In this issue of the Brazilian Journal of Nephrology, Maximiano et al.1 in the paper intitled “Genetic atypical hemolytic uremic syndrome in children: a 20-year experience from a tertiary center” describe five pediatric patients with atypical Hemolytic Uremic Syndrome (aHUS) and positive genetic findings over a period of 20 years in Porto, Portugal. All of them had the first manifestation before 2 years of age and had complete remission with plasma exchange (n=4) or supportive measures (n=1). Two patients had frequent relapses, one of whom progressed to Chronic Kidney Disease (CKD) and hypertension.

The small number of patients is a common finding in studies of rare diseases and justifies the creation of regional, national, and even global registries. Although the paper focuses on pediatric cases, it is important to acknowledge that aHUS also debuts in the adult age2.

The first association between aHUS and the alternative complement defect was described in 19813 in siblings from consanguineous parents with aHUS and decreased blood levels of Complement Factor H (CFH). Two decades later, the team lead by T. Goodship4 revealed the association between aHUS and chromosome 1q32, which contains the genes for complement regulators. In the following years, defects in other components of complement regulators of the alternative pathway have been found (inactivating mutations in genes that encode complement regulating proteins such as \textit{CFH}, \textit{CFI}, and \textit{MCP} or gain-of-function mutations in genes that encode complement activating proteins such as \textit{C3} and \textit{CFB}). Factor H autoantibodies (FHAA) are also associated with aHUS, typically in children who are homozygous deleted for the \textit{CFHR1} gene, a member of the \textit{CFH} gene family. The frequency of this deletion allele varies across the globe from a high of over 50\% in Nigeria to very rare in South America and Japan. How deletion of \textit{CFHR1} leads to development of FHAA is complicated and may involve slight differences in structural conformation of Factor H related protein 1 and Factor H itself, as well as an individual's susceptibility to the development of autoantibodies in general5.

In the cohort described by Maximiano et al., two children presented with CFH variants. Other two patients had variants in the \textit{CFHR3}\textsubscript{1} and \textit{CFHR3} genes, which encode proteins related to Factor H and are usually considered Variants of Unknown Significance (VUS). Since 2015, determination of pathogenicity of identified variants follows the American College of Medical Genetics and Genomics (ACMG) guidelines6. Accurate classification is paramount to clinical care and remains one of the main challenges today. As such, testing is best done in laboratories with specialized expertise in complement genetics. Since this information is not available in the mentioned paper, we may infer from the genetic variants described in table 2 that only two patients had pathogenic variants in CFH, although in heterozygosis. Data from The Global aHUS Registry7 with more than 800 patients enrolled confirmed that adults have worse kidney outcome than children, as well as patients carrying CFH pathogenic variants.

Non-complement genes such as \textit{MMACHC} (methylmalonic aciduria cblC
Lessons from aHUS

Since this drug is not available worldwide, supportive measures and plasma therapy may be lifesaving, although less effective for kidney-saving.

It would be important to compare these outcomes with a broader population of patients with aHUS, and it has become clear that local and regional registries are key to shed light on the genetic background and outcomes of this disease. This paper brings a great contribution to still unsolved questions in aHUS: how can a precise diagnosis be made and how to best tailor the therapeutic approach.

Conflict of Interest

LMPP is a speaker for Alexion Brazil and scientific consultant for C3 glomerulopathy for Orphan DC.Brazil.

References

