
Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 1

Supporting Ontology Development with ODEd
Paula Gomes Mian
Federal University of Espírito Santo
Fernando Ferrari Avenue, 29060-900
Vitória � ES � Brazil
pgmian@inf.ufes.br

Ricardo de Almeida Falbo
Federal University of Espírito Santo
Fernando Ferrari Avenue, 29060-900
Vitória � ES � Brazil
falbo@inf.ufes.br

Abstract Ontologies are becoming an important mechanism to build information systems. However, on-

tology construction is not a simple task. So, it is necessary to provide tools that support ontology
development. This paper presents ODEd, an ontology editor that supports the definition of con-
cepts, relations and properties, using graphic representations, besides promoting automatic
inclusion of some classes of axioms and derivation of object infrastructures from ontologies.
ODEd was built to support ontology development in ODE, a software engineering environment
(SEE), so that ODE can be used as a domain-oriented SEE. Thus, ODEd aims to partially sup-
port an ontology-based domain engineering process.

Keywords: Ontologies, Domain Engineering, Ontology Editors.

1 Introduction

Any software that does anything useful commits to a
model of the relevant world. In other words, software
systems implicitly or explicitly make commitments to a
domain ontology [1]. As the importance of ontologies in
computer science increases, better support for their devel-
opment is needed.

Building ontologies is not trivial. It involves the speci-
fication of concepts and relations that exist in the domain,
besides their definitions, properties and constraints, de-
scribed as axioms [2]. Therefore, tools supporting ontol-
ogy development are necessary. These tools must support
definition of concepts, relations, properties, and con-
straints, and must enable the inspection, browsing, and
codifying of the resulting ontologies [3].

In this paper, we present ODEd, an ontology editor
designed to support ontology development in a software
engineering environment called ODE (Ontology-based
software Development Engineering) [4].

One great difficulty in software development is that,
many times, developers are not familiarized with the
domain in which the software is being developed. To deal
with this problem, several research groups have proposed
to improve and to evolve Software Engineering Environ-
ments (SEEs) to support software development consider-
ing peculiar characteristics of the domain, giving rise to

Domain-Oriented SEEs (DOSEEs). DOSEEs are a special
class of SEEs that uses domain knowledge to guide soft-
ware developers across the several phases of the software
process. DOSEEs organize the application domain knowl-
edge facilitating problem understanding during system
development [5].

In a DOSEE, a model that turns explicit the basic con-
ceptualization of the domain must be defined. Ontologies
have been used for this propose and, therefore, ODEd was
designed to support domain orientation in ODE [6].

ODEd partially supports the Ontology-based Domain
Engineering Process described in [7], that considers on-
tology development (domain analysis), its mapping to
object models (infrastructure specification), and Java
objects implementation (infrastructure implementation).
To support ontology development, ODEd allows the
definition of concepts, relations and properties, using
graphic representations, and the definition of some classes
of axioms. To support domain design and implementa-
tion, ODEd allows the derivation of object infrastructures
from ontologies in Java. Finally, to support domain inves-
tigation, ODEd offers mechanisms to browse the ontolo-
gies defined.

In section 2 we briefly discuss some aspects of the use
of ontologies in software development. Section 3 dis-
cusses the ontology-based domain engineering process
that underlies ODEd functionalities. Section 4 presents an
overview of ODEd. Sections 5 and 6 discuss a study case

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 2

using ODEd. Section 7 presents how ODEd supports
domain investigation, allowing ontology browsing. Sec-
tion 8 presents an infrastructure for ontology instantiation
in ODEd. In section 9 we discuss related works. Finally,
in section 10 we report our conclusion and future work.

2 Ontologies

People, organizations and software systems must
communicate between themselves. However, due to dif-
ferent needs and backgrounds contexts, they can have
different conceptualizations regarding the same subject
matter. The way to solve this problem is to minimize
conceptual and terminological confusion and come to a
shared understanding of the domain of interest [8].

However, it is impossible to represent the real world,
or even a part of it, with all its details. To represent a
phenomenon or part of the world, which we call a do-
main, it is necessary to focus on a limited number of
concepts that are sufficient and relevant to create an ab-
straction of the phenomenon at hand. Thus, a central
aspect of any modeling activity consists of developing a
conceptualization [9]. An ontology is an explicit specifi-
cation of a shared conceptualization [10]. In this context,
a conceptualization refers to an abstract model of how
people think about things in the world, usually restricted
to a particular subject area. An explicit specification
means that concepts and relations of this abstract model
are given explicit terms and definitions [11].

According to Guarino [12], “an ontology refers to an
engineering artifact, constituted by a specific vocabulary
used to describe a certain reality, plus a set of explicit
assumptions regarding the intended meaning of the vo-
cabulary words. This set of assumptions has usually the
form of a first-order logical theory, where vocabulary
words appear as unary or binary predicate names, respec-
tively called concepts and relations. In the simplest case,
an ontology describes a hierarchy of concepts related by
subsumption relationships; in more sophisticated cases,
suitable axioms are added in order to express other rela-
tionships between concepts and to constrain their in-
tended interpretation”.

Jasper et al. [13] classified applications of ontologies
in four main categories, emphasizing that an application
may integrate more than one of these categories:

• Neutral Authoring: an ontology is developed in a

single language and it is translated into different for-

mats and used in multiple target applications.

• Ontology as Specification: a domain ontology is

created and it provides a vocabulary for specifying

requirements for one or more target applications. The

ontology is used as a basis for software specification

and development, allowing knowledge reuse.

• Common Access to Information: an ontology is used

to enable multiple target applications (or humans) to

have access to heterogeneous sources of information

that are expressed using diverse vocabulary.

• Ontology-based Search: an ontology is used for

searching an information repository for desired re-

sources, improving precision and reducing the overall

amount of time spent in searching.

Analyzing these scenarios, we can notice that working
with ontologies has several advantages. One of the main
benefits of the use of ontologies in software development
is to reuse domain specifications in the requirement speci-
fication phase. In traditional Software Engineering, for
each new application to be built, a new conceptualization
is developed. In an ontology-based approach, requirement
elicitation and modeling can be accomplished in two
stages. First, the general domain knowledge can be elic-
ited and specified as ontologies. These ontologies are
used to guide the second stage of the requirement analy-
sis, when the particularities of a specific application are
considered. This way, the same ontology can be used to
guide the development of several applications [14]. In
other words, ontologies can be used as basis for a domain
engineering approach. In this context, ontologies can act
as both a domain model and a component in a repository
of reusable artifacts. Also, they can be used for structur-
ing this repository.

One of the major drawbacks to a wider use of ontolo-
gies in Software Engineering is the lack of approaches to
insert ontologies in a more conventional software devel-
opment process. Since the current leading paradigm in
Software Engineering is the object technology, to put
ontologies in practice in software development, it is
worthwhile to derive object models from ontologies, in
order to derive widely reusable assets. Coding ontologies
in object infrastructures may lead to reuse in several lev-
els of software development: from analysis to project and
implementation [7].

3 An Ontology-based Domain Engi-
neering Process

Falbo et al. [7] proposed an ontological approach to
domain engineering that considers ontology development

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 3

(domain analysis), its mapping to object models (infra-
structure specification), and Java components develop-
ment (infrastructure implementation). The main goal of
ODEd is to partially support this ontology-based domain
engineering process.

3.1 A Systematic Approach for Building On-
tologies

Since ontologies are used as domain models, ontology
building must be considered. The ontology development
process encompasses the following activities [2]:

• Purpose identification and requirement specifica-

tion: it concerns to clearly identify the ontology

purpose and its intended uses, that is, the compe-

tence of the ontology. To do that, competency

questions [15] are used.

• Ontology capture: the goal is to capture the do-

main conceptualization based on the ontology

competence. The relevant concepts and relations

should be identified and organized. A model using

a graphical language, with a dictionary of terms,

should be used to facilitate the communication

with domain experts.

• Ontology formalization: aims to explicitly repre-

sent the conceptualization captured in a formal

language.

• Integration of existing ontologies: during the cap-

ture and/or formalization steps, it could be neces-

sary to integrate the current ontology with existing

ones, in order to seize previously established con-

ceptualizations.

