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Geometrically Non-Linear Analysis of 
Inclined Elastic Rods Subjected to 
Self-Weight 
The behavior of inclined slender elastic rods subjected to axial forces and distributed 
load is discussed in this paper. Mathematical models and numerical solutions are 
developed for small and large displacements. A double-hinged boundary condition is 
assumed and the analysis is carried out for different values of non-dimensional weight 
(distributed load) and angle of inclination. The mathematical formulation results from 
considering geometrical compatibility, equilibrium of forces and moments and 
constitutive relations. For large displacements, a set of six first order non-linear 
ordinary differential equations with boundary conditions prescribed at both ends is 
obtained. This two-point boundary value problem is numerically integrated using a 
three-parameter shooting method. When small displacements are assumed the problem 
simplifies and a power series solution may be conveniently employed. The results for 
both simulations are presented, compared and discussed. 
Keywords: elastic rods, inclined rods, non-linear analysis 
 
 
 
 

Introduction1 

The subject of buckling, post-buckling and large deflection 
analyses of slender rods has experienced significant evolution since 
the early classical contributions from Bernoulli, Euler and Lagrange 
in the 18th century, see Love (1944). This class of problem may 
exhibit complex phenomena such as limit load, bifurcation, jump 
and hysteresis, depending on the non-linear nature of geometrical, 
physical or load assumptions. 

The buckling and post-buckling behavior of weightless rods 
have been addressed, for instance, by Gurfinkel (1965), Wang 
(1997), Tan and Witz (1995), Lee and Oh (2000) and Vaz and Silva 
(2002). The use of long submersed columns such as marine risers 
and drill-strings in the offshore oil&gas industry motivated the study 
of buckling and initial post-buckling of vertical rods subjected to 
variable axial forces resulting from self-weight. In Lubinski (1950), 
Huang and Dareing (1966, 1968 and 1969), Plunkett (1967), Wang 
(1983), Bernitsas and Kokkinis (1983a-b and 1984a-b), Kokkinis 
and Bernitsas (1985 and 1987), Vaz and Patel (1995), Patel and Vaz 
(1996), Jurjo et al. (2001), Vaz and Mascaro (2005) the rod 
buckling, initial post-buckling and post-buckling solutions are 
developed. 

In some potential applications a heavy slender structure may be 
supported at its extremities, such as in the areas of drill string 
mechanics and flexible pipe jumper configuration; for instance, 
Sampaio Jr and Hundhausen (1998) employed an energy method to 
derive the governing equations and generalized hypergeometric 
functions to solve the small displacement problem of inclined beam-
columns. In this situation the gravitational field not only imposes a 
variable axial force (problem is no longer symmetrical), but it also 
imparts to the rod a lateral distributed load. In this paper a large 
displacement formulation is developed (hence the geometrical non-
linear nature of the problem is captured), a numerical solution is 
obtained and results are compared. 

Nomenclature 

L = beam length, m 
P = longitudinal load, N 
H = lateral Load, N 
E = Young’s modulus, N/m2 
I = second moment of cross-sectional area, m4  
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S = rod arc-length 
K = curvature 
M = bending moment, N.m 
X1 = top end X- Coordinate, 
s = non-dimensional S 
y = non-dimensional Y 
x = non-dimensional X 
p = non-dimensional P 
h = non-dimensional H 
x1 = non-dimensional X1 

Greek Symbols 

ρ  = self-weight per unit length, N/m 

β  = inclinationt to the horizontal axis, deg 

∆  = axial displacement, m 
θ  = angle between the tangent and the X-axis, deg 
κ  = non-dimensional K 
ρ  = non-dimensional ρ  

δ  = non-dimensional ∆  

Subscripts 

0 = relative to top end X-coordinate 
1 = relative to lower end X-coordinate 
max = relative to maximum 

The Mathematical Model 

Consider an inextensible slender uniform rod with length L  and 
self-weight (per unit length) ρ  supported by two points at an 

inclination β  with respect to the horizontal axis, as shown in Fig. 
1(a). When the rod is inclined the self-weight simultaneously 
modifies the distribution of longitudinal and lateral loads, 
respectively given by P and H. In addition, a pure bending 
formulation is assumed and the material is linear elastic so the 
bending stiffness is given by EI, where E is the Young’s Modulus 
and I  is the second moment of cross-sectional area. The problem 
can be load or displacement controlled, so let ∆  be the axial 
displacement of the upper end as shown in Fig. 1(a). 
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Figure 1(a). Schematic of an inclined deflected vertical rod subjected to 
self-weight. 
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Figure 1(b). Infinitesimal element of rod. 

