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The loss of muscle mass in Chronic 
Kidney Disease (CKD) is considered 
an important complicating factor, 
contributing to a sedentary lifestyle and 
compromising cardiovascular health 
due to increased morbimortality.1 This 
is of great relevance because CKD is a 
serious public health problem. In Brazil, 
it is estimated that the prevalence and 
incidence of end-stage renal disease 
(ESRD) is 405 and 144 patients per one 
million inhabitants, respectively.2

Aging is associated with sarcopenia 
and increased CKD prevalence. It is 
important to emphasize that both 
sarcopenia as uremia are progressive 
diseases, which contribute to maximizing 
morbidity and raise healthcare costs. 
The term uremic sarcopenia seems more 
appropriate to describe the process 
of progressive and cumulative loss of 
muscle mass that occurs in CKD, thus 
becoming a priority therapeutic target 
towards prevention and treatment of 
muscle wasting in these patients.3

Sarcopenia occurs in all CKD 
stages and the more severe the loss 
of renal function, the greater the risk 
of sarcopenia. Foley et al.,4 assessed 
patients in the Third National Health 
and Nutrition Examination Survey 
(NHANES III), and they found an 
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Sarcopenia is a chronic condition 
associated with physiological aging 
process and is defined by the reduction 
of the mass, muscle strength and 
function. In Chronic Kidney Disease 
(CKD), sarcopenia is prevalent and is 
associated with increased morbidity 
and mortality and the occurrence 
of cardiovascular complications. 
By analyzing sarcopenia in patients 
with renal insufficiency, complex 
mechanisms that contribute to loss 
of muscle mass are highlighted, 
such as activation of mediators that 
stimulate the ubiquitin-proteasome 
system (SUP) ATP-dependent, 
inflammation, metabolic acidosis, 
angiotensin II and some hormonal 
factors. The therapeutic approach 
to sarcopenia in CKD includes 
exercises, correction of metabolic 
acidosis, hormone replacement 
therapy and insulin resistance. Thus, 
it is of paramount importance early 
recognition of sarcopenia in this 
population, in order to establish 
effective therapeutic interventions, 
thus avoiding the full range of 
complications associated with 
muscle wasting in CKD.
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association between sarcopenia and CKD stages, 
and such association was influenced by aging; 
low socioeconomic status; lack of physical 
activity; low carbohydrate, fat and protein intake; 
hypercalcemia, vitamin D deficiency; blood 
hypertension and insulin resistance.

Sarcopenia may bring about greater functional 
impairment for patients in the advanced stages of 
CKD, as proved by McIntery et al.,5 comparing 
CKD patients in stages 4 and 5 in hemodialysis 
(HD) and peritoneal dialysis (PD). Data showed a 
significant difference in the cross-sectional area of 
the examined muscles and in the functional capacity 
of patients in stages 4 and 5; however, there was no 
difference between patients in HD and PD, which 
shows that the dialysis modality may not have a 
different impact on sarcopenic patients.

Skeletal muscle abnormalities in CKD

Muscle weakness and fatigue are frequently 
reported by patients with CKD and there are several 
mechanisms responsible for these symptoms, such 
as hormonal imbalance, malnutrition, ATP and 
glycogen depletion, inadequate oxygen transport 
as a consequence of anemia, metabolic acidosis 
and electrolyte disorder, lifestyle changes, muscle 
wasting and weakness due to muscle fiber atrophy.3

The most common abnormality in muscle 
biopsies of uremic patients is type II muscle fiber 
atrophy, which have a smaller cross-sectional 
area, and muscle fiber grouping.6

Muscle protein loss mechanisms

Muscle wasting etiology in renal patients is 
multifactorial and similar to that of sarcopenia in 
general, involving hormonal and immunological 
causes; myocellular changes; inflammation; 
metabolic acidosis; protein intake reduction; 
physical inactivity; excess angiotensin II; 
abnormalities in insulin/IGF-1 signaling and 
in myostatin expression; and reduced function 
of satellite cells (Figure 1). Most of these 
mechanisms stimulate the ATP-dependent SUP 
pathway, which is recognized as one of the most 
important forms of muscle loss.7

