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Abstract

This paper presents a comprehensive approach to
describe, deploy and adapt component-based appli-
cations having dynamic non-functional requirements.
The approach is centered on high-level contracts as-
sociated to architectural descriptions, which allow the
non-functional requirements to be handled separately
during the system design process. This helps to
achieve separation of concerns facilitating the reuse of
modules that implement the application in other sys-
tems. Besides specifying non-functional requirements,
contracts are used at runtime to guide configuration
adaptations required to enforce these requirements.
The infrastructure required to manage the contracts
follows an architectural pattern, which can be directly
mapped to specific components included in a support-
ing reflective middleware. This allows designers to
write a contract and to follow standard recipes to in-
sert the extra code required to its enforcement in the
supporting middleware.
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1 Introduction

The traditional notion of quality of service (QoS)
was bound to communication system level concerns.
However, a more recent view of QoS includes char-
acteristics associated to application’s non-functional
requirements, such as availability, reliability, secu-
rity, real-time, persistency, coordination and debug-
ging support [27]. The specification, setup and adap-
tation concerns associated to non-functional require-
ments are generally embedded in the application pro-
gramming modules in an ad-hoc manner, mixed with
the application’s specific code. This lack of modularity
hinders software evolution and code reuse, also making
difficult its verification and debugging. In this context,
there is a growing interest for handling non-functional
requirements in a specific abstraction level [4, 10, 20].
This approach would allow to single out the resources
to be used and the specific mechanisms of the native
system that will be required by the application, and,
if possible, turn automatic the configuration and man-
agement of those resources.

Non-functional requirements can be handled by
reusable services provided by middleware infrastruc-
tures or native systems support. This makes it feasi-
ble to design a software system based on its architec-
tural description, which includes the functional com-
ponents, the interactions among those components,
and requirements regarding the behavior of system re-
sources. To this end, it has to be provided a means
to specify those requirements in the context of the



application’s architecture description and, also, there
has to be available an environment that allows to de-
ploy those requirements over the system resources. In
some applications, such environment has to include
mechanisms to monitor the resources and to manage
adaptations, according to the availability of those re-
sources, in order to guarantee that the non-functional
requirements are met at runtime. Among the avail-
able techniques to specify non-functional constraints,
we highlight the concept of contract as proposed in
[13]. This kind of contract establishes a formal rela-
tionship among the parts that use or provide resources,
where constraints and negotiation rules over the used
resources are expressed.

In the previously described context, this work
presents the CR-RIO framework (Contractual Reflec-
tive -Reconfigurable Interconnectable Objects) [10, 1]
which includes concepts and mechanisms conceived to
specify and support QoS contracts, associated to the
architectural components of an application. The set of
concepts included in the framework helps to achieve
separation of concerns [18] facilitating the reuse of
modules that implement the computation in other ap-
plication systems, and allows the non-functional re-
quirements to be handled separately during the system
design process. The framework includes a contract
description language, which allows the definition of a
specialized view of a given software architecture. The
supporting infrastructure required to impose the con-
tracts at runtime follows an architectural pattern that
can be implemented by a standard set of components
included in a middleware. The results of our inves-
tigation point out that the code generation of these
components can be automated, except for some ex-
plicit parts of code related to specific contract and
resources classes. In this way, contracts and their re-
spective supporting infrastructures can be reused in
different applications.

In the two initial sections of this paper we describe
the framework composed by the key elements of the
approach, including an architecture description lan-
guage with support to QoS contracts. Next, aiming to
demonstrate the flexibility of the approach, we present
three use-cases, and in the sequel we describe the com-
ponents of the contract’s support middleware. Con-
cluding the article, we comment on some related pro-
posals and provide some conclusions.

2 Framework Elements

The CR-RIO framework (Figure 1) integrates the
software architecture paradigm centered on an archi-

tecture description language (ADL), with concepts
such as reflection and dynamic adaptation capability
[18], which are generally provided in an isolated fash-
ion in other related proposals described in the litera-
ture [e.g., 23, 14, 28, 20, 16]. This integration facili-
tates the achievement of separation of concerns, soft-
ware component reuse and dynamic adaptation capa-
bility of applications. CR-RIO includes the following
elements:

a) CBabel, an ADL used to describe the functional
components of the application and the interconnection
topology of those components, which follow the CR-
RIO model. CBabel also caters for the description of
some non-functional aspects, such as coordination and
distribution, and planned reconfigurations. A CBabel
specification corresponds to a meta-description of an
application that is available from a repository, and is
used to deploy the architecture in a given operating
environment. While the application is running this
meta-description repository provides the basic infor-
mation required to guide and manage architectural
adaptations.

b) An architecture-oriented component model used
to compose and implement the software configuration
of the application: (i) Modules, which encapsulate the
application’s functional requirements; (ii) Connectors,
used in the architecture level to define relationships be-
tween modules; in the operation level connectors medi-
ate the interaction between modules; and (iii) Ports,
which identify access points through which modules
and connectors provide or require services; ports are
fundamental to allow component linking with low cou-
pling. With the help of ADL constructs, modules
and connectors can be aggregated in order to define
composite components, which can be reused in differ-
ent application systems. This component-based model
can be mapped to available implementation technolo-
gies; in our different experiments components were
mapped to Unix processes, CORBA and Java objects.