Geometrical equations 

Geometrical restrictions are obtained from trigonometric 
relations applied to an infinitesimal rod element (see Fig. 1(b)): 

 

 θcos=
dS

dX
                                                                          (1a) 

 

θsin=
dS

dY
                                                                          (1b) 

 
Where S is the rod arc-length ( L≤S≤0 ), ( )Y,X  are the 

Cartesian coordinates of the deflected rod and θ  is the angle 
between the tangent and the X -axis. Furthermore, the curvature Κ  
may be defined by: 

 

dS

dθ=Κ                                                                                 (1c) 

Equilibrium of forces and moments 

A schematic of the internal forces and moments in the rod 
infinitesimal element is shown in Fig. 1(b). The equilibrium of 
longitudinal and lateral forces and bending moments respectively 
yields: 

 

βρ sin-=
dS

dP
                                                                    (2a) 

 

 βρ cos=
dS

dH
                                                                    (2b) 

 

where M  is the bending moment. 

Constitutive relations 

Assuming linear elastic, homogeneous and isotropic materials, 
and considering the state of pure (Euler-Bernoulli) bending results in: 

 
Κ= EIM                                                                               (3) 

 
Therefore, substituting Eq. (3) into (2c) results: 
 

( )θθ sin-cos
1

PH
EIdS

d =Κ
                                           (4) 

Boundary conditions 

A set of six boundary conditions must be defined and for the 
double-hinged rod they may be specified as: 
 

0)()()()0()0()0( 1 ===−=== LKLYXLXKYX        (5) 

 
where 

1X  is the top end X-coordinate ( ∆−= LX 1 ). The influence 

of the boundary conditions on the rod response is obviously 
significant, but it can be easily approached with the same 
methodology presented here. 

The governing equations 

It is clearly advantageous to reduce the set of differential Eqs. 
(1a)-(1c), (2a)-(2b) and (4) to a non-dimensional form using the 
following change of variables: sLS= , yLY = , xLX = , Lκ=Κ , 

3LEIρ=ρ , 2LEIpP=  and 2LEIhH = , where 1≤s≤0 . Hence: 

 

θcos=
ds

dx
                                                                         (6a) 

 

θsin=
ds

dy
                                                                         (6b) 

 

κθ =
ds

d
                                                                                (6c) 

 

βρ sin-=
ds

dp
                                                                 (6d) 

 

 βρ cos=
ds

dh
                                                                  (6e) 

 

θθκ
cossin- hp

ds

d +=                                               (6f) 

 
where )y,x(  constitute the deflected rod non-dimensional Cartesian 
coordinates, s  the non-dimensional arc-length, κ  the non-
dimensional curvature, θ  the angle formed by the curve tangent and 
the longitudinal axis, p  and h  respectively the non-dimensional 

longitudinal and lateral loads and ρ  the non-dimensional 

β 

ρ 
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distributed weight. Furthermore, the boundary conditions are also 
made non-dimensional: 

 
 0)1()1()1()0()0()0( 1 ===−=== kyxkkyx             (7) 

 
where δ−= 1x

1
 ( L∆=δ ). Equation (7) represents non-movable 

and movable hinged conditions respectively at the lower ( 0s = ) and 
upper ( 1s = ) ends. Two parameters control the problem, β  and ρ . 

The Solution for Large Displacements 

As the set of six first order non-linear ordinary differential 
equations and its boundary conditions constitute a two-point boundary 
value problem, a classical shooting technique may be employed to 
transform it into an initial value problem, hence allowing a direct 
integration scheme. Three boundary conditions are given at the end, 
i.e., ( ) 0)0()0(y0x =κ==  and 0)1()1(yx)1(x

1
=κ==− , so the 

missing initial values ( )0h , ( )0θ  and ( )0p  need to be found. The 
software Mathcad offers a simple procedure to compute the initial 
missing values. This procedure may be summarized with the 
following main steps: (a) the set of differential equations is 
defined (i.e., equations (6a)-(6f)); (b) the initial missing values are 
guessed (i.e., values for ( )0h , ( )0θ  and ( )0p ); (c) the boundary 

value endpoints are specified (i.e., 0)1()1(yx)1(x
1

=κ==− ); (d) 

a load function which returns the initial condition is defined; (e) a 
score function to measure the distance between terminal and 
desired conditions is employed; (f) the equivalent initial 
conditions are calculated (i.e., the values for ( )0h , ( )0θ  and ( )0p ). 
From this point, a Runge-Kutta high order solution algorithm is 
applied to solve the set of non-linear ordinary differential 
equations. Given the highly non-linear nature of the problem 
adequate convergence may be achieved through successive 
approximations. If the self-weight is disregarded a closed-form 
analytical solution via elliptical integrals may be obtained. 