Progenitor cells and satellite cells

After muscle injury, satellite cells are activated 
and express MyoD and myogenin transcription 
factors on their surfaces, which leads to 
myoblast formation and proliferation, and they 
differentiate to form new muscle fibers to repair 
the damaged muscle. In CKD, the function of 
satellite cells is impaired, producing low levels 
of myogenin and MyoD proteins, hampering 
muscle regeneration.8

Inflammation

In CKD there are high circulating levels of 
inflammatory markers such as C reactive 
protein (CRP), interleukin-6 (IL-6) and tumor 
necrosis factor alpha (TNF-α); and inflammation 
is a major cause of muscle wasting in this 
population.9 Several mechanisms may explain 
the role inflammation plays in this context, such 
as NFκβ path induction; inhibition of insulin-
induced protein synthesis, and changes in the 
insulin/IGF-1 pathway signaling. Inflammation 
also causes muscle loss through the activation of 
SUP.10

Atp-dependent ups

The ATP-dependent proteolysis via the ubiquitin-
-proteasome system (UPS) is characterized as the 
primary cause of muscle mass degradation in CKD. 
Inflammation and metabolic acidosis play key roles 
in UPS activation11 (Figure 2).

Inflammation activates UPS, which cleavages 
the 14-kD actin fragment - the hallmark of CKD-
related muscle proteolysis.12 The density of this actin 
fragment may serve as a marker to detect muscle 
loss in early stages.13

Metabolic acidosis - common in CKD patients, 
can also stimulate UPS, which causes amino acid 
oxidation in skeletal muscles.14

Metabolic acidosis

Metabolic acidosis stimulates the UPS pathway 
and causes muscle protein loss and calorie and 
protein loss (CPL) through protein degradation 
and protein synthesis reduction.15
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Changes in vitamin D
Suitable serum vitamin D levels are associated with 
the proliferation and differentiation of various 
cells including skeletal muscle cells.16 Vitamin 
D supplementation is associated with muscle 

function improvements, reduced falls, and it may 
impact muscle fiber composition and morphology 
in the elderly.17 CKD patients have more prolonged 
muscle contraction phases, regardless of calcium, 
phosphorus and PTH serum levels.18 These 

Figure 1. Uremic sarcopenia etiology. Drawing representing the etiological mechanisms of uremic sarcopenia.

Figure 2. ATP-dependent ubiquitin-proteasome system. The proteins that will be degraded are first ubiquitinated. The E1 enzyme activates 
ubiquitin, which is then transferred to one of E2 protein-carrier enzymes. An E3 enzyme catalyzes the transfer of ubiquitin to the protein 
substrate in an ATP-dependent reaction. This process is repeated, forming a chain of ubiquitin molecules. This chain is then recognized by the 
19S proteasome, which catalyzes the input of protein substrate in the 20S proteasome, and split into a peptide in the 26S proteasome. The 
peptides are degraded into amino acids, which will be used in the creation of cell proteins or released by the cells. ADP: Adenosine diphosphate; 
ATP: adenosine triphosphate.
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observations suggest a possible vitamin D role in 
patients with CKD.