The description of an application’s architecture in-
cludes the signatures of the interfaces (set of ports)
provided and required by the composed components.
This allows CR-RIO’s connectors to be context-
reflective in the sense that, when plugged into mod-
ules, they can be automatically and dynamically (at
configuration time) adapted to mediate interactions
between ports using any specific signature. This kind
of adaptation facilitates the reuse of connectors in dif-
ferent application systems. An example demonstrat-
ing the reuse of a connector encapsulating an imple-
mentation of the observer design pattern is available
in [18].
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Figure 1: The CR-RIO framework

¢) A simple software design methodology that stim-
ulates the designer to follow a straightforward meta-
level programming discipline [18], where functional re-
quirements are concentrated in modules (base level en-
tities) and non-functional requirements are encapsu-
lated in connectors (meta-level entities). In this con-
text, ports have a role similar to reification points used
in meta-level programming approaches and, similarly,
can be associated with different code boundary trans-
fer mechanisms, e.g., method, procedure or messaging
passing primitive invocations. It is worth to point out
that some common non-functional requirements can
be directly mapped into connectors, which are equiv-
alent to meta-level components, and can be immedi-
ately configured in an application’s architecture. For
example, the access to real-time communication mech-
anisms, such as a real-time RMI [5], could be encap-
sulated into a connector and configured in different
architectures.

d) The Configurator, a reflective element that
provides services to manage applications with dis-
tributed configurations. The Configurator provides
two APIs: configuration and architectural reflection,
through which these services are used, and a persis-
tency mechanism for the architecture meta-level de-
scription repository, where the two APIs reflect their
operations. The configuration API permits to instan-
tiate, bind, stop and replace components of a run-
ning application dynamically changing its configura-
tion. These operations are atomically performed and

are causally connected, i. e., the applied changes are
serially reflected in the architecture description repos-
itory. The architectural reflection API allows query-
ing the configuration repository. This information can
be used to guide configuration changes under certain
conditions, for instance, in face of changes in the QoS
support level.

e) Architectural contracts, a concept proposed to
specify non-functional aspects, which provide a de-
scription where components of the architecture can
express their static and dynamic non-functional re-
quirements. This is achieved by defining the set of
services (and their associated parameters) that can
be used by an application, service negotiation rules
and architectural adaptation policies for different op-
erational contexts. In addition, the CR-RIO frame-
work provides the required infrastructure to impose
and manage the contracts during running time. More
specifically, we propose an architectural pattern that
simplifies the design and coding of specific components
of the infrastructure, consistently establishing the re-
lationship between the Configurator and the contract
supporting entities (please see Section 5).

3 The QoS Contract Language

In our proposal a functional service of an applica-
tion is considered a specialized activity, defined by a
set of architectural components and theirs intercon-



nection topologies, with requirements that generally
do not admit negotiation [4]. Non-functional or QoS
services are defined by restrictions associated to spe-
cific non-functional requirements of an application,
and can admit some negotiation including the used
resources. A contract regulating non-function require-
ments can describe, at design time, the use of the re-
sources that the application will make, and acceptable
variations regarding the availability of these resources,
at runtime. Our proposal incorporates concepts from
QML (QoS Markup Language) [13], which were refor-
mulated for the context of software architecture de-
scriptions [10]. A QoS contract includes the following
elements:

a) QoS Categories are used by the designer to ag-
gregate properties related to specific non-functional re-
quirements; they are named and described separately
from the components. For example, if processing and
communication performance characteristics are criti-
cal to an application, associated QoS categories, Pro-
cessing and Transport, could be described as in Figure
2.

01 QoScategory Processing {

02 utilization: decreasing numeric %;

03 clockFrequency: increasing numeric MHz;
04 priority: increasing numeric;

05 memReq: increasing numeric Mbytes;

06 }

07

08 QoScategory Transport {

09 delay: decreasing numeric ms;

10 bandwidth: increasing numeric Mbps;

11 technology: enum {CDLS, GSM, WiFi};

12 slidingWindowSize: increasing numeric;
13 send-buf-size: increasing numeric;

14 recv-buf-size: increasing numeric;

15 MSS: increasing numeric;

16 %

17 ...

Figure 2: Processing and Transport QoS Categories

The Processing category (lines 1-6) can represent
a processing resource where the wutilization property
express the required percentage of the CPU time
(low values are preferred - decreasing), the clockFre-
quency property represents the processor’s operating
frequency (high values are preferred - increasing), pri-
ority represents a priority for processor utilization, and
memReq represents the amount of memory required

to run a process. The Transport category (lines 8-16)
illustrates properties commonly associated to trans-
port resources used by clients and servers components
to communicate. For example, the bandwidth prop-
erty represents the available bandwidth for the client-
server connection and the delay property represents
the transmission delay of one bit between a client and a
server. The specific use of these categories, and of the
other elements of the language to be described next,
will be illustrated through the examples presented in
Section 4.

b) A QoS profile quantifies the specific set of prop-
erties of a QoS Category that are relevant in a given
application. This quantification restricts each prop-
erty according to its description, working as an in-
stance of acceptable values for a given QoS Category.
A component, a connection, or a part of an archi-
tecture, can define particular QoS profiles in order
to constrain its operational context. For example,
transport.delay <= 10, express the maximum com-
munication delay required in a given context. The de-
sign decisions for defining a specific profile are based
on the requirements of the application to be imple-
mented by the architecture being described, and can
be constrained by the available support to manage the
used resources.

