

Acompanhamento de longa duração e mortalidade de pacientes com doenças da parede torácica

Joana Almeida Borges¹0, Cidália Rodrigues¹0, Fátima Fradinho¹0

AO EDITOR,

As doenças da parede torácica (DPT) caracterizam-se por diminuição da complacência da parede torácica e comprometimento da mecânica ventilatória, (1,2) levando à insuficiência respiratória hipercápnica crônica (IRHC). Pacientes com cifoescoliose e sequelas pós-tuberculose (STb) apresentam maior risco de IRHC, dependendo do grau de deformidade e da idade de início.(3) A apresentação clínica das DPT geralmente é inespecífica, com padrão pulmonar restritivo, e os distúrbios respiratórios do sono frequentemente ocorrem com a hipoventilação durante o sono precedendo a insuficiência respiratória diurna. (4)

A ventilação não invasiva (VNI) é comumente utilizada para tratar as DPT que resultam em IRHC combinada com sintomas de hipoventilação (fadiga, cefaleia matinal, hipersonolência, cansaço ou dispneia) ou com o desenvolvimento de complicações relacionadas. A VNI melhora os sintomas de hipoventilação, a gasometria arterial e os resultados dos testes de função pulmonar (TFP) e prolonga a sobrevida. (5-8) Dados sobre os benefícios da VNI de curta duração estão disponíveis principalmente em ensaios não controlados ou estudos com amostras maiores e mais consistentes de pacientes com distúrbios neuromusculares. Em uma meta-análise, nenhuma diferença significativa foi encontrada entre VNI ciclada a volume e ciclada a pressão em termos de sobrevida.(2) A oxigenoterapia de longa duração (OLD), isoladamente, se associou à pior sobrevida de pacientes com DPT em comparação com a VNI.(7,8)

A sobrevida esperada para pacientes com IRHC por cifoescoliose e STb é de 8 e 3 anos, respectivamente. Fatores como sexo feminino, menor idade, maior IMC, maior Pao₂ e menor Paco₂ parecem ser fatores prognósticos favoráveis independentes em pacientes com DPT tratados com VNI ou OLD.(9)

O presente estudo teve como objetivo caracterizar e avaliar a sobrevida de pacientes com DPT em acompanhamento, após iniciarem a VNI. O desfecho primário foi o tempo de sobrevida desde o início do tratamento com VNI.

Os autores realizaram uma análise descritiva retrospectiva envolvendo pacientes adultos com DPT em VNI domiciliar, acompanhados em um ambulatório de pneumologia entre janeiro de 2010 e janeiro de 2022.

Dados clínicos com informações sobre tratamento e mortalidade foram coletados dos prontuários dos pacientes. Resultados de TFP e polissonografia (no momento basal) e de gasometria arterial (no momento basal e durante o tratamento com VNI) também foram obtidos. As comorbidades foram classificadas por meio do Índice de Comorbidade de Charlson (ICC), que prevê mortalidade utilizando um escore que atribui pesos (1, 2, 3 ou 6) a cada condição que o paciente apresenta. (10)

A análise estatística foi realizada por meio do programa IBM SPSS Statistics, versão 28 (IBM Corporation, Armonk, NY, EUA). O nível de significância estatística adotado foi de p < 0,05. As variáveis categóricas e quantitativas foram descritas como frequência absoluta e relativa ou como média ± desvio-padrão. As comparações entre sobreviventes e não sobreviventes foram realizadas com testes t para amostras independentes para as variáveis contínuas e com testes do qui-quadrado para as variáveis categóricas. Para analisar a amostra total e comparar os sobreviventes de acordo com o diagnóstico, foram utilizados os testes de Mantel-Cox, Breslow e Tarone-Ware. O modelo de riscos proporcionais de Cox foi empregado para o ajuste das variáveis. A seleção das variáveis independentes para o modelo multivariado de Cox foi baseada na significância estatística e nas curvas que apresentaram riscos proporcionais na análise univariada.

Durante os 12 anos do período de estudo, 39 pacientes com DPT em VNI foram acompanhados. A média de idade foi de 60,2 ± 16,4 anos, com predomínio do sexo feminino (51,3%) e de não fumantes (82,1%). Nesta coorte de pacientes com DPT e IRHC, foram diagnosticadas cifoescoliose idiopática (em 66,7%) e anomalias adquiridas da caixa torácica, principalmente STb (em 33,3%). A média do ICC foi de $2,1 \pm 1,1$, considerando que as DPT são doenças pulmonares crônicas. Estatísticas descritivas resumidas e comparações entre sobreviventes e não sobreviventes são apresentadas na Tabela 1.

Padrão pulmonar restritivo e diagnóstico simultâneo de apneia obstrutiva do sono foram encontrados em 51,3% e 23,1% da amostra total, respectivamente. No momento basal (antes do tratamento com VNI), a gasometria arterial revelou IRHC ($Pao_2 = 61,1 \pm 9,7 \text{ mmHg}$; e $Paco_2$ = $59,5 \pm 13,0$ mmHg). Após o início da VNI, tanto a Pao₂ (aumento de 14,8 \pm 14,5 mmHg) quanto a Paco₂ (diminuição de 15,1 ± 11,7 mmHg) melhoraram.