• Ontology evaluation: the ontology must be evalu-

ated to check whether it satisfies the specification

requirements. It should also be evaluated in rela-

tion to the ontology competence and some design

quality criteria, such those proposed by Gruber

[10].

• Documentation: all the ontology development

must be documented, including purposes, require-

ments and motivating scenarios, textual descrip-

tions of the conceptualization, the formal ontology

and the adopted design criteria.

Figure 1 shows the steps in this ontology development
process and their interrelationship. The dotted lines indi-
cate that there is a constant interaction, albeit weaker,
between the associated steps. The filled lines show the

main workflow in the ontology building process. The box
involving the capture and formalization steps enhances
the strong interaction, and consequently iteration, be-
tween them.

Figure 1: Steps in the ontology development process.

ODEd aims to support this process. It allows compe-
tency question definition, supports ontology capture by
supporting the definition of concepts, relations and prop-
erties using graphical representations, and it lets defining
some classes of axioms, among others.

3.2 From Ontologies to Objects

Generally, a domain model is not directly useful to
operational reuse. There exists a gap between the kinds
and forms of the domain knowledge in a domain model
and the content and form of software assets that can be
reused in software construction. To bring this gap, we
need to build a reuse infrastructure. This infrastructure
should support the efficient operation of a reuse system
and should also be adapted to its technology [16].

The ontology-based domain engineering approach
proposes a set of directives, design patterns and transfor-
mation rules for deriving object infrastructures from on-
tologies. The directives are used to guide the mapping
from the epistemological structures of the domain ontol-
ogy (concepts, relations, properties and roles) to their
counterparts in the object-oriented paradigm (classes,
associations, attributes and roles, respectively). Design
patterns and transformation rules are applied in axiom
mapping.

Formal Ontology

Purpose Identification and
Requirement Specification

Ontology Capture

Ontology For-
malization

Integrating Existing
Ontologies

Evaluation and
Documentation

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 4

In the reuse infrastructure specification phase, the fol-
lowing activities are proposed:

• Set-based ontology axiomatization: to derive ob-

jects from domain ontologies, it is worthwhile to

adopt a formalism that lies at an intermediate ab-

straction level between first-order logics and ob-

jects. For this purpose, a hybrid approach based on

pure first-order logic, relational theory and, pre-

dominantly, set theory was proposed in [14]. So,

the first step is to perform the complete axiomati-

zation of the domain ontology using this set-based

formalism.

• Class identification: starting from the sets formally

defined, a preliminary list of the classes of the ob-

ject-oriented model can be established;

• Epistemological structure translation: since the

classes are defined, relations among concepts and

epistemological axioms should be translated to the

corresponding object-oriented structures, produc-

ing an initial class diagram;

• Other axiom translation: the class diagram derived

in the step above should be refined to consider the

others axioms that are not related to the structural

organization of concepts and relations.

 Finally, the reuse infrastructure should be imple-

mented. The mapping directives and transformation rules

proposed in [14] consider Java as the target programming

language, so that the resulting reuse infrastructure is im-

plemented as Java-objects.

 ODEd partially supports this domain design and im-

plementation process, leading to codifying ontologies in

Java. In the next sections we present ODEd and how it

partially supports this ontology-based domain engineering

approach.

4 ODEd: ODE�s Ontology Editor

As pointed out in section 1, ODEd was developed to
support domain engineering in ODE (Ontology-based
software Development Environment), so that ODE could
be considered a Domain Oriented Software Engineering
Environment (DOSEE). To do this, ODEd’s requirements
include [6]:

R1. Competency question definition: To support on-
tology purpose identification and requirement

specification, ODEd should support competency
questions definition.

R2. Concept, relation and property definition using a
graphical language: During the ontology capture
phase, the use of a graphical representation is es-
sential in order to facilitate the communication
between domain engineers and experts. Thus,
ODEd should support the definition of concepts,
relations and properties using a graphical lan-
guage.

R3. Axiom definition: To support constraints captur-
ing, ODEd should support axiom definition.

R4. Ontology integration: A domain is, usually, wide
and rich in details. A way to build large domain
ontologies is to subdivide them in sub-ontologies.
So, it is necessary to integrate them. Also, ontol-
ogy integration is necessary to allow reuse of on-
tologies previously defined.

R5. Ontology evaluation: it is important to guarantee
that an ontology describes the domain it intends
to model. Therefore, it is necessary to verify if the
ontology is able to satisfy its requirements, i.e., its
competency questions.

R6. Documentation of the ontology development proc-
ess: like any software process, the ontology de-
velopment process should be documented.

R7. Ontology instantiation: in DOSEEs, ontology in-
stantiation is important because instances of do-
main concepts can be defined and stored in do-
main knowledge repositories, so that they can be
used to support domain understanding.

R8. Domain investigation: in a DOSEE, during the
software process, developers will use ontologies
to learn about the domain. Therefore, ODEd
should offer mechanisms to browse ontologies.

R9. Generating software assets from ontologies: To
support domain design activities – reuse infra-
structure specification and implementation, ODEd
should support deriving reuse infrastructures from
ontologies. If an ontology editor is capable of
generating software assets from the ontology,
these assets can be shared and reused by applica-
tions developed in the DOSEE. In this way,
knowledge reuse is promoted, once the assets are
built based on the ontologies and several applica-
tions can be developed using those assets.

ODEd implements a three-layered architecture, as
shown in Figure 2. Basically, ontologies are developed
through the presentation layer and they are described

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 5

according to a model defined in the domain layer. The
data management layer is responsible for the physical
storage of the ontologies developed.

Figure 2: ODEd’s Architecture.

This architecture uses a three-tier design philosophy
that suggests that the central classes, in the domain layer,
are not aware of how the ontologies are presented to the
user (presentation layer) or stored in the system (data
management layer). The portion of the system that han-
dles the graphical representation of the ontologies (pres-
entation layer) is independent from the rest of the archi-
tecture and it communicates with the domain layer. The
data management layer provides the basic infrastructure
for storing and retrieving objects in the system. Its pur-
pose is to isolate the impacts of the technology of data
management on the editor's architecture.

Since presentation and domain layers are very impor-
tant for understanding ODEd’s working, following they
are discussed in more details.

4.1 ODEd�s Presentation Layer

The presentation layer supports the ontology capture
using graphical representations (R2). In ontology build-
ing, a graphical representation is basically a language
representing a meta-ontology. So, this language must
have basic primitives to represent a domain conceptuali-
zation and, in its simplest form, it should have notations
to represent concepts, relations and properties [2].

Falbo et al. [2] proposed LINGO as a graphical lan-
guage for capturing ontologies. LINGO has basic primi-
tives to represent concepts, relations and properties. In
addition to these basic notations, LINGO has other nota-
tions to capture some types of relations (such as whole-
part and subsumption, among others) that have a strong
semantics and, indeed, hide a set of well-defined con-
straints. This is a striking feature of LINGO and what
makes it different from other graphical representations:
any notation beyond the basic ones aims to incorporate a
set of well-defined constraints [2]. This way, using these
notations, axioms are automatically incorporated to the
ontology. These axioms concern simply the structure of
the concepts and are called epistemological axioms (EA).

Figure 3 shows the main notations of LINGO and
some of the epistemological axioms imposed by the
whole-part relation. These axioms form the core of the
mereological theory as presented in [17].

ODEd uses LINGO as a graphic language to describe

ontologies, allowing the automatic inclusion of LINGO’s
notation built-in axioms. Using these notations during
ontology capture, an ontology engineer is also defining
the axioms that they represent.

Figure 3: LINGO’s main notations and some axioms.