¢) A set of services can be defined in a contract.
A service defines a set of non-functional requirements
that should be deployed in the architectural level;
these non-functional requirements can be associated
to either (i) the application’s components or (ii) the
interaction mechanism used by these components. In
QoS terms, a service is differentiated from others by
the desired or tolerated QoS characteristics required
by the application, in a given operational context. A
non-functional QoS constraint can be defined by asso-
ciating a specific value of a property to an architecture
declaration or associating a specific profile to that dec-
laration.

d) A negotiation clause describes a negotiation pol-
icy and acceptable operational contexts for the ser-
vices described in a contract. As a default policy the
clause establishes a preferred order for the utilization
of the services. Initially the preferable service is used.
According to the sequence of services described in the
clause, when a preferable service cannot be maintained
anymore, the QoS supporting infrastructure tries to
deploy a less preferable service. The supporting infras-
tructure can deploy a more preferable service again if
the necessary resources are again available. When re-
quired, a designer can override the default policy and
provide the specific code required to deploy any other



desirable policy. Currently, we are investigating how
to consider syntactically and semantically the avail-
able options.

4 Use-Cases

During our research we developed some prototype
examples to evaluate and refine the approach. Here
we present three of these experiments and raise dis-
cussions of some issues in their context. Additional
implementation details are discussed in Section 5.1.

4.1 Communication Technology Adapta-
tion

In [11] a simulated virtual terminal application was
used to evaluate security and communication aspects
in the context of a mobile network. Specifically, a
first contract was used to specify an initial choice be-
tween secure and unsecure protocol options (telnet or
ssh, and cipher types) and a second contract was used
to specify communication channels that can be dy-
namically reconfigured during running time. The lat-
ter contract considers a mobile device that supports
three communication channels each one using a differ-
ent technology, as follows:

CDLS: in the range of a cordless base station, this
channel operates over a regular wired telephone line;
GSM: on the move, this channel operates over a cel-
lular network; WiFi: when immerse in a wireless net-
work, this channel uses the available communication
protocols.

Figure 3.a presents the architecture description;
note that the client-server connector does not ap-
pear explicitly in this configuration. Also, it is as-
sumed that the server is already instantiated. Figure
3.b presents the application’s overall architecture; the
dashed lines represent the links that can be dynam-
ically established, guided by the contract negotiation
policy and depending on resource availability. The sec-
ond contract for this use-case (Figure 4) defines three
different transport services, each one associated to a
specific communication channel. The support required
for each service (defined in lines 2-5, 6-9 and 10-13, re-
spectively) is encapsulated in a specific connector as-
sociated to the link construct (showed in lines 3-4, 7-8
and 11-12, respectively), as described by the associ-
ated profiles, which were defined directly using the
specific Transport.technology property. For each
available channel option there is an associated com-
munication interface and a specific sensor that detects

if the corresponding channel is available or not. Dur-
ing operation the supporting middleware tries to keep
a communication link using the best among the avail-
able channels; to establish the link it just configures
the corresponding connector. Other non-functional as-
pects could be considered in this architecture. For
example, seamless communication could be achieved
encapsulating the access to a reliable communication
protocol (e.g., [30]) into a connector and configuring
it in the application architecture.

01 module VirtualTerminal {
02 module {

03 in port (char) Recv;
04 } vtServer;

05 module {

06 out port (char) Send;

07 } vtClient;

08 instantiate vtClient

09 at clientNode;
10 link vtClient to vtServer;
11} vt;

12 start vt;

’
I' ‘\
Mobile device Y B D e __) Office database
vtClient N e vtServer
\‘ "

Figure 3: Mobile application basic architecture

The negotiation clause (lines 14-18) defines that
the best service is the wireless transport service; if
this service is not available, a fixTel service should be
tried and so on. Transitions between services depend
on their availability. Either when the currently used
link fails, or a preferable service becomes available, a
service adaptation can take place. Other adaptation
policies could be used, e.g., based on a reduced-cost or
bandwidth criterion.

The composition of contracts was also investigated
in this use-case. Contracts regarding different non-



01 contract {

02 service {

03 link vtClient.Send to vtServer.Recv
04 with Transport.technology: WiFi;

05 } wireless;

06 service {

o7 link vtClient.Send to vtServer.Recv
08 with Transport.technology: CDLS;

09 } fixTel;

10  service {

11 link vtClient.Send to vtServer.Recv
12 with Transport.technology: GSM;

13 } celTel;

14 negotiation {

15 wireless -> fixTel;

16 fixTel -> celTel;

17 celTel -> out_of_service;
18 };

19 7} vt;

Figure 4: Mobile device QoS contract

functional requirements (in the same or in different
applications) are orthogonal when it is not necessary
to combine states of their respective sets of services
in the same negotiation chain, because they do not
interfere with each other. Composing orthogonal con-
tracts is immediate: their services, profiles and nego-
tiation clauses would make independent parts of the
composed contract; their negotiation clauses are liter-
ally combined. The unified negotiation clause combin-
ing the two contracts used in this use-case is presented
in Figure 5.

In the general case, the composition process can
lead to conflicts on the use of shared scarce resources.
Conflicts can be handled applying a suitable decision
policy to the set of involved contracts; already assigned
resources could then be retaken in order to satisfy the
preferred contracts.

In this example, additional virtual terminal client
instances can be instantiated during running time
without any apparent conflict caused by the server’s
sharing. However, in order to deal with more general
configurations we are investigating the description of
individual contracts for clients and servers [25]. This
intends to allow each client to specify what it requires
and each server to specify what it is committed to
provide. This capability would permit to make de-
cisions regarded to a component instantiation taking
into account the availability of resources at its instan-

tiation time. Besides providing the flexibility required
for the support of dynamic architectures, this would
allow managing conflicts through lower granularity in-
terventions.