A VNI foi iniciada na presença de sintomas de hipoventilação mais IRHC e na de insuficiência respiratória hipercápnica aguda em 53,8% e 46,2% da amostra, respectivamente. Pacientes com hipoventilação causada por outras doenças respiratórias foram excluídos do estudo. A maioria dos pacientes foi submetida ao modo de VNI direcionado à pressão (87,2%) e usou máscaras faciais (79,5%). A OLD foi utilizada simultaneamente com a VNI em 66,7% dos pacientes, com fluxo médio de 1.8 ± 0.8 L/min.

^{1.} Serviço de Pneumologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.

Tabela 1. Estatísticas descritivas e comparação entre sobreviventes e não sobreviventes.ª

Variáveis	Grupos		р	Total
	Sobreviventes	Não sobreviventes		
	(n = 21)	(n = 18)		(N = 39)
Dados demográficos				
Sexo feminino	9 (42,9)	11 (61,1)	0,26	20 (51,3)
Idade no início do acompanhamento, anos	58,3 ± 15,2	62,4 ± 17,8	0,22	$60,2 \pm 16,4$
Tabagismo				
Fumante	1 (4,8)	0 (0,0)	0,64	1 (2,6)
Ex-fumante	3 (14,3)	3 (16,7)		6 (15,4)
Nunca fumou	17 (81,0)	15 (83,3)		32 (82,1)
IMC, kg/m ²	25,4 ± 5,3	24,7 ± 6,1	0,35	25,1 ± 5,6
Diagnóstico				
Cifoescoliose	15 (71,4)	11 (61,1)	0,46	26 (66,7)
Sequelas da tuberculose	6 (28,6)	7 (38,9)		13 (33,3)
Comorbidade				
ICC	1,8 ± 0,9	2,5 ± 1,2	0,03	2,1 ± 1,1
TFP no momento basal				
Padrão normal	3 (14,3)	0 (0,0)	0,20	3 (7,7)
Padrão restritivo	11 (52,4)	9 (50,0)		20 (51,3)
Padrão misto	7 (33,3)	9 (50,0)		16 (41,0)
CVF, % do previsto	49,6 ± 18,1	38,0 ± 11,6	0,01	43,9 ± 16,2
VEF ₁ , % do previsto	43,4 ± 15,5	34,2 ± 10,9	0,02	38,9 ± 14,1
CPT, % do previsto	62,0 ± 18,1	$63,4 \pm 9,2$	0,43	62,6 ± 14,4
Plmáx, % do previsto	42,5 ± 16,5	39,0 ± 18,4	0,35	41,2 ± 16,7
Polissonografia no momento basal				
Índice de distúrbios respiratórios	19,9 ± 10,6	6,6 ± 1,6	0,01	16,9 ± 10,9
Saturação mínima, %	81,1 ± 6,8	81,2 ± 14,5	0,50	81,2 ± 9,8
Gasometria arterial				
Pao ₂ no momento basal, mmHg,	61,4 ± 10,6	$60,7 \pm 9,0$	0,41	61,1 ± 9,7
Pao ₂ após o início da VNI, mmHg	73,6 ± 12,7	69,9 ± 10,6	0,18	71,9 ± 11,7
Paco ₂ no momento basal, mmHg	$54,9 \pm 6,0$	74,1 ± 11,5	0,01	64,0 ± 13,2
Paco ₂ após o início da VNI, mmHg	$46,2 \pm 8,6$	$50,2 \pm 8,5$	0,08	$48,1 \pm 8,7$
VNI				
Idade no início, anos	62,5 ± 10,8	65,4 ± 17,5	0,27	63,8 ± 14,2
Sintomas no início				
Hipoventilação e hipercapnia crônica	10 (47,6)	11 (61,1)	0,40	21 (53,8)
IRHA	11 (52,4)	7 (38,9)		18 (46,2)
Modo direcionado à pressão	19 (90,5)	15 (83,3)	0,65	34 (87,2)
Máscara facial	16 (76,2)	15 (83,3)	0,70	31 (79,5)
Máscara nasal	5 (23,8)	3 (16,7)		8 (20,5)
OLD + VNI				
OLD	12 (57,1)	14 (77,8)	0,17	26 (66,7)
Fluxo, L/min	1,8 ± 0,6	$1,7 \pm 0,9$	0,35	$1,8 \pm 0,8$

ICC: Índice de Comorbidade de Charlson; TFP: teste de função pulmonar; VNI: ventilação não invasiva; IRHA: insuficiência respiratória hipercápnica aguda; e OLD: oxigenoterapia de longa duração. ^aValores expressos em n (%) ou média ± dp.

Em nossa amostra, as taxas de mortalidade em 12 e 5 anos foram de 46% e 15%, respectivamente. As taxas de mortalidade foram maiores nos pacientes com STb do que naqueles com cifoescoliose (54% vs. 42%). A mediana de sobrevida desde o início da VNI foi de 146,0 \pm 19,4 meses, não havendo diferenças entre os grupos de diagnóstico.