Changes in angiotensin II
The renin-angiotensin system is activated in various 
catabolic conditions, including CKD, which leads 
to activation of caspase-3 in skeletal muscles, 
resulting in actin cleavage.19 Angiotensin II can 
increase muscle proteolysis by reducing circulating 
levels of IGF-1 and activating the TGF-β pathway, 
which is a major mechanism of muscle mass loss.20

Changes in appetite

Anorexia is a common and complex change in 
CKD. The main causes reported in the literature 
are disorders of hormones that act in the regulation 
of appetite, such as leptin and ghrelin, reduced 
ability to distinguish flavors, gastrointestinal 
symptoms associated with uremia, depression, 
hemodynamic instability resulting from exposure 
to antihypertensive agents or hemodialysis, and 
feeling of fullness during peritoneal dialysis.3

Changes in sex hormones

More than 60% of patients with advanced CKD 
have low serum levels of testosterone, which 
could contribute to muscle mass loss.21 Potential 
mechanisms by which low testosterone levels could 
lead to muscle catabolism include altered IGF-1 
signaling and an increase in myostatin levels.22

Women with CKD usually have oligomenorrhea 
and estrogen deficiency in the early stages of 
the disease, which could lead to reduced muscle 
strength.23

Changes in growth hormone

CKD is associated with GH resistance, being 
considered a potential cause of increased protein 
catabolism and skeletal muscle loss.24 This can 
be explained by an IGF-1 anabolic hormone 
resistance to protein turnover in skeletal muscle 
and reduction in IGF bioactivity in ESRD, 
which would lead to a reduction of free IGF-1 in 
proportion to the degree of kidney failure.25

Changes in insulin

CKD is associated with insulin resistance from 
the early stages of the disease, when glomerular 

filtration is still normal.26 Vitamin D deficiency 
and anemia may contribute to increased insulin 
resistance in these pacientes.27 Insulin resistance 
is also associated with muscle protein loss, 
mainly by means of the UPS pathway.28

Calorie and protein loss (CPL)
The cause of CPL in CKD is complex, including 
inflammation; diseases associated with increased 
catabolism, which may occur together with CKD; 
loss of nutrients through the dialysate, metabolic 
acidosis, insulin resistance, GH and IGF-1; 
hyperglucagonemia, hyperparathyroidism and 
blood loss in the hemodialysis machine, feces or 
blood drawing.29

In a recent consensus of the International Society 
of Renal Nutrition and Metabolism (ISRNM), the 
authors stressed that CKD-related malnutrition, 
lack of appetite and food restrictions, contribute 
to the etiology of CPL, but other highly prevalent 
factors are necessary for the complete syndrome 
to develop. These include uremia-induced 
alterations, such as increased energy expenditure, 
physical inactivity and frailty.30

Serum inflammatory markers such as CRP and 
IL-6 may be persistently high in the CPL process, but 
were not included as part of the diagnostic criteria of 
this syndrome. Other factors besides inflammation, 
seem to be crucial in the etiology of CPL. The loss 
of muscle mass constitutes the main criterion for 
CPL in CKD, contributing thus to the development 
of sarcopenia. Hypoalbuminemia, low BMI, low 
protein and low calorie diets are also involved.31

In Brazil, a study carried out by the Brazilian 
Society of Nephrology Nutrition Commission 
evaluated 2,622 patients with CKD and showed 
that 37.4% had serum levels consistent with 
hipoalbuminemia.32

In another Brazilian study, Piratelli & 
Telarolli Junior33 observed moderate or severe 
malnutrition ranging from 22 to 54% of 48 
patients from a dialysis center and, of those, 
29% had weight 75% below normal.

Araújo et al.34 performed a prospective study 
that followed 344 patients in HD for 10 years. 
The authors concluded that smaller middle arm 
circumference and low calorie intake at the start 
of dialysis were risk factors for mortality.
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Sleep and physical inactivity

CKD patients undergoing dialysis have a reduced 
level of physical activity, which may lead to 
loss of muscle proteins and muscle atrophy via 
a complex mechanism that includes physical 
inactivity and lack of training.35

Changes in myostatin and follistatin

Myostatin and follistatin are members of the TGF-β 
family. Myostatin expression is increased in uremic 
cachexia, representing a negative impact on skeletal 
muscle mass and growth, leading to muscle atrophy.3

Follistatin, a regulatory glycoprotein previously 
recognized as an FSH-suppressing protein, is a 
powerful myostatin antagonist, and experimental 
evidence suggests that its exacerbated expression 
induces a significant improvement in muscle 
mass.36,37 However; the mechanisms involved in 
the effects related to follistatin are still unknown. 
A study by Gilson et al.38 demonstrated that 
satellite cell proliferation contributed significantly 
to follistatin-induced muscle mass gain and 
probably to increased protein synthesis.