01 negotiation {

02 secure -> unsecure;

03 unsecure —-> out_of_service;
04 wireless -> fixTel;

05 fixTel -> celTel;

06 celTel -> out_of_service;
07 }

Figure 5: Combining contracts

4.1.1 Client-Server Adaptation

Here we consider a server, which periodically receives
service requests coming from one or more clients [19].
Each request has to be serviced and the correspond-
ing reply should be issued within a given deadline.
This basic architecture can be used in different appli-
cation contexts and run on different support environ-
ments. For example, a simple configuration, with a
single client, can run on a single processor, provided
that enough processing power is available to the server
to execute the required processing activities within the
required time interval. A more demanding applica-
tion, where requests come from many clients, as well
as where more complex and time consuming process-
ing and filtering activities are performed, will require
more processing power in order to meet the timing re-
strictions. In this scenario, it is desirable to provide
concepts and mechanisms to allow the basic architec-
ture to be gracefully adapted in order to meet the re-
quirements of each different application context. For
example, in the simple client-server application a CPU
reservation scheme would be enough to guarantee the
processing power required for the server. For the de-
manding application, assuming that it is parallelizable,
a solution would be to distribute the execution, for ex-
ample using a replicated server architecture. Such par-
allel architecture could be deployed on a grid of proces-
sors provided that some operational requirements are
met in order to not hinder the application’s perfor-
mance; e. g., the allocated nodes should have enough
resources and their message transport time to the mas-
ter should be lower than a given limit.



4.1.2 Single Server Configuration

Figure 6 presents the CBabel description of the ap-
plication’s architecture, composed by a client (client
- lines 3-5), a server (server - lines 6-8), and their
interconnection topology. Interaction is performed
through the client’s procDataSet out port and the
server’s procDataSet in port (line 10). Note that this
interconnection could be statically defined using a spe-
cific connector to mediate the client-server interaction,
encapsulating the required communication or inter-
action mechanism. However, as the non-functional
requirements can include communication, processing
and replication aspects, the use of connectors in the
architecture will be defined separately in a contract;
the specific connector can be automatically selected
by the contract support middleware.

01 module Client_Server {

02 port procDataSet;

03 module Client {

04 out port procDataSet;

05 } client;

06 module Server {

07 in port procDataSet;

08 } server;

09 instantiate client, server;
10 link client.procDataSet to

server.procDataSet;
11 } capture_images;

12 start capture_images under <contract_name>

Figure 6: CBabel description of the application’s ar-
chitecture

In this first context, we assume that the client and
server components are deployed in the same node and
that the client execution requirements are easily met.
In this case, to meet the application’s requirements,
processing and storage resources have just to be re-
served for the server module, as described in the sin-
gleServer contract presented in Figure 7. The prioProc
service (lines 14-16) states that the instantiation of the
server module at the host! node is associated to the
PProcMem processing profile (lines 19-22). Accord-
ing to this contract, the server module instantiation is
conditioned to the availability of enough storage capa-
bility (at least 200 Mbytes) and of a processing slice of
at least 0.25 (25%) of the processor’s time, as defined
by PProcMem.

13 contract {

14 service {

15 instantiate server at hostl
with profile PProcMem;

16 } prioProc;

17 negotiation {prioProc ->
out-of-service;};

18 } singleServer;

19 profile {

20 Processing.cpuSlice >= 0.25;

21 Processing.memReq >= 200;

22 } PProcMem;

Figure 7: Single server contract description

4.1.3 Distributed Server Configuration

Now, the servers are replicated in order to distribute
the processing load. To this end a Replication QoS
category (Figure 8) is introduced. When this category
is used, a special connector is selected to provide the
services related to the group communication protocol,
selected by the value of the groupComm property (line
22). The numberOfReplicas and mazReplicas proper-
ties (lines 19-20) describe, respectively, the number of
replicas to be deployed and the maximum number of
replicas allowed. This last property can be used with
replicaMaint (line 21) in the case of a contract that
will dynamically handle the creation of replicas. The
distribPolicy property (line 23) indicates a policy to be
adopted for the distribution of replicas (in this exam-
ple, driven by the best memory, CPU and transport
delay values).

18 QoScategory Replication {

19 numberOfReplicas: increasing numeric;
20 maxReplicas: numeric;
21 replicaMaint: enum (add,

remove, maintain);
22 groupComm: enum (p2p, multicast,

broadcast, loadbalance);
23 distribPolicy: enum (bestMem, bestCpu,
bestTransp, optim);

24 }

Figure 8: Replication category

According to the repServer contract (presented in
Figure 9) each replica will only be instantiated if the
PProcMem and Preplic profiles properties are satisfied.



A number of five replicas was selected (line 25) and
the distribution policy will try to optimize resources
(line 26). For all the established client-replica inter-
connections a connector (groupCon) is used to pro-
vide a selected group communication mechanism. In
this example, we consider that the computation of the
service requested can be split among the replicated
servers and a multicast protocol is selected (line 30).
In a case where the service requests can be processed
independently, a policy to distribute the load among
the servers would be more suitable (loadbalance, line
22 in the Replication category); a heuristic aiming to
optimize load balancing in this context is presented in
[2]. Note that this use-case architecture can evolve to
accommodate additional clients. For this, each new
client has just to be started under the repServer con-
tract in order to be automatically linked to the servers
with the PCom profile.