ODEd allows ontology capturing in UML too. UML
has also been used as an ontology modeling language
[18]. However, it is necessary to emphasize that there are
some problems in using UML as an ontology modeling
language. First, an important criterion to evaluate ontol-
ogy design quality is minimum ontological commitments
[10]. Based on this principle, an ontology modeling lan-
guage must embody only notations that are necessary to
express ontologies. This is not the case of UML and ma-
jority graphical languages available. Second, since on-
tologies intend to be formal models, it is important that
the language used to describe them has formal semantics.
Again, this is not the case of the majority graphical lan-
guages available, including UML [19]. However, we
cannot ignore that UML is a standard and its use is widely
diffused. Moreover, there are efforts to define UML se-
mantics, such as pUML [20]. Based on that, ODEd uses a
subset of UML’s elements that plays the same role of
LINGO’s notation, i.e., these UML’s elements are applied
using the same semantics imposed by the corresponding
elements in LINGO. For instance, the epistemological
axioms imposed by the whole-part relation presented in
Figure 3 are also automatically incorporated to the ontol-
ogy by ODEd when the aggregation notation of UML is
used. In fact, ODEd has its internal meta-ontology model,
described in the domain layer, that could be presented
using LINGO or UML.

Figure 4 shows the subset of UML�s elements used in
ODEd. Stereotyped classes (<<Concept>>) represent
concepts. Relations are defined as labeled associations,
and properties are represented as attributes. Relations that
contain properties or relation of arity bigger than two are

Presentation Domain Data

Aggregation

Part1 PartN

Supertype

Subtype1 SubtypeN

(EA1) ∀x ¬partOf(x,x)
(EA2) ∀x,y partOf(y,x) ↔ wholeOf(x,y)
(EA3) ∀x,y partOf(y,x) → ¬ partOf(x,y)
(EA4) ∀x,y,z partOf(z,y) ∧ partOf(y,x) → partOf(z,x)
(EA5) ∀x,y disjoint(x,y →¬∃z partOf(z,x)∧ partOf(z,y)
(EA6) ∀x atomic(x) → ¬∃y partOf(y,x)

concept

 relation

property

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 6

represented as stereotyped associative classes (<<Rela-
tion>>). Super-type and whole-part relations among con-
cepts are represented as generalization/specialization and
aggregation relationships, respectively.

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 7

Figure 4: Subset of UML to represent ontologies.

ODEd allows the ontology engineer to choose the
graphical representation to be used. The ontology can be

captured in LINGO or UML, but this is only its graphical
representation. The elements that capture the ontology in
the domain layer are created independently of the graphi-
cal representation used. I.e., in spite of different presenta-
tion representations, the ontology domain model is the
same. The presentation layer only provides an interface
for capturing ontologies and improves modularity by
encapsulating the way their contents are represented.

4.2 ODEd�s Domain Layer

Figure 5 shows the domain layer’s model, that de-
scribes how ontologies are internally represented in
ODEd.

Composition

XOR AND

Aggregation

WholePart

AssociationEnd

cardinality
role

Competency Question

As sociationAx iom

Ontology10..n 10..n

Relation

AssociationAxiomatization

1..n 0..n1..n 0..n

Ontology Diagram0..n1 0..n1

Property

0..10.. n 0..10.. n

ConditionalAssociationAxiom

2.. *

0..n

2.. *

0..n

1

0..n

1

0..n

Association

0..n

1

0..n

1

Concept

0..n

1

0..n

1
0..n

0..n

0..n

0..n

0..1

0..n

0..1

0..n

1

0..n

1

0..n

0..n

1..n

0..n

1..n

Hierarchy

1

0..n

+superty pe
1

0..n

1..n

0..n

+subtype
1..n

0..n

Transitiv y

transitiv ity ()

AntiSimmetry

ant iSimmet ry ()

Atomicity

atomicity ()...

creates

imports

{XOR}

Figure 5: ODEd’s Layer Domain Model.

Concept1
<<Concept>>

Concept2
<<Concept>>

1..*0..*

relation

relation
property

<<Relation>>

0..* 1..*
Super-type

<<Concept>>

Sub-type
<<Concept>>

Part
<<Concept>>

Aggregation
<<Concept>>

0..*
1..*

0..*
1..* +role

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 8

The ontology purpose and its intended uses are identi-
fied through competency questions. An ontology is repre-
sented by a set of ontology diagrams, which contains
concepts created in or imported to the ontology. Con-
cepts are related through associations and hierarchies.
Hierarchies denote subsumption relationships. Associa-
tions can be relations or whole-part relationships, which
in turn are classified into aggregation and composition.
Concepts and relations may have properties and in an
association, concepts have roles and cardinalities.

Associations may have a set of constraints, expressed
as association axioms, that defines the association axio-
matization. Association axioms are classified into: reflex-
ivity, irrreflexivity, symmetry, anti-symmetry, atomicity,
disjointed, exclusivity, and transitivity. This categoriza-
tion is based on the axiom categories proposed by Staab
and Maedche [21]. Each association axiom is dealt by a
subclass of AssociationAxiom (some of these
classes are presented in Figure 5). These classes are re-
sponsible for checking if the constraints imposed by the
corresponding axiom type holds. For instance, the
anti_symmetry() method of the AntiSymmetry
class is responsible for checking if a relation is anti-
symmetric. It executes a method relation() (repre-
senting a relation among concepts) of an object obj
(representing an instance of a concept). If obj is not
returned by relation, then the anti-symmetry property
is truth and the relation is anti-symmetric.

Sometimes, two or more relations have some condi-
tional constraints related to a concept. This is the case of
the associations involving Property in Figure 5. A
property belongs either to a concept or to a relation. To
deal with these situations, conditional association axioms
(XOR and AND) were defined.

As discussed in the previous subsection, LINGO’s no-
tations have built-in axioms, called epistemological axi-
oms (EA), and ODEd is able to automatically capture
those axioms. For example, Whole-Part axiomatization
includes the following association axioms: irrreflexivity,
anti-symmetry and transitivity.

But besides the epistemological axioms, other axioms
can be used to represent knowledge. These axioms can be
of two types [2]: consolidation axioms (CA) and onto-
logical axioms (OA). The former aims to impose con-
straints that must be satisfied for a relation to be consis-
tently established. The latter intends to represent declara-
tive knowledge that is able to derive knowledge from the
factual knowledge represented in the ontology.

To deal with these kinds of axioms, ODEd allows the
ontology engineer to define his/hers own axiomatizations
and to apply them to relations in the ontology, in an ap-

proach similar to that presented in [21]. The core idea is
to use the axiom categorization to provide a compact,
intuitively and accessible representation to certain wide-
spread axiom types.

To support association axiomatization in ODEd, the
Pre-Condition Pattern defined in [14] was applied. This
pattern establishes that: ∀x:X, y:Y relation(x,y) → (pre-
Condition1) ∧ (preCondition 2) ∧ ... ∧ (preConditionN).
In other words, it guarantees the evaluation of each one
of the preconditions before a relation can be established.
This pattern uses the Template Method pattern [22],
where the template method is the method setRela-
tion() and the hook methods are those responsible for
evaluating the fulfillment of the preconditions.

In ODEd, the hook methods are the methods of the
classes representing the association axioms. They are
responsible for evaluating the fulfillment of the precondi-
tions of the corresponding association axioms. Thus, the
PreCondition Pattern applied in ODEd has the following
format: ∀x:X, y:Y relation(x,y) → (associationAxiom1) ∧
(associationAxiom2) ∧ ... ∧ (associationAxiomN).

5 Developing an Ontology of Software
Quality Using ODEd

To show how ODEd supports ontology development,
we use as an example the Software Quality Ontology
developed in [19]. Due to limitations of space, we present
only part of this ontology.

Following the ontology development process de-
scribed in section 3.1, the first step of the ontology de-
velopment is the purpose identification and requirement
specification. To support this activity (R1), ODEd allows
the user to define competency questions, as shown in
Figure 6. It should be pointed out that, in the current
version of ODEd, competency questions are written in
natural language (informal competency questions) and
are used only for documentation purposes.

Once the competency questions are defined, ontology
capture can begin. To support this activity, ODEd sup-
ports a graphical representation of the ontologies using
LINGO and UML (R2), as discussed in section 4.1. Fig-
ure 7 shows part of the Software Quality Ontology [19],
written in LINGO.