In a recent publication, Miyamoto et al.39 
reported that follistatin levels were not altered in 
patients with CKD, except in those very much 
wasted and with more inflammatory activity, and, in 
these patients, there was a negative association with 
muscle strength and bone mineral density. Strategies 
to increase muscle mass and strength by follistatin-
induced myostatin inhibition may represent a 
potential therapeutic approach in muscle atrophy 
that occurs in uremia, and in other conditions.

Potential therapeutic prevention and 
intervention for muscle loss

Strength exercises

Storer et al.40 reported that strength exercises 
performed on a cycle ergometer immediately 
before the start of hemodialysis, improved patients’ 
strength, fatigue and physical performance.

In a controlled, randomized study of 26 
patients in pre-dialysis, inflammatory markers 
(IL-6 and CRP) decreased after 12 weeks of 
training with strength exercises.41

These findings suggest beneficial effects of 
aerobic and resistance training on muscle mass 
in patients in pre-dialysis and dialysis.

Nutritional supplements

There is evidence that nutritional support can 
improve CPL in adults with ESRD.

Caglar et al.42 evaluated 55 patients with CPL 
in HD, who received conventional nutritional 
counselling for 3 months and, in the subsequent 6 
months, received a specific nutritional supplement 
for patients on dialysis three times a week, during 
hemodialysis. They reported a significant increase 
in serum albumin and prealbumin.

Some randomized studies using serum 
albumin levels as an endpoint showed significant 
improvements in hipoalbuminemia.43-51

In Brazil, Ripe et al.52 carried out a pilot study 
and reported that high levels of intradialytic 
protein supplementation was not associated with 
inflammation, but may have beneficial effects in 
HD.

Metabolic acidosis correction

Stein et al.53 evaluated the effects of correcting 
metabolic acidosis in patients on continuous 
outpatient peritoneal dialysis. Correction of acidosis 
led to about 2 kg of weight gain and evidence of 
increased muscle mass based on anthropometric 
measurements.

Testosterone

The weekly administration of 100 mg of nandrolone, 
for 24 weeks, increased the appendicular lean 
mass in about 2 fold.54 Additional information 
is necessary for testosterone replacement to be 
widely recommended, especially in women.

Insulin resistance correction

In animal models of CKD, there is a strong 
association between the altered signaling in the 
insulin/IGF-1 ratio and muscle loss.28 Thus, 
mechanisms that impair the insulin/IGF-1 ratio 
signaling should be identified in an attempt to 
develop treatment strategies.3

Sarcopenia and CKD
Some studies have addressed the issue sarcopenia 
and CKD in the world literature, as depicted on 
Table 1. However, there is still a gap concerning 
this issue, and further studies are needed for a better 
understanding of the pathophysiology, clinical 
implications, diagnosis and therapeutic approach.



J Bras Nefrol 2015;37(1):98-105

Sarcopenia and CKD

103

Conclusion

Uremic muscle loss is complex, progressive, and 
its pathogenesis is similar to sarcopenia. This 
devastating complication not only contributes 
to a sedentary lifestyle and poor quality of life, 
but also increases the incidence of cardiovascular 
complications, morbidity and mortality. CKD 
patients must undergo preventive measures and 
be assessed for the presence of sarcopenia at 
early stages, when the institution of therapeutic 
measures may be capable of reversing the process 
of muscle loss and thereby reduce the range 
of complications that can occur as a result of 
sarcopenia in renal patients.
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