13 contract {

14 service {
15 instantiate server

with profile PProcMem, Preplic;
16 link client to server

with profile Pcom;
17 } repProc;
18 negotiation {repProc ->
out-of-service;};
19 } repServer;
20 profile {
21 Processing.cpuSlice >= 0.25;
22 Processing.memReq >= 200;
23 } PProcMem;
24 profile {
25 Replication.numOfReplicas = 5;
26 Replication.distribPolicy = optim;
27 } Preplic;
28 profile {
29 Transport.delay < 5;
30 Replication.groupComm = multicast;
31 } Pcom;

Figure 9: Contract for the distributed-replicated
server configuration

Again, as the requests have to be processed at a
given rate, the overall deadline within which the server
task has to be performed should not be violated. In a
distributed environment, where the message transport
time to the server adds to the total preprocessing ex-
ecution time, the overall deadline should include this

parameter. In order to express this requirement, the
contract includes a message transport time parame-
ter (Figure 9, line 29); the latter aggregated with the
previous processor reservation parameter will provide
a trustful means to impose the application timing re-
quirement at runtime.

In an application where the processing requirements
can increase or decrease along the application run-
ning time, the number of replicated servers could be
dynamically controlled, according to a strategy pre-
scribed in a contract. For example, when the process-
ing demand increases, the number of servers could be
increased in order to reduce each one individual com-
putation time, aiming to achieve an overall speed-up.
Accordingly, the number of servers can be reduced in
order to free system resources when the processing de-
mands decreases (see [19] for more details).

We have also experimented with server replica-
tion techniques to achieve fault-tolerance [17]. In
this context, diverse reliable message multicast pro-
tocols, based on a reliable group communication sup-
port, were implemented to ensure server’s state consis-
tency. These protocols are encapsulated into connec-
tors, which can be configured to select a specific failure
semantics more suitable to meet the requirements of a
given application. These connectors also encapsulate
the access to the group membership service, which was
used to implement module failure detection and recov-
ery mechanisms. In a recent work [1], we investigated
the use of CR-RIO contracts to express this kind of
non-functional requirement.

We note that components of our contract support
middleware can encapsulate the access to different
available resources and mechanisms, in order to obtain
the information required to enforce the non-functional
requirements. In our fault-tolerance experiment, the
reliable multicast protocol and the group membership
service provided a clear example. For the architectural
contracts presented in this section, parameters such as
CPU utilization, available storage capacity, network
bandwidth, and resource discovery are required to as-
sist the allocation of server replicas. This kind of sup-
port can be provided by available platforms such as
the NWS framework [29].

4.2 Video on Demand (VoD) Application

The scenario of this application is comprised by a
server, which stores a collection of video files in the
MPEG-2 format, and by clients that connect them-
selves to the server and initialize a flow to receive and
display a selected video. It is assumed that the clients
can run on different platforms, from portable devices



to workstations, in which the availability of resources
required for video exhibition, such as available CPU
capacity and communication bandwidth, can vary. In
this context it is necessary to adapt the application’s
architecture configuration, depending on the specific
operational environment, in order to have the video
being exhibited with the expected quality. The ba-
sic architecture of the example should fit two types
of client: (i) high processing availability, with high-
speed access to the server and (ii) medium processing
availability, with dial-up modem access to the server.
In principle, clients of type (i) have enough process-
ing and communication resources to exhibit the video
in the original MPEG-2 format; of course, they also
can deploy the less demanding H.261 format. Clients
of type (ii), with limited resources, can only exhibit
the video in the H.261 format. Note that a type (i)
client can degrade to type (ii), depending on the avail-
ability of the supporting resources. Figure 10 presents
the CBabel description of the application’s architec-
ture, composed by a client (player - line 3) and a
server (videoSrv - line 4), and their connection topol-
ogy; communication is effected through the player’s
request port and the video-server’s provide port (lines
6-8). Following the previous examples, as the non-
functional restrictions include interaction aspects, the
use of connectors in this architecture will be defined
explicitly in a contract.

01 module Client_Server {

02 port provide, request;
03 module Client { out port request; }
player;

04 module Server { in port provide; 1}
videoSrv;

05

06 instantiate videoSrv at serverHost;

07 instantiate player;

08 link player.request to videoSrv.provide;

09 } vod;

10 start vod;

Figure 10: VoD application Architecture Description

The QoS categories for processing and transport
used to specify the VoD application contract are those
presented previously in Figure 2. In this example it is
considered that the client has to run on a CPU with
a minimum operating frequency of 700 MHz, and can
require up to 50% of the available CPU time to ex-
hibit videos in the MPEG-2 format. By its turn, the

exhibition of videos in the H.261 format will demand
a CPU with a minimum clock of 266 MHz and can
require a maximum CPU usage of 30%.

For video transmission, the MPEG-2 format re-
quires a bandwidth greater than 1.5 Mbps and a trans-
port delay lower than 50 ms to sustain an acceptable
video stream, while the H.261 format requires a mini-
mum bandwidth of 56 Kbps and can tolerate transport
delays up to 200 ms. Other transport properties could
be taken into account in this case, such as the jitter or
data loss rate; for the sake of simplicity they were not
included in the Transport QoS category.

The QoS contract of this example considers that
two services can be used: the exhibition of the video
(i) in the MPEG-2 format or (ii) in the H.261 for-
mat, according to the availability of resources at the
specific client platform. In the client’s node, to de-
ploy any of these services, the resources to be handled
are those related to the host’s processing character-
istics and to the client-server communication channel
properties. Based on the previous requirements, the
application’s contract can be described as in Figure
11.