As stated by this ontology, a software quality charac-
teristic can be classified according to two criteria. The
first one indicates if a quality characteristic can be di-
rectly measured or not. A non-measurable quality char-
acteristic must be decomposed into sub-characteristics

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 9

(represented by the roles super and sub characteristic),
and its value is computed by the aggregation of their sub-
characteristic measures. A measurable quality character-
istic can be directly quantified applying some metric.
The second classification enforces that product quality
characteristics should only be used to evaluate software
artifacts and process quality characteristics are used to
evaluate software processes. Artifact is a concept im-
ported from the Software Process Ontology [2], which
were integrated with the software quality ontology been
presented.

Figure 6: Competency questions of the Quality Ontology.

Finally, the valuation relation indicates that a non-

measurable quality characteristic can be valued through
other measurable or non-measurable quality characteris-
tics.

Cardinalities are used to show how many instances of
a concept can participate in a relation. In Figure 7, cardi-
nality (1,n) in the relation quantification implies
that a measurable characteristic must be valued by, at
least, one metric: (∀qc) (mensqc(qc) → (∃m) (quantifi-
cation(qc,m)). Cardinality (1,1) still adds that a metric
evaluates only one measurable characteristic: (∀m, qc1,
qc2) (quantification(m,qc1) ∧ quantification(m,qc2) →
qc1 = qc2). Since cardinality (0,n) does not impose any
constraint, it is not represented.

Figure 8 shows the Software Quality ontology cap-
tured using UML. The same objects modeled in Figure 7
are presented here, but using a different graphical nota-
tion. A stereotyped class QualityCharacteristic,
for example, represents the QualityCharacteristic con-
cept. The relation relevance is presented as an associa-
tion.

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 10

Figure 7: LINGO’s Diagram of Software Quality Ontology.

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 11

Figure 8: Representing the Software Quality Ontology using UML.

Table 1 presents some axioms of the quality ontology,
indicating their type: epistemological axioms (EA), onto-
logical axioms (OA) or consolidation axioms (CA).

ID Axiom

EA
1

(∀ qc) (nmensqc(qc) → qchar(qc))

EA
2

(∀ qc) (mensqc(qc) → qchar(qc))

EA
3

(∀ qc) (prodqc(qc) → qchar(qc))

EA
4

(∀ qc) (procqc(qc) → qchar(qc))

EA
5

(∀ qc1, qc2) (subqc(qc1, qc2) → ¬ subqc(qc2 ,
qc1))

EA
6

 (∀ qc) (mensqc (qc) ↔ ¬ (∃ qc1) (subqc(qc1, qc)))

EA
7

(∀ qc1, qc2, qc3) (subqc(qc1, qc2) ∧ subqc(qc2,
qc3) → subqc(qc1 , qc3))

EA
8

(∀ qc1, qc2) (disjointed(qc1, qc2) ↔ ¬ (∃ qc3)
(subqc(qc3, qc1) ∧ subcarq(qc3, qc2)))

OA
1

(∀ qc, qc1) (valuation(qc, qc1) → ¬ valuation(qc1,
qc))

Table 1: Some axioms of the Software Quality Ontology.

Axioms (EA1) to (EA4) refer to the super-type rela-
tion among quality characteristics. The whole-part rela-
tion between quality characteristics imposes the con-
straints defined by axioms (EA5) to (EA8). The ontology
engineer does not need to write down these axioms, since
ODEd automatically captures them from the graphical
notation used.

The axiom (OA1) refers to the valuation relation. It
indicates that, if a quality characteristic qc1 is valuated
by a quality characteristic qc2, then qc2 cannot be valu-
ated by qc1. In other words, it means that the valuation
relation is anti-symmetric. So, the anti-symmetry associa-
tion axiom should be incorporated to its corresponding
association axiomatization. Figure 9 shows how associa-
tion axioms can be manually incorporated to an associa-
tion axiomatization in ODEd. This form allows the on-
tology engineer to associate axioms to a relation. In the
example shown, anti-symmetry is the only axiom that
composes the valuation’s axiomatization.

This is the way ODEd currently supports axiom defi-
nition (R3). Thus, other axioms that do not fit in the
axiom categorization defined cannot be captured. This
issue is now being studied, and preliminary results are
described in [23].

Figure 9: Defining Relation Axiomatization in ODEd.

ODEd also incorporates software agents that help the
ontology engineer during ontology development. These

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 12

agents were added to ODEd to alert the user about even-
tual structural modeling mistakes and to offer advices on
how to solve them according to the user's actions. For
example, if the ontology engineer also includes the sym-
metry axiom in the valuation’s axiomatization (presented
in Figure 9), the agent points that Symmetry and Anti-
Symmetry are opposite axioms and offers a suggestion to
solve the problem: remove one of them, as shown in
Figure 10.

Figure 10: The OntoBoy agent.

The main purposes of the software quality ontology
are: (i) to promote software quality knowledge integra-
tion in ODE, a software engineering environment, and
(ii) to support the development of quality management
tools for it [19]. Therefore, this ontology must be inte-
grated to the software process ontology [2] used to sup-
port ODE’s software process definition and project track-
ing.

ODEd supports ontology integration (R4) in a very
limited way: concepts from existing ontologies can be
imported to the current one. Also, if more than one con-
cept is imported and there are relations between them,
these relations are also imported to the ontology.

For example, in Figure 7, the Artifact concept was
imported from the software process ontology and a rela-
tion between Artifact and ProductQualityCharacteristic
was created (relevance).

If an imported concept or relation is removed from
the original ontology, it is automatically removed from
the ontology it was imported and no kind of notification
is sent to the ontology engineer. It means that if Artifact
is removed form the software process ontology, it will be
removed from the quality ontology, as well as the rele-

vance relation. In fact, in the current version, ODEd does
not treat ontology evolution nor check consistency
among imported concepts and existing concepts.

Finally, in its current version, ODEd does not support
ontology documentation (R6). Also ODEd’s support to
ontology evaluation (R5) is very weak, based on ontol-
ogy instantiation (R7), as discussed in section 8.

6 From Domain Ontologies to Objects

As pointed in section 3.2, for deriving object infra-
strucures from ontologies, Guizzardi et al. [14] defined a
set of mapping directives, design patterns and transfor-
mation rules. To deal with the requirement of generating
software assets from ontologies (R9), in its current ver-
sion, ODEd considers the mapping directives and some
design patterns. But, since ODEd does not yet completely
support axiom definition, except those described through
association axiomatization, the transformation rules are
not being treated. Following, we present how ODEd
generates a Java infrastructure from the software quality
ontology.

6.1 Mapping Directives

Figure 11 shows the object model derived from the
software quality ontology. Classes, like Quali-
tyCharacteristic and NonMeasurableChar-
acteristic, were derived from the corresponding
concepts. Also, associations, like quantification,
relevance, and valuation, were derived from the
corresponding relations. Properties of the concepts were
mapped as attributes of the corresponding classes, as it is
the case of the property name of the concept Quali-
tyCharacteristic, which was mapped as the attribute
name in the class QualityCharacteristic. For
each derived attribute, methods to get and set values are
created.

Still considering the mapping of relations, there are
other issues that must be discussed. First, since in an
ontology relations are bi-directional, the corresponding
associations must be navigable in both directions. Thus,
the associations are implemented as attributes, and there
are methods in both classes to return them. The returned
type of these methods depends directly on the cardinality
associated to the relation [14]. For instance, since in the
scope of the quantification relation a measurable charac-
teristic may be evaluated by several metrics, the method
quantification() in the class Measurable-
Characteristic returns a Set of Metrics. In the
class Metric, the return type of the quantifica-

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 13

tion()method is a MeasurableCharacteristic,
since a metric is associated with just one characteristic.

Unary relations are also mapped as associations, and

methods are also generated for each association end.
However, the name of these methods is, instead of the
relation’s name, the name of the roles played by the cor-
responding concepts.

Figure 11: Part of the Object Infrastructure for Software Quality generated by ODEd.

 Subtype-of relationships among concepts can be
directly mapped to inheritance among classes. So, axioms
(EA1) to (EA4) do not require any special treatment. In
our example, the subtype hierarchy of quality characteris-
tic gives rise to the following sub-classes: Proc-
essQualityCharacteristic, ProductQual-
ityCharacteristic, NonMeasurableChar-
acteristic and MeasurableCharacteristic.
The class that represents the super-type (Quali-
tyCharacteristic) is mapped to an abstract class.

