalsin R; (JJJ and
K; (aay K; = {lp41. ., 1n}) representsa(sub)set
of literals |n S (deflnltlon 4.3). The formula
Sevat (IS —) represents the evaluation of S with

respect to literals not in K; and by theorem 4.1, this
formula is equivalent to S. This formula is composed by

F; disjunctions (7 = 1..2P). Applying rewrite rules on
each disjunction, we obtain a formula of the form:

(Sevat(K = Kj))rew = (Fillpe1. -y ln)
AN LNLNANL)

(Fa(lp1; -y n)
A Sl Al A ALYV

(Fs(lps1, oy 1)
AN LAN=lNAL) Y

(Fos(lps1, s)

A =l A AL

As rewrite rules preserve semantics, then
M= S & (SewallK — Kj))rew. Considering
the existence of k € {1..2°} with Fy(lpy1, ... 1n)

= R;(y;)0; then

M = r(z;) < R(y;)
M): T(iL’j)Hj = R(y])ej Ry ()0
M): S & ((eval([(- Kj))rew ‘ (;L’Jy)]9

5Conclusions

The objective of applying transformations is to filter
out anew version of the specification where recursion may
beintroduced by afolding step. Several (nonconstructive)

25

F. J. Galéan, J. M. Cafete
and V. J. Diaz Madrigal

Constructing Recursions
by Similarity

versions of the folding rule have been proposed mainly in
the context of clausal (and restricted) specifications (e.g.
logic programs[18] and [9]). We do not restrict theform of
the specifications. Hence, it is possible to apply folding
rule on general specificationsin aflexible manner. On the
other hand, constructive versions for this rule are needed
if we are interested in the construction of automatic
synthesizers. Inthisway, weproposeanew folding rulewhich
decideshowtointroducerecursive predicatesin agpecifications
automatically which contrast with prior goproaches. Our method
isbased on finding Smilarities between formulas represented
as parsing trees and it congtitutes an automatic assstance to
the complex task of deriving recursive specificationsfromnon
recursive ones. At this point, an important problem remainsto
be solved. The “eureka’ about when to apply folding rule is
dixcult to establish in an automatic way [8]. The use of our
proposdl isintended to beintegrated in amore general method
which decideswhen apply such transformation (e.g. [10]). We
think that our work is a little contribution towards the
congtruction of automatic synthesizers.

REFERENCES

[1] C. Aravindanand P. M. Dung. On the Correctness of
Unfold/Fold Transformations of Normal and
Extended Logic Programs. (The Journal of Logic
Programming) 201-217 , 1995.

[2] A.Avdlone, M. Ferrari and P. Miglioli. Synthesis of
Programs in Abstract Data Types. 8th In
(Proceedings of the International Workshop on
Logic Program Synthesis and Transformation).
LNCS 1559, Springer, 1999, pages 81-100.

[3] A. Bertoni, G Mauri and P. Miglioli. Onthe Power of
Model Theory in Specifying Abstract Data Types
and in capturing their Recursiveness. (Fundamenta
Informaticae), V1(2):27-170, 1983.

[4] A. Bundy, A. Smaill and G. Wiggins. The Synthesis
of Logic Programs from Inductive Proofs. In
(Proceedings of Esprit Symposium on
Computational Logic). Springer-Verlag, pages 135-
149, 1990.

[5] R. M. Burstall y J. Darlington. A Transformational
System for Developing Recursive Programs.
(Journal of the ACM) 24(1):44-67,1977.

[6] Y. Devilleand K. K. Lau. Logic Program Synthesis.
(J. Logic Programming) 19,20:321-350, 1994.

[7] R. G. Dromey. Systematic Program Development.
(IEEE Transaction of Software Engineering).
14(1):12-29,1988.

[8] P. Flener. Logic Program Synthesisfrom Incompl ete
Information. Kluwer Academic Publishers,
Massachusetts, 1995.

[9] P.A. Gardner and J. C. Shepherdson. Unfold/Fold
Transformations of Logic Programs. MIT Press,
pages565-583, 1991.

26

[10] F. J. Galan and J. M. Cafiete. Synthesis of
Constructive Specifications. In (Proceedings of the
I Int. Workshop on Programming and Languages).
Ed. F. Orgjas. Almagro, Spain, 2001.

[11] K. K. Lau and M. Ornaghi. On Specification
Frameworks and Deductive Synthesis of Logic
Programs. In (Proceedings of LOPSTR 94 and
META 94). Springer-Verlag, 1994.

[12] E. Mendel son. Introduction to Mathematical Logic.
Ed. Wadsworth & Brooks/Cole Advanced books
& Software, Third edition, 1987.

[13] H. A. Partsch. Specification and Transformation of
Programs: A Formal Approach to Software
Devel opment. Springer-Verlag 1990.

[14] A. Pettoross and M. Proietti. Transformation of Logic
Programs: Foundations and Techniques. (J. Logic
Programming) 19, 20: 261-320, 1994.

[15] M. Proietti and A. Pettorossi. An Abstract Strategy
for Transforming Logic Programs. (Fundamenta
Informaticae) 18:267-286, 1993.

[16] D. R. Smith. KIDS: A Semiautomatic program
development system. (IEEE Transaction of
Softwar e Engineering) 16:1024-1043, 1990.

[17] D. Stuart Robertson, J. Agust. Pragmatics in the
Synthesis of Logic Programs. In (Proceedings of
the 8th Int. Workshop on Logic Program Synthesis
and Transformation). LNCS 1559, Springer, pages
41-60, 1999.

[18] Tamaki, H. and Sato, T. Unfold/Fold Transformation
of Logic Programs. Proceedings of the Second
International Conference on Logic Programming,
Uppsaa, Sweden, 1984, pp. 127-138.