The MPEG_video service (lines 2-5) defines the QoS
constraints for the architecture parts that participate
in the MPEG video exhibition. The creation of a
player component instance (line 3) in a client machine
is associated to the cpu_01 processing QoS profile.
The interconnection of the player and wvideoSrv ports
are bound to the network_01 QoS profile (lines 28-
31), being the communication provided by a connec-
tor that encapsulates the required mechanisms (line
4). The mentioned profiles specify, respectively, the
constraints to the Processing and Transport QoS Cat-
egories properties relevant to this contract. In this
case, to create the player instance the clockFrequency
of the node has to be at least 700 MHz and then the
CPU utilization has to be less or equal than 50%.

The H-261_video service description follows a
similar procedure. The cpu_02 (lines 23-26) and
network_02 (lines 33-36) profiles represent the require-
ments for the H.261 video exhibition. Note that, for
this service, the interaction of the components is me-
diated by a connector that encapsulates the MPEG-2
to H-261 conversion mechanism. Additionally to the
MPEG-2 and H.261, other formats could be supported
by using specific codecs, encapsulated in connectors;
e.g., the bitmap format that can be exhibited on PDAs
and cell-phone video matrixes.

The negotiation clause of this contract (lines 12-15)
defines the priority order between the services. The
MPEG_video service has to be preferably provided in
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contract {
service {
instantiate player at clientHost
with cpu_01;
link player to videoSrv
by comTransport
with network_01;
} MPEG_video;

service {
instantiate player at clientHost
with cpu_02;
link player to videoSrv
by H-261.comTransport
with network_02;
} H-261_video;

negotiation {
MPEG_video -> H-261_video;
H-261_video -> out_of_service;
}
} vod;

profile {
Processing.clockFrequency >= 700;
Processing.utilization <= 50;

} cpu_01;

profile {
Processing.clockFrequency >= 266;
Processing.utilization <= 70;

} cpu_02;

profile {
Transport.delay <= 50;
Transport.bandwidth >= 1.5;
} network_01;

profile {

Transport.delay <= 200;
Transport.bandwidth >= 0.056;
} network_02;

Figure 11: VoD application QoS Contract

relation to the H-261_video service. If there are no
resources available to attend any of these services, an
out-of-service state is reached and the application can-
not run. Initially a negotiation is performed to es-
tablish the basic configuration. However, additional
negotiations are plausible. For example, if the MPEG
service is operational and either the network_01 or the
cpu_01 profiles cannot be sustained; in either case the
video service could be continued in a degraded mode
using the H.261 encoding. Note that in a dynamic
context, even if a CPU reservation mechanism is used
to ensure the cpu_01 profile, a contract service could
be invalidated by the instantiation of another contract
with higher priority.

5 Supporting Middleware

CR-RIO supporting middleware follows an archi-
tectural pattern composed by a set of components,
namely: one Global Contract Manager (GCM), and
Local Contract Managers (LCMs), Contractors and
QoS Agents. The conceptual basis for this pattern is
described in [10]; a more pragmatic view is presented
in [1]. Here we present a brief description of CR-RIO
middleware components. This middleware uses CBa-
bel described architectures and QoS contracts, which
are available as meta-level information, to instantiate
an application and to manage its associated contract.

The GCM represents the main authority; it can
fully interpret and manage contract descriptions and
knows their service negotiation state machine. LCMs
are distributed and were introduced mainly for prac-
tical reasons; they have a partial view of the active
contracts. When a negotiation is initiated, the GCM
identifies which service will be negotiated first and
sends the related meta-level descriptions to each par-
ticipating node LCM; this includes the associated QoS
profiles. Each participating LCM is responsible for
interpreting the local interests of a contract and for
activating its associated Contractor and QoS Agents.

A service can be attended if all enclosed profiles
are met; the LCMs involved in a negotiation gather
and convey this information to the GCM. If a positive
confirmation is received from all LCMs involved in a
negotiation, the related service can be attended and
the application can be instantiated with the required
quality. If not, a new negotiation can be attempted in
order to deploy the next possible service. If all services
in a contract negotiation clause are tried with no suc-
cess, an out-of-service state is reached and a contract
violation message is issued to the application level.
The GCM can also initiate a new negotiation when



it concludes that a preferred service became available
again. When the negotiation finishes the GCM uses
the Configurator to deploy the components required
for the selected service.

For each particular contract, a specific Contractor
instance is created. Basically, it takes care of concerns
associated to local profiles related to the contract’s ser-
vices. Contractors are built from a generic class, which
is specialized for the profiles of a given service. More
specifically: (i) When one or more property profiles
are related to a local primitive service of the support
system, it performs a request on behalf of this service
(with the required parameters) to the corresponding
QoS Agents; from then on, it can receive out-of-spec
notifications from the QoS Agents, containing relevant
values related to these profiles. (ii) When a property
profile requirement can be implemented by a specific
connector, it just interact with this connector that also
acts like a QoS agent; for example, this happens in the
case presented in Section 4.1. The content of an out-of
spec spec notification is compared against the associ-
ated profile and, in some cases, the Contractor can try
to make (local) adjustments to the resource that pro-
vides the primitive service. For instance, in the VoD
application, the priority of a streamer, encapsulated
in the connector, could be raised in order to maintain
a given frame generation rate; note that this requires
an explicit intervention of the programmer. In a case
where local adjustments are not possible, an out-of-
profile notification is sent to the associated LCM.

QoS Agents are also specialized. They can just pro-
vide access to architectural level resources information
or encapsulate the access to system level mechanisms,
providing adequate interfaces to perform requests to
local primitive services, initialize system resources and
monitor the actual values of the required properties.
According to the values to be monitored (that can
include threshold limits), which were registered by a
Contractor, a QoS Agent can issue an out-of-spec no-
tification, which includes relevant resource-related in-
formation (that may be forwarded all the way to the
GCM), allowing the respective Contractor to verify if
a resource is no more available or if it does not meet
the specification defined in the profile.