Os não sobreviventes apresentaram mais comorbidades, menor CVF e ${\rm VEF}_1$ em % dos valores previstos, menor índice de distúrbios respiratórios e

maior Paco₂ no momento basal do que os sobreviventes. Pacientes mais velhos e do sexo feminino em uso de OLD apresentaram tendência a maior mortalidade, mas a diferença não foi estatisticamente significativa.

A análise univariada de Cox identificou as seguintes variáveis como preditores significativos de mortalidade: ICC (hazard ratio [HR] = 1,70; p = 0,02), Pao_2 após o início da VNI (HR = 0,95; p = 0,05) e $Paco_2$ no momento basal (HR = 1,03; p = 0,01). Não foram encontradas diferenças significativas em relação a

variáveis demográficas, diagnóstico, resultados de TFP, resultados de polissonografia, modo de VNI, uso de máscara e uso de OLD. Na análise multivariada de Cox, menor Pao₂ após o início da VNI (HR = 0,93; p = 0,01) e maior Paco₂ no momento basal (HR = 1,07; p = 0,01) se associaram à mortalidade.

Este estudo retrospectivo ajuda a apoiar os benefícios da VNI de longa duração na morbidade e mortalidade em pacientes com DPT. Este estudo mostrou uma mediana de sobrevida de 12 e 13 anos, respectivamente, para pacientes com cifoescoliose e STb tratados com VNI; portanto, a sobrevida foi estendida em 4 e 10 anos, respectivamente, em comparação com evidências anteriores.⁽⁹⁾

Alguns dos potenciais pontos fortes do desenho deste estudo foram a homogeneidade da coorte e o longo período de acompanhamento. Até onde sabemos, esta é a maior coorte de pacientes com DPT em VNI relatada por um centro português. Este estudo apresenta limitações, como o pequeno tamanho da

amostra, e os efeitos da VNI na qualidade de vida e na função pulmonar não foram avaliados. Os dados aqui apresentados refletem a experiência clínica de uma única instituição e podem não ser totalmente representativos de instituições de outros locais.

Em conclusão, os achados do presente estudo sugerem que pacientes com DPT em VNI podem ter o risco de mortalidade reduzido, o que pode ser previsto com base na Paco₂ no momento do diagnóstico e na Pao₂ após o início da VNI.

CONTRIBUIÇÕES DOS AUTORES

JAB: concepção e desenho do estudo; coleta de dados; análise estatística; redação e revisão do manuscrito. CR e FF: revisão crítica do manuscrito. Todos os autores aprovaram a versão final do manuscrito.

CONFLITOS DE INTERESSE

Nenhum declarado.

REFERÊNCIAS

- Duiverman ML, Wijkstra PJ. Chronic NIV in chest wall disorders. In: Simonds AK, editor. ERS Practical Handbook Noninvasive Ventilation. Sheffield, UK: European Respiratory Society; 2015. p.182-189.
- Annane D, Orlikowski D, Chevret S. Nocturnal mechanical ventilation for chronic hypoventilation in patients with neuromuscular and chest wall disorders. Cochrane Database Syst Rev. 2014;2014(12):CD001941. https://doi.org/10.1002/14651858. CD001941.pub3
- Casas A, Pavía J, Maldonado D. Respiratory muscle disorders in chest wall diseases [Article in Spanish]. Arch Bronconeumol. 2003;39(8):361-366. https://doi.org/10.1016/S0300-2896(03)75404-0
- Hilbert J. Sleep-Disordered Breathing in Neuromuscular and Chest Wall Diseases. Clin Chest Med. 2018;39(2):309-324. https://doi. org/10.1016/j.ccm.2018.01.009
- Clinical indications for noninvasive positive pressure ventilation in chronic respiratory failure due to restrictive lung disease, COPD, and nocturnal hypoventilation—a consensus conference report. Chest. 1999;116(2):521-534. https://doi.org/10.1378/chest.116.2.521
- 6. McKim DA, Road J, Avendano M, Abdool S, Cote F, Duguid N, et

- al. Home mechanical ventilation: a Canadian Thoracic Society clinical practice guideline. Can Respir J. 2011;18(4):197-215. https://doi.org/10.1155/2011/139769
- Gustafson T, Franklin KA, Midgren B, Pehrsson K, Ranstam J, Ström K. Survival of patients with kyphoscoliosis receiving mechanical ventilation or oxygen at home. Chest. 2006;130(6):1828-1833. https://doi.org/10.1378/chest.130.6.1828
- Buyse B, Meersseman W, Demedts M. Treatment of chronic respiratory failure in kyphoscoliosis: oxygen or ventilation?. Eur Respir J. 2003;22(3):525-528. https://doi.org/10.1183/09031936.03. 00076103
- Chailleux E, Fauroux B, Binet F, Dautzenberg B, Polu JM. Predictors
 of survival in patients receiving domiciliary oxygen therapy or
 mechanical ventilation. A 10-year analysis of ANTADIR Observatory.
 Chest. 1996;109(3):741-749. https://doi.org/10.1378/chest.109.3.741
- Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-383. https://doi.org/10.1016/0021-9681(87)90171-8