6.2 Mapping Axioms

When considering axiom mapping to the correspond-
ing object infrastructure, we should discuss epistemologi-
cal axioms separately from the others.

As pointed above, subsumption relationships can be
directly mapped to class inheritance, and its axioms do

not require any special treatment.

This is not the case of whole-part relations. The un-
derlying axioms implied by the proposed notation are not
well mapped to aggregation in an object model, i.e.,
UML notation for aggregation does not guarantee the
fulfillment of the imposed constraints of whole-part rela-
tions. To deal with this problem, Guizzardi et al. [14]
proposed the Whole-Part Pattern, shown in Figure 12. In
this pattern, the Whole class is responsible for assuring
to an associated concrete class (class A in Figure 12) the
verification of the whole-part set of constraints before a
whole-part relation is established. The interfaces
IWhole and IPart must be implemented by the corre-
sponding concrete classes.

In the software quality domain infrastructure (Figure
11), the classes NonMeasurableCharacteristic
and QualityCharacteristic implement interfaces
IWhole and IPart, respectively. Likewise, they are

IPart
<<Interface>>

MeasurableQualityCharacteristic

setQuantification(obj : Metric)
getQuantification() : Set

Metric

setQuantification(obj : MeasurableQualityCharacteristic)
getQuantification() : MeasurableQualityCharacteristic

1

1..n

1

1..n
quantification

Whole

NonMeasurableQualityCharacteristic

setValuation(obj : Qual ityCharacteristic)
getValuation() : Set
setSubCharacteristic(obj : Qual ityCharacteristic)
getSubCharacteristic() : Set

QualityCharacteristic
name : String

setName(name : String)
getName() : String
setValuation(obj : NonMeasurableQualityCharacteristic)
getValuation() : Set
setSuperCharacteristic(obj : NonMeasurableQualityCharacteristic)
getSuperCharacteristic() : Set

0..n

1..n

0..n

1..n

valuation
0..n

1..n

+superCharacteristic
0..n

+subCharacteristic
1..n

Part

Arti fact
ProductQualityCharacteristic

setRelevance(obj : Artifact)
getRelevance() : Set

1..n 0..n1..n 0..nrelevance
ProcessQuali tyCharacteristic

IWhole
<<.Interface>>

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 14

related to the handlers Aggregation and Part, re-
spectively. As shown in the code fragment below, sub-
characteristics of a non-measurable characteristic is ac-
cessed through Aggregation. The inclusion of a new

sub-characteristic is made by including a new part in the
aggregation. Axioms (EA5) to (EA8) are checked when
the method setPart() is evoked.

<<SetElement>>

whole() : Whole

<<IWho le>>

part() : Part

<<IPart>>

Aggregat ion

specConstrain()
di sjointness()
setDisjoint()

Composit ion

specConstrain(IPart p) : boolean
exclusiviness(IPart p) : boolean

Whole

part : Set
whole : IWhole

specConstrain(IPart p) : boolean
ge tPart() : S et
setPart(IPart)
rem ove Part (IPa rt)

A

getB() : B
setB(IPart p)
removeB(IPart p)

Part

whole : Set

getWhole()
setWhole()
removeWhole()

B

getA() : A
setA(IWho le w)
removeA(IWhole w)

Figure 12: The Whole-Part pattern [14].

public class
NonMeasurableCharacteristic implements

IWhole
{
 Aggregation a = new Aggregation();

 public boolean setSubCharacteristic
 (QualityCharacteristic c)
 {
 return a.setPart(c);
 }

 public Set getSubCharacteristic ()
 {
 return a.part();
 }
}

As discussed in section 4, to support association

axiomatization in ODEd, the Pre-Condition Pattern [14]
was applied. So this pattern is used jointly with the
Whole-Part Pattern, and it required changes in the last
one. Instead of implementing the axioms of the whole-
part axiomatization, the Whole class is now related to
the corresponding association axioms that compose the
whole-part axiomatization, as shown in the code frag-
ment below. In this way, the setPart() method in the
Whole class evokes the association axiom classes (An-
tiSymmetry, Atomicity, Transitivity, and
AntiReflexivity) to check if the whole-part con-
straints hold.

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 15

public abstract class Whole
{
 IWhole whole;

Set part = new Set();
AntiSymmetry s = new AntiSymmetry();
Atomicity a = new Atomicity();
Transitivity t = new Transitivity();
AntiReflexivity r = new
 AntiReflexivity();
public boolean setPart(IPart c)
{
 boolean result = false;

if (specConstrain(c)) &&
 transitivity(this,c,“getPart”)&&

 anti_symmetry(this,c,“getPart”)&&
 anti_reflexivity(this,c,“getPart”)&&
 atomicity (this,c,“getPart”))

{
 result = true;

 part.add(c);
 (c.part()).setWhole(whole);

 }
 return result;
}

}

To deal with the axioms that are incorporated to asso-
ciation axiomatizations (like is the case of the valuation
relation shown in Figure 9), a similar approach to the
whole-part relation is used. Each class involved in a rela-
tion is associated with the association axiom classes that
compose the relation axiomatization. When an instance
of this relation is to be created, the axioms are checked.
The code fragment below shows this approach applied to
the valuation relation.

public abstract class
QualityCharacteristic implements
 IWhole {
 Set valuation = new Set();

AntiSymmetry s = new AntiSymmetry();

public Set getValuation()
{ return valuation; }

public boolean setValuation
 (NonMeasurableCharacteristic c)
{
 boolean result = false;

if s.anti_symmetry(this,
 c,“valuation”)
{

result = true;
valuation.add(c);
c.setValuation (this);

}
return result;

}
}

Since QualityCharacteristic partakes of the
valuation relation (that is anti-symmetric), it is re-
lated to the AntiSymmetry class through the attribute
s. Before setting a non-measurable characteristic as ca-
pable of valuating the current quality characteristic
(this), the valuation axiomatization should be
checked. To verify axiom (OA1), the method
s.anti_symmetry(this, c, “valuation”)
of the Anti-Symmetry class is executed. This method
evokes the getValuation() method from the non-
measurable characteristic c. If the current characteristic
(this) is not in the valuation list of c, then it does not
value c. Therefore, the axioms (OA1) holds and c can be
added to the valuation list of the current quality char-
acteristic.

7 Browsing Ontologies

To support domain investigation (R8), ODEd pro-
vides automatic generation of hypertexts based on the
ontologies designed. Using these hypertexts, developers
can browse and search the domain concepts, relations,
properties and constraints.

The language chosen to build these documents was
XML [24], because it allows defining the syntax of struc-
tured documents. Besides, XML schema and ontologies
have a common goal: to provide vocabulary and structure
for describing information to be exchanged (although
XML does not provide semantics for a domain conceptu-
alization, as ontologies do).

To generate the XML documents, a set of tags was
defined to represent the ODEd’s ontology description
model (concepts, properties, relations, and so on, as
shown in Figure 5). Ontologies were mapped to XML
files, marked with these tags. The code fragment below
presents the definition of the QualityCharacteristic con-
cept (<CONCEPT>) in a XML file. It is possible to see
its description (<DESCRIPTION>) and its properties
(<PROPERTY>). The tags <ISSUPERTYPEON/> and
<ISSUBTYPEON/> indicate, respectively, in which
hierarchies this concept is a super and a sub-type.

<CONCEPT oid="1859:8">
 <NAME>QualityCharacteristic</NAME>

 <DESCRIPTION>attributes of an artifact or
of a software process used to evaluate the
quality of a software product or process.

 </DESCRIPTION>
 <PROPERTY oid="1860:1">
 <NAME>name</NAME>
 <TYPE>String</TYPE>

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 16

 </PROPERTY>
 <ISSUPERTYPEON oid="1859:24"/>
 <ISSUBTYPEON oid="1859:25"/>
</CONCEPT>

All the elements that compose the document are iden-
tified by the property oid (object identifier) in the tags.
This identifier allows to associate elements inside the
XML document. The code below, for example, presents
the hierarchy (<HIERARCHY>) of the QualityCharacter-
istic concept. The tags <SUPERTYPE/> and
<SUBTYPE/> indicate, through the identifier oid, which
concepts are the super-type and the subtypes of the hier-
archy, respectively. In the example, the super-type of the
hierarchy is the concept which oid is equal to "1859:8"
(QualityCharacteristic).