5.1 Implementation Details

The implementation of the contract of the appli-
cation presented in Section 4.3 using the described
architectural pattern is depicted in Figure 12. Each
participant node has an instance of the Local Contract
Manager, the specific Contractor for the VOD appli-
cation and the QoS Agent associated to the resources

to be controlled in each specific platform. The H-261
connector only takes part of the configuration when
the H-261_video service is deployed. It can also be
observed that the comTransport connector has a dis-
tributed implementation; in this experiment the codifi-
cation related to the video flow transport mechanisms
were encapsulated in this comTransport connector, e.g,
RTP and RTCP protocols. In a more network-aware
context some kind of resource reservation mechanism
could be also employed, e.g., the RSVP protocol.

In the contract negotiation phase, the middleware
tries to establish the required profiles and the associ-
ated support required for them. If the GCM concludes
that the negotiation was successful the service can be
established. The next step is to start the application’s
functional components, in the context of the estab-
lished support; this is performed using the services
provided by the Configurator (described in Section 2).

All the presented case studies were implemented in
Java. The Java Media Framework was used to imple-
ment the functional modules of the VoD application.
Java objects were mapped to configurable components
through the Configurator, which is implemented fol-
lowing the Architecture Configurator design pattern
described in [7]. In particular, the structure of CR-
RIO’s connectors follows a standard pattern which im-
plementation could be supported by a tool. Basically,
at the invoker side, after being identified, each method
invocation is serialized and, in the sequel, at the tar-
get object side a dynamic invocation of the concerned
method is performed. We have not put much effort
in optimizing our connector’s implementation. How-
ever, we made a set of measurements [26] that show
a small overhead when compared to the cost associ-
ated with the basic machinery required to perform
dynamic method invocations in Java, which is con-
siderably greater than the normal method invocation
cost. The connector’s performance can be optimized
either using precompiled stubs (loosing the dynamic
context reflective capability - see section 2-b) or using
a specialized JVM, e.g, [22] (though loosing portabil-

ity).
5.2 Additional remarks

Our presentation assumes a unique Contract Man-
ager authority - the GCM, which is required in any
system running diverse applications using shared re-
sources, as is the case of large mission-critical embed-
ded systems [9]. This centralized entity can introduce
scaling and reliability issues, which have to be solved
using appropriated replication techniques. In a more
open environment, it would be feasible to use a fed-
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Figure 12: Mapping the VoD application contract in the architectural pattern

eration of GCMs, which would have to negotiate to
implement the contract management functionality.

In our current implementation we did not consider
the issue of failures affecting the configurable enti-
ties required to impose a given service for a contract.
This could be tackled extending the GCM to treat
as an atomic transaction the set of configuration ac-
tions required to impose a QoS service. Another re-
lated issue regards the application behavioral (and
state) consistency during QoS service transitions. On
this regard we do not think there is an application-
independent solution; the specific application and the
relative time span required to effect the configuration
changes are among the factors to be considered. In
some cases, consistency-related issues could be treated
at the application realm, and the programmer should
be aware of the intended use of the functional com-
ponents within a given domain. In other cases, some
system-level solution could be provided, e.g., to mask
disruptions using a special communication protocol
as mentioned in section 4.1. Available studies make
very restricted assumptions to provide transparent so-
lutions to the application consistency issue, e.g., [15].

Additional research is required to clarify the practical
aspects of both failure and consistency issues.

Some other optimizations are feasible. For instance,
when a Contractor sends an out-of-profile notification
this could be followed by the set of QoS profiles that
could be attended at that moment. Receiving this
composed information, the GCM can filter out the ser-
vices with unattended profiles, and immediately select
the next service to be activated. Another optimization
could be applied when a set of services uses resources
restricted to a given node. In this case the node’s LCM
can receive the information of all services and profiles
related to the set and manage them locally. In some
cases, the GCM can incorporate the functions of the
other components, as the LCM, or services provided by
existing middleware systems to optimize its implemen-
tation, as discussed in Section 4.2. In specific cases, it
is even possible to collapse all the support to a single
node, managing all the contract concerns locally; this
would be suitable in the use-case presented in Section
4.1.

Some resources have specific and embedded re-
adaptation policies and mechanisms, which are part of



their intrinsic semantics, as happens with some spe-
cialized communication protocols. For these cases,
resource re-adaptation can be locally managed by a
Contractor, using the interface provided by the QoS
Agents, as mentioned in the beginning of this section.
As an interim solution, we are investigating how to
treat this kind of concern in the contract level. How-
ever, in our research we found a clear need for explicit
separation of resource status and availability monitor-
ing functions from resource allocation and manage-
ment functions. Due to historical reasons these two
functions are embedded in most QoS aware protocol
suites and can not be separately used. This makes dif-
ficult to a designer to take advantage of each of them to
write a contract. We hope that this situation changes
in the next generation systems.

The presented use-cases showed us that the com-
ponents of the CR-RIO middleware follow a recurrent
architectural pattern in those different applications.
In particular, in our experiments we observed that the
interactions between the middleware components fol-
low standard sequence diagrams, which facilitate im-
plementations based on object-oriented principles. In
addition, the behavior of these elements is parameter-
ized by the contract of the specific application; at this
level the manipulated information is symbolic. It ap-
pears that the GCM and the LCM overall codification
can be generalized, being identified as frozen spots of
the pattern. On the other hand, the QoS Agent and
the Contractor were identified as hot spots and have to
have specific implementations, although part of their
code can be automatically generated from the related
contracts. Each QoS Agent has dependencies related
to the specific resource being managed. However, we
note that a QoS Agent needs to be programmed once
for a given resource; from then on, it can be reused in
other applications that have operational requirements
dependent on the same kind of resource. By its turn,
the Contractor’s implementation is dependent on the
services and profiles to be imposed, which depend on
the resources to be managed via QoS Agents. The
Contractor can also contain the code implementing
specific policies to perform local adaptations, as al-
ready discussed in this section. Finally, we note that
the implementation of the interaction between a Con-
tractor and a QoSAgent is based on the Observer de-
sign pattern, which can simplify the codification of
these components.

6 Related Work

The proposal presented in [13], which was the main
inspiration of our contract description language, is ap-
plied in the class-object design stage and does not dis-
cuss implementation level issues. Here we comment
on some works directly related to our proposal. More
detailed comparisons are available in [1].

The reflective middleware approach [16] allows for
the provided services to be configured to comply
with the non-functional properties of the applications.
However, the proposal does not provide clear abstrac-
tions and mechanisms to help the use of such features
in the design of the architectural level of an applica-
tion. This leads to the middleware services being used
in an ad-hoc fashion, usually through pieces of code
intertwined with the application’s program.

The Quality Objects (QuO) [20] provides a frame-
work for the development of distributed applications
with QoS requirements, based on CORBA. In QuO,
the specification of such requirements is associated
with method invocations through a contract descrip-
tion language, allowing only adaptations at this level.
Our proposal considers services with differentiated
quality in diverse levels, from the interface (or con-
nection) level, in which services are encapsulated into
connectors (similarly to the QuO approach), to the
architectural level, in which the service provision can
involve the reconfiguration of the application’s topol-
ogy.

Cazzola proposes the concept of using architec-
tural reflection to adapt non-functional properties of
base-level architectural configurations [8], describing
a switching mechanism activated by logical rules for
this purpose. The proposal described in [14] includes
basic mechanisms to collect status information asso-
ciated to non-functional services. It also suggests an
approach to manage non-functional requirements in
the architectural level, in a way similar to ours. CR-
RIO complements both proposals providing an explicit
methodology based on contracts and proposing extra
mechanisms to deploy and manage these contracts.

[9] presents, in very general terms, the elements of a
comprehensive pattern language for provisioning and
managing quality-constrained services. We can relate
many elements of the proposed pattern with similar
elements in our framework. In particular its static ap-
plication connector can be related to our architectural
descriptions, and its dynamic connector can be related
to the components of our contract support middle-
ware. According to [9] the proposal requires access to
the source code of the application and/or infrastruc-
ture’s components in order to instrument them. Our



approach, that includes configuration-programming
mechanisms, is more transparent regarding the access
to the source code of the application. Considering
their similar aims, it would be very interesting to in-
vestigate further the correspondence between the two
proposals.

As mentioned in Section 2(c), our approach is re-
lated to meta-level programming proposals described
in the literature [24, 21, 12, 3]. Regarding this point,
we observe that most of these proposals do not provide
clear concepts and mechanisms for describing and sup-
porting static and dynamic architectural adaptations,
leading to ad-hoc solutions on this level of concern;
more comparisons are available in [18]. Our contracts
cater for this need by providing architectural level de-
scriptions that act as specifications and can be used
to guide implementations. In addition, the approach
allows us to take advantage of formalisms for proving
properties of the application’s architecture [6].

It is interesting to note that many of the elements
separately presented in the previously commented pro-
posals have a counterpart in our proposal that tries to
consider these elements comprehensively.

7 Conclusions

We presented a unified approach to specify, de-
ploy and manage applications having non-functional
requirements. The approach helps to achieve separa-
tion of concerns and software reuse by allowing non-
functional requirements of an application to be speci-
fied separately using high-level contracts expressed in
an extended ADL. Being centered on an ADL-based
configuration framework, the approach inherits the
benefits mentioned in Section 6, among them the ca-
pability of reconfiguration, which facilitates to execute
dynamic architectural adaptations on behalf of a con-
tract. In addition, part of the codification, required to
fulfill some non-functional requirements, can be encap-
sulated into connectors, which can be (re)configured
during running time in order to cater for the imposi-
tions defined by the associated contract.

The approach has been partially evaluated through
use-cases, which showed that the infrastructure re-
quired to enforce the contracts follows an architectural
pattern that can be implemented by a standard set
of components of a middleware. It was also verified
that the code of these components could be automat-
ically generated, except some localized pieces related
to some specificity of the particular non-functional re-
quirement under consideration. However, we should
notice that the treatment of this kind of detail always

has to be considered in any QoS-aware application. In
this sense, our approach can help to identify the inter-
vening hot spots and make the required adaptations
more systematic.

It should be noticed that CBabel descriptions can
be used to configure application systems based in dif-
ferent component implementation environments. This
would also allow reusing QoS contracts in these envi-
ronments, provided that the required supporting com-
ponents are also made available. In this research, we
found that the process of mapping architecture-level
defined contracts to implementations could be better
understood by exposing the internal structures of these
components. We intend to follow this path in order to
refine the framework and to identify useful optimiza-
tions for different implementation and application do-
mains.

Finally, the reader can observe that the three case
studies presented in Section 4 exhibit the same archi-
tectural style. In principle, with some changes, their
individual contracts could be combined into a hyper-
contract representing a fully adaptable and distributed
VoD system. We believe that our proposal can con-
tribute towards transforming such a visionary goal into
sound engineering practice.
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