<HIERARCHY oid="1859:24">
 <SUPERTYPE oid="1859:8"/>
 <SUBTYPE oid="1859:10"/>
 <SUBTYPE oid="1871:1"/>
</ HIERARCHY >

It should be noted, however, that XML only deals
with data and does not deal with visual presentation of
documents. To define the presentation format of XML
documents, style sheets are used. A style sheet allows to
indicate to the browser how the user wants to present the
content of the elements in the XML document. To pre-
sent XML documents, ODEd uses XSL (eXtensible Style
sheet Language) [25], a document transformation and
formatting language. In the editor, it was defined a style
sheet capable of presenting the documents that represent
the ontologies in the hypertext format. Thereby, the hy-
pertexts are presented to the user as HTML documents.

Figure 13 shows the hypertext derived from the soft-
ware quality ontology. It is possible to visualize all on-
tology’s concepts and relations and their definitions and
properties. From the valuation relation, for example, the
user can browse its concepts and visualize their defini-
tions.

Figure 13: Browsing the Software Quality Ontology.

8 Ontology Instantiation in ODEd

As discussed in section 4, instances of domain con-
cepts and relations can be used to support domain under-
standing in a DOSEE (R7). Moreover, specially when
relations are instantiated, it is possible to check if the
constraints imposed by the corresponding axiomatization
are the right ones. This is a way to partially evaluate an
ontology (R5), though limited.

To support ontology instantiation in ODEd, a set of
functionalities was developed, including functionalities to
create databases to store the instances, and forms to in-
stance data input. The object infrastructure derived from
the ontology (discussed in section 6) is also used, since
instances of concepts and relations are, in fact, instances
of the corresponding classes and associations in the ob-
ject infrastructure. So, the classes in the infrastructure
must have access to the database created to insert, re-
trieve, delete and update its instances. But those classes
should not have direct access to the database, because
this approach would decrease the object infrastructure
reuse potential. Thus classes providing the basic services
for storing and retrieving objects in the database are also
generated. These classes are called shadow classes [26]
and their purpose is to isolate the impacts of the technol-
ogy of data management on the object infrastructure.

Figure 14 shows the database schema generated by
ODEd to instantiate the Software Quality Ontology. For
each class in the object infrastructure derived from the
ontology (see Figure 11), a table is created. Since every
concept is described by name and description prop-
erties, a super-class Knowledge is created in the object
infrastructure, and all classes derived from the ontology’s
concepts inherit from it. In the database, there is a respec-
tive Knowledge table that maps this class. Every table
derived from a concept is related to the Knowledge
table to map this inheritance, except those that are de-
rived from subclasses in the infrastructure, which are
related to the tables that represent their super-types.

In the example shown in Figure 14, table Quali-
tyCharacteristic is related to table Knowledge,
since QualityCharacteristic class inherits from Knowl-
edge class. NonMeasurableQualityCharacter-

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 17

istic table, in turn, is related to table QualityChar-
acteristic, since NonMeasurableQuali-

tyCharacteristic class inherits from Quali-
tyCharacteristic class.

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 18

Figure 14: The database of the Quality Ontology.

When an instance of a concept, such as Metric, is
created, a register is inserted in the corresponding con-
cept’s table (Metric in the example). Also a register is
automatically inserted in the table Knowledge to store
the values of the properties name and description.

One-to-one (1:1) and one-to-many (1:N) binary rela-
tions are mapped as foreign keys. In table Metric, for
example, the foreign key oidMeasurableQuali-
tyCharacteristic links a metric to the quality char-
acteristic it quantifies.

Many-to-many (N:N) binary relations, relations with
arity bigger than two, and relations with properties are
mapped to associative tables, whose primary keys are the
identifiers of the classes involved in the relation. In the
relation valuation, for example, table valuation was
created with the following composed primary key: oid-
QualityCharacteristic plus oidNonMeasur-
ableQualityCharacteristic.

To treat whole-part relations, a unique table
WholePart was created. In this table the oid for each
instance that belongs to a whole-part relation is stored.
The identifiers oidWhole and oidPart represent,
respectively, the object whole and its part. For example,
to include a quality characteristic c1 as a sub-
characteristc of a non-measurable quality characteristic

c2, the register (oidC2, oidC1) is created in the table
WholePart.

As discussed early, the classes in the object infrastruc-
ture must have access to the database generated. To do
so, besides generating the database and the domain
classes in the object infrastructure, a persistence layer is
also automatically generated by ODEd.

For each concept or relation that has a domain class in
the object infrastructure, a shadow class is created in the
persistence layer. All the operations of the persistence
mechanism are encapsulated in the shadow classes. Each
one of those classes presents the necessary functionality
to implement the persistence of the objects, such as to
save, to remove or to update an object, and to retrieve a
group of objects. For example, a class QualityChar-
acteristicPers is created. It is responsible for ma-
nipulating, in the database, the objects of the class
QualityCharacteristic.

Relations that generate associative tables and do not
have their own shadow classes are handled by the
shadow classes of the concepts involved in the relation.
The relation valuation, for example, is manipulated by
the classes QualityCharacteristicPers and
NonMeasurableQualityCharacteristicPers.
Each one of these shadow classes has a method, as shown
below, to insert a register in the associative table

 valuation
oidQualityCharacteristic (FK)
oidNonMeasurableQualityCharacteristic (FK)

MeasurableQualityCharacteristic
oidQualityCharacteristic (FK)

NonMeasurableQualityCharacteristic
oidQualityCharacteristic (FK)

ProcessQualityCharacteristic
oidQualityCharacteristic (FK)

WholePart
oidWhole
oidPart

ProductQualityCharacteristic
oidQualityCharacteristic (FK)

Knowledge
oidKnowlegde

name
description

relevance
oidArtifact (FK)
oidProductQualityCharacteristic (FK)

QualityCharacteristic
oidKnowlegde (FK)

Artifac
oidKnowlegde (FK)

Metri
oidKnowlegde (FK)
oidMeasurableQualityCharacteristic (FK)

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 19

valuation.

public void insertValuation(String
 obj, String obj1)
{
 String sLocSQL;
 Statement oLocSt;
 try {
 sLocSQL = "INSERT INTO valuation
 (oidQualChar,oidNonMensQualChar)
 VALUES ('"+obj+"','"+obj1+"')";
 ...
 oLocSt.execute(sLocSQL);
 ...
 }
 catch (Exception e)
 { e.printStackTrace(); }
}

Before inserting a register in the table valuation,
it is necessary to check the theory of the relation valua-
tion. Thus, the QualityCharacteristic class is
associated to the QualityCharacteristicPers
class and the insertion method of the shadow class is
called by the method setValuation, which is respon-
sible for checking the valuation theory.

public abstract class
 QualityCharacteristic implements
 IWhole
{
 QualityCharacteristicPers pers = new

QualityCharacteristicPers();
 Set valuation = new Set();

AntiSymmetry s = new AntiSymmetry();

public Set getValuation()
{ return valuation; }

public boolean setValuation
 (NonMeasurableCharacteristic c)
{
 boolean result = false;

if s.anti_symmetry(this,
 c,“valuation”)
{

result = true;
valuation.add(c);
c.setValuation (this);

 pers.insertValuation
 (this.getOID,c.getOID);

}
return result;

}
}

Finally, to support instance data input, customized
forms are generated, based on the ontology contents, in

an approach similar to that implemented in Protégé-2000
[27]. All forms for concept instantiation have text fields
to input data concerning the properties name and descrip-
tion. If a concept has other properties, more complex
forms are generated, allowing data input for all proper-
ties. One-to-one (1:1) and one-to-many (1:N) binary
relations can also be instantiated when the concept is
instantiated, in an approach analogous to that applied to
properties.

Figure 15 shows the form for instantiating the Metric
concept. The instance created is named Test Re-
startability. Since Metric does not have other
properties than name and description, this form has only
the corresponding two text fields. To allow data input for
the quantification relation (a one-to-many (1:N)
relationship), there is a list that enables the user to choose
the measurable quality characteristic the metric quanti-
fies. In the example, the Test Restartability metric quanti-
fies the Testability quality characteristic.

Figure 15: Creating an instance of Metric.

For instantiating many-to-many (N:N) relationships,
the user should choose an instance of one of the concepts
involved in the relation. Then, he/she has to choose,
among the instances of the other concept, those that are
linked to the first.

Figure 16 presents the instantiation of the valuation
relation for the Maintainability instance. In the example,
Maintainability can be valuated by several quality char-
acteristics, such as Analysability and Testability. A list of
all quality characteristics already instantiated is exhibited
and the user should select those that valuate Maintain-
ability.

It could be pointed out, however, that before instanti-
ating a relation, its axiomatization must be checked. For
example, since Testability was defined as a quality char-
acteristic that valuates Maintainability in the previous
example, it should not be allowed to relate Maintainabil-

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 20

ity as a quality characteristic that valuates Testability,
because the relation valuation is anti-symmetrical.

Figure 16: Instantiation of the relation valuation.

9 Related Work

There are many ontology editors presented in the lit-
erature, such as Ontolingua Server, OntoEdit, OILEd,
JOE, Protége-2000 and WebODE.

Ontolingua Server [28] supports ontology develop-
ment and sharing. It provides access to a library of on-
tologies, and allows new ontologies to be created. Re-
motely distributed groups can use their web browsers to
browse, build and maintain ontologies stored in the
server.

OntoEdit [21] pursues an approach such that graphi-
cal means exploited for modeling of concepts and rela-
tions scale up to axiom specifications (using RDFS). The
core idea is to use an axiom categorization. This catego-
rization is centered around axiom semantic meaning
rather than syntactic representation.

OILEd [29] supports the construction of ontologies in
OIL. The editor allows defining concepts and relations
and also supports the definition of some pre-defined
axioms. OILEd has reasoning services that supports on-
tologies construction, integration and verification.

The Java Ontology Editor (JOE) [30] was developed
to help users build and browse ontologies. It enables
query formulation at several levels of abstraction. JOE

provides a graphical user interface for editing ontologies.
It uses Entity Relationship diagrams to represent them.

Protége-2000 [27] aims to support knowledge acqui-
sition, and to reach interoperability with other knowledge
representation systems. It has classes, instances of these
classes, slots representing attributes of classes and in-
stances, and facets expressing additional information
about slots. Protégé-2000 generates knowledge-
acquisition forms automatically based on the types of the
slots and restrictions on their values, allowing ontology
instantiation.

Ontobroker [31] provides languages to annotate web
documents with ontological information, to represent
ontologies, and to formulate queries. The tool set of On-
tobroker enables users to access information and knowl-
edge from the web and to infer new knowledge with an
inference engine.

WebODE [32] is a workbench for ontological engi-
neering that provides a scalable architecture for the de-
velopment of other ontology development tools and on-
tology-based applications. WebODE’s ontology editor
allows the collaborative edition of ontologies at knowl-
edge level, supporting the conceptualization phase of
METHONTOLOGY [33] and most of the activities of the
ontology’s life cycle (reengineering, conceptualization,
implementation, etc). It provides several services as on-
tology import/export, translation of ontologies, ontology

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 21

browser, inference engine and axiom generator. The
graphical user interface allows browsing all the relation-
ships defined on the ontology as well as graphical-
pruning these views with respect to selected types of
relationships. Mathematical properties such as reflexive,
symmetric, etc. and other user-defined properties can be
also attached to the "ad hoc" relationships.

All editors previously mentioned were developed to
support ontology design in the context of Semantic Web.
None of them was developed aiming to support a domain
engineering process. ODEd’s main purpose is to fill this
lacuna. Thus one striking feature of ODEd is to support
ontology-to-objects mapping.

Despite of being an important requirement for ontol-
ogy design, few ontology editors address adequately the
existence of graphical facilities for ontology capturing.
Most of them allow creating concept taxonomies and
some of them relations. Generally, no semantics is asso-
ciated with the meta-ontology that underlies the graphical
language used. JOE and WebODE, for example, use
some graphical language to represent ontologies. But the
first one uses Entity Relationship models, and the second
one does not define any special notation for the kinds of
relations supported by the editor. ODEd adopts LINGO, a
graphic language specially designed for ontology’s repre-
sentation. However, ODEd does not ignore the impor-
tance of other graphical languages available. Therefore it
also supports ontology capture using UML, but using
LINGO’s semantics.

Concerning constraints definition, a very interesting
initiative is the creation of axioms templates in OntoEdit
[21]. This approach was considered in ODEd in order to
facilitate axioms definition. But it is still necessary to
define how to represent other types of axioms as pro-
vided in WebODE [32].

Reasoning services are an important feature [30, 33]
because they can be used in ontology evaluation. Other
desirable services provided by some of these tools are the
support to the cooperative work and the automatic gen-
eration of ontology documentation in HTML [28, 30,
33]. This last feature is addressed by ODEd but no rea-
soning service is available.

Finally, in ontology instantiation, ODEd uses a simi-
lar approach to Protégé-2000 [27].

10 Conclusions and Future Work

In this paper, we presented ODEd, an ontology editor

that supports ontology development using graphical rep-
resentations, besides promoting automatic inclusion of
some classes of axioms and derivation of object infra-
structures from ontologies. ODEd was built to support an
ontology based approach for domain engineering in
ODE, a software engineering environment.

Table 2 summarizes how ODEd’s requirements (pre-
sented in section 4) were addressed in the current version.

Requirements ODEd Comment

R1 Competency question
definition

Limited Only informal
competency
questions

R2 Ontology capture using
graphical notation

Yes Using LINGO
and UML

R3 Axiom definition Partial Only certain
axiom types

R4 Ontology integration Limited Manual, with
no check

R5 Ontology evaluation Limited Through
ontology
instantiation

R6 Documentation of the
ontology development
process

No -

R7 Ontology instantiation Yes Java code
generation

R8 Domain investigation Yes XML and
hypertexts in
HTML

R9 Generating software as-
sets from ontologies

Yes Object infra-
structure in
Java

Table 2: Requirement support in ODEd..

Although most phases of ontology development proc-
ess are supported by ODEd, there are many aspects to be
improved.

First, ODEd should also support defining formal
competency questions. This feature is related to ontology
evaluation. Once competency questions could be for-
mally captured, they can be used to evaluate if the ontol-
ogy satisfies its requirements. To support these features,
reasoning services are necessary.

Second, in its current version, only certain types of
axioms can be captured in ODEd. Other axioms which do
not fit in these axiom categories are not treated. We are

Paula Gomes Mian Supporting Ontology Development with ODEd
And Ricardo de Almeida Falbo

 22

now working to improve this aspect [23]. In the new
approach, axioms can be defined in KIF [34], and
checked using the JTP (Java Theorem Prover) [35] infer-
ence engine. Since JTP reads DAML + OIL [36] sen-
tences, the ontologies are translated to this standard. This
way, ontology exchanging will be considered.

There are other aspects to be improved in ODEd. On-
tology integration, for instance, is limited, since ODEd
does not deal with inconsistencies among imported con-
cepts and existing concepts. Although ODEd supports
ontology capture using graphical notations, this process is
manual. ODEd does not offer any facility to support
automatic capture of ontology concepts and relations.

In spite of its limitations, ODEd is an important step
ahead towards domain orientation in software engineer-
ing environments. It supports an ontology-based domain
engineering process and can be used to support knowl-
edge reuse in a DOSEE.

11 Acknowledgments

The authors acknowledge CAPES and CNPq for the
financial support to this work.

References

[1] B. Chandrasekaran, J. R. Josephson, V.R. Ben-
jamins. What are Ontologies, and Why Do We
Need Them? IEEE Intelligent Systems, p. 20-25,
January/February 1999.

[2] R.A. Falbo, C.S. Menezes, A.R.C. Rocha. A
Systematic Approach for Building Ontologies. In
Proceedings of the 6th Ibero-American Confer-
ence on Artificial Intelligence, Lisbon, Portugal,
Lecture Notes in Computer Science, vol. 1484,
1998.

[3] O. Lassila, F. Van Harmelen, I. Horrocksm, J.
Hendler, D.L. Mcguinness. The Semantic Web
and its Languages. IEEE Intelligent Systems, p.
67-73, November/December 2000.

[4] R.A. Falbo, A.C.C. Natali, P.G. Mian, G. Ber-
tollo, F.B. Ruy. ODE: Ontology-based software
Development Environment. In Proceedings of
the IX Argentine Congress on Computer Science,
CACIC�2003, p. 1124 – 1135, La Plata, Argen-
tina, 2003.

[5] K.M. Oliveira, A.R.C. Rocha, G.H. Travassos,
C.S. Menezes. Using Domain Knowledge in

Software Engineering Environments. In Pro-
ceedings of the 11th International Conference on
Software Engineering and Knowledge Engineer-
ing, SEKE'99, Kaiserslautern, Germany, 1999.

[6] P.G. Mian, R.A. Falbo. Building Ontologies in a
Domain Oriented Software Development Envi-
ronment. In Proceedings of the IX Argentine
Congress on Computer Science, CACIC�2003, p.
930 – 941, La Plata, Argentina, 2003.

[7] R.A. Falbo, G. Guizzardi, K.C. Duarte. An On-
tological Approach to Domain Engineering. In
Proceedings of the 14th International Confer-
ence on Software Engineering and Knowledge
Engineering, SEKE'2002, p. 351- 358, Ischia,
Italy, 2002.

[8] M. Uschold, M. Gruninger. Ontologies: princi-
ples, methods and applications. In Knowledge
Engineering Review, vol. 11, no. 2, June 1996.

[9] N. Guarino. Understanding, building and using
ontologies. Int. Journal Human-Computer Stud-
ies, 46(2/3), February / March 1997.

[10] T.R. Gruber. Toward principles for the design of
ontologies used for knowledge sharing. Int.
Journal Human-Computer Studies, 43(5/6), p.
907-928, 1995.

[11] M. Gruninger, J. Lee, Ontology Applications
and Design, Communications of the ACM, Vol.
45, No. 2, p. 39-41, February 2002.

[12] N. Guarino. Formal Ontology and Information
Systems. In N. Guarino (Ed.), Formal Ontolo-
gies in Information Systems, IOS Press, 1998.

[13] R. Jasper, M. Uschold. A Framework for Under-
standing and Classifying Ontology Applications.
In Proc. of the 12th Workshop on Knowledge
Acquisition, Modeling and Management
(KAW�99), Alberta, Canada, 1999.

[14] G. Guizzardi, R.A. Falbo, J.G. Pereira Filho.
Using Objects and Patterns to Implement Do-
main Ontologies. Jornal of the Brazilian Com-
puter Society, vol. 8, no. 1, July 2002.

[15] M. Grüninger, M.S., Fox. Methodology for the
Design and Evaluation of Ontologies. Technical
Report, University of Toronto, 1995.

[16] G. Arango, R. Prieto-Diaz, Domain Analysis
Concepts and Research Directions, In Domain
Analysis and Software Systems Modeling, IEEE
Computer Society Press, 1991.

Paula Gomes Mian Supporting Ontology Development with ODEd
Ricardo de Almeida Falbo

 23

[17] W.N. Borst. Construction of Engineering On-
tologies for Knowledge Sharing and Reuse. PhD
Thesis, University of Twente, Enschede, The
Netherlands, 1997.

[18] S. Cranefield, M. Purvis. UML as an Ontology
Modelling Language, In Proceedings of the
IJCAI-99, Workshop on Intelligent Information,
16th International Joint Conference on AI,
Stockholm, Sweden, July 1999.

[19] R.A. Falbo, G. Guizzardi, K.C. Duarte, A.C.C.
Natali. Developing Software for and with Reuse:
An Ontological Approach, Proceedings of the
International Conference on Computer Science,
Software Engineering, Information Technology,
e-Business, and Applications - CSITeA'2002, p.
311 - 316, Foz do Iguazu, Brazil, June 2002.

[20] A. Evans, S. Kent. Core Meta-Modelling Se-
mantics of UML: the pUML Approach, In 2nd
International Conference on the Unified Model-
ing Language, Colorado, EUA, 1999.

[21] S. Staab, A. Maedche. Ontology Engineering
beyond the Modeling of Concepts and Relations.
In 14th European Conference on Artificial Intel-
ligence, Workshop on Applications of Ontologies
and Problem-Solving Methods, 2000.

[22] E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design patterns: elements of reusable object-
oriented software, Addison-Wesley, 1995.

[23] V.E.S. Souza, R.A.Falbo. Building Axioms and
Evaluating Ontologies in ODEd. In Proceedings
of the XVII Brazilian Symposium on Software
Engineering � X Tool Session, p.7-12, Manaus,
Brazil, October 2003 (in portuguese).

[24] T. Bray, J. Paoli, C.M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. W3C
Recommendation, 1998.

[25] A. Rabarijoana, R. Dieng, O. Corby. Exploita-
tion of XML for Corporate Knowledge Man-
agement. In Proceedings of 11th European
Workshop on Knowledge Acquisition, Modeling
and Management, EKAW�99, p. 373-378,
Dagstuhl Castle, Germany, 1999.

[26] E. Yourdon; Object-Oriented Systems Design:
an Integrated Approach, Yourdon Press Com-
puting Series, Prentice Hall, 1994.

[27] N.F. Noy, M. Sintek, S. Decker, M. Crubézy,
R.W. Fergerson, M.A. Musen. Creating Seman-
tic Web Contents with Protégé-2000, IEEE Intel-

ligent Systems, March/April 2001.

[28] A. Farquhar, R. Fikes, J. Rice. The Ontolingua
Server: a tool for collaborative ontology Con-
struction. Int. J. Human-Computer Studies, 46,
p. 707-727, Knowledge Systems Laboratory,
Stanford University. Stanford, CA, USA, 1997.

[29] S. Bechhofer, I. Horrocks, C. Goble, R. Stevens.
OilEd: a Reason-able Ontology Editor for the
Semantic Web. In Working Notes of the 14th
International Workshop on Description Logics
(DL-2001), p.1-9, Stanford, EUA, August 2001.

[30] K. Mahalingam, M.N. Huhns. A Tool for Orga-
nizing Web Information. IEEE Computer, p. 80-
83, June 1997.

[31] D. Fensel, S. Decker, M. Erdmann, R. Studer.
Ontobroker: Or How to Enable Intelligent Ac-
cess to the WWW. In Proceedings of the 11th
Banff Knowledge Acquisition for Knowledge-
Based System Workshop, Banff, Canada, April
1998.

[32] J.C. Arpírez, O. Corcho, M. Fernández-López,
A. Gómez-Pérez. WebODE: a Scalable Work-
bench for Ontological Engineering. Proceedings
of the First International Conference on Knowl-
edge Capture, K-CAP�01, Victoria, Canada,
2001.

[33] M. Fernandez, A. Gomez-Perez, N. Juristo,
METHONTOLOGY: From Ontological Art
Towards Ontological Engineering. In Proceed-
ings of the Workshop on Ontological Engineer-
ing. Spring Symposium Series. AAAI�97, Cali-
fornia, USA, 1997.

[34] M.E. Genesereth, R. Fikes. Knowledge Inter-
change Format, Version 3.0 Reference Manual.
Technical Report Logic-921, Computer Science
Department, Stanford University, 1992.

[35] F. Gleb, A General Interface for Interaction of
Special-Purpose Reasoners within a Modular
Reasoning System, In Question Answering Sys-
tems. AAAI Fall Symposium, p. 57-62, 1999.

[36] D. Connolly, F. van Harmelen, I. Horrocks, D.L.
McGuinness, P.F. Patel-Schneider, L.A. Stein,
DAML+OIL (March 2001) Reference Descrip-
tion, December 2001 (available at
http://www.w3.org/TR/daml+oil-reference).