The Solution for Small Displacements 

When small displacements are assumed, dsdx ≅ , ( ) θ≅θsin  

and ( ) 1cos ≅θ , a simplified differential governing equation is 
obtained: 

 

( )[ ] ( ) 003

3

cossin- hx
dx

dy
xp

dx

yd +=+ βρβρ         (8) 

 
where 

0
p  and 

0
h  are respectively the longitudinal and lateral loads 

at 0x =  and ρβ,  and 
0

p  are known. A solution for Eq. (8) may be 

obtained via Maclaurin series, yielding: 
 

( ) ( ) ( ) ( ) 0021)( CxVhxUCxTCxSxy ++++=         (9) 

 
where 

0210
h,C,C,C  are constants and ( ) ( ) ( ) ( )xV,xU,xT,xS  are 

series functions given by: 
 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ...)sin72sin1512(
362880

...)sin4sin144sin2016(
120960

...)sin2016sin15120sin81(
362880

...)504sin1015120(
362880

cos

3
0

65
0

3
3

72
0

5
0

3
2

5
0

372
0

2
0

5
0

4

+++−−=

++−=

−+=

+++−
−

=

pxxpx
x

xV

xpxpx
x

xU

xpxxp
x

xT

xpxp
x

xS

βρβρ

βρβρβρ

βρβρβρ

βρβρ

                             (10) 
 

When the boundary conditions 0)1(dxyd)1(y)0(dxyd)0(y 2222 ====  

are applied to Eq. (9), the following linear problem may be written: 
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(11) 

 
where the functions ( ) ( ) ( ) ( )xW,xR,xQ,xP  are respectively the 

second differentiation of ( ) ( ) ( ) ( )xV,xU,xT,xS . The number of 
terms required for adequate convergence depends on the values of 
β  and ρ . Once 

0210
h,C,C,C  are calculated the angle, curvature 

and forces distributions may be readily obtained. 

Analysis of Results 

A comparative study is carried out for power series (small 
displacements) and numerical (large displacements) solutions for 
several values of inclination ( 90,5.67,45,5.22,0=β deg) and non-

dimensional rod self-weight (ρ  = 35,100). Figures 2 and 3, 

respectively, show the large displacement configuration for ρ  = 35 
and 100. In both figures the geometrical configuration is plotted for 

0.1,8.0,6.0,4.0,2.0,0=δ . For horizontal rods ( 0=β ) the solution 

is, as expected, symmetrical. However, when the inclination 
increases the lateral displacement becomes more asymmetric. The 
heavier and more inclined rod (i.e., ρ  = 100 and deg90=β ) 

exhibits a more pronounced lower bulge as the lower and upper ends 
are respectively under compression and tension. 
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Figure 2(a). Configuration for ρ = 35 , 0β = 0 . 
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Figure 2(b). Configuration for ρ = 35 , 0β = 22.5 . 
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Figure 2(c). Configuration for ρ = 35 , 0β = 45 . 
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Figure 2(d). Configuration for ρ = 35 , 0β = 67.5 . 
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Figure 2(e). Configuration for ρ = 35 , 0β = 90 . 
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Figure 3(a). Configuration for ρ = 100 , 0β = 0 . 
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Figure 3(b). Configuration for ρ = 100 , 0β = 22.5 . 
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Figure 3(c). Configuration for ρ = 100 , 0β = 45 . 
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Figure 3(d). Configuration for ρ = 100 , 0β = 67.5 . 
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Figure 3(e). Configuration for ρ = 100 , 0β = 90 . 

 
Figures 4 and 5 show the values of the non-dimensional variables 

0
h , δ , 

0
p , 

0
θ  and 

max
y  (maximum lateral deflection) when small 

and large displacements are considered, respectively for 35=ρ and 
100. The comparison between results for small and large displacement 
formulations indicates when geometrical non-linear effects take place 
and must be included for a correct response characterization. 

In Figs. 4(a) and 5(a) it is seen that h0 is constant for 0=β  and 

varies more intensively for deg90=β . Observe that negative 

values for 
0

p  in Figs. 4(b) and 5(b) indicate tensile forces. The 

change in behavior from a laterally and axially loaded rod to post-
buckling phenomenon is evidenced in Figs. 4(c)-(d) and 5(c)-(d) by 
comparing results for deg90=β  and deg90<β . 
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Figure 4(a). δ δ δ δ versus h0 for ρ = 35 . 
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Figure 4(b). δδδδ versus p

0
 for ρ = 35 . 

 

-20 -15 -10 -5 0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

θ 0

p
0

0
22.5

45 67.5 90

 Non-linear
 Linear

β(deg)

 
Figure 4(c). θθθθ

0
 versus p

0
 for ρ = 35 . 
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Figure 4(d). y

max
 versus p

0
 for ρ = 35 . 

-50 -40 -30 -20 -10 0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 Non-linear
 Linear

δ

h
0

90
67.5

45

22.5

0

β(deg)

 
Figure 5(a). δδδδ versus h0 for ρ = 100 . 
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Figure 5(b). δδδδ versus p

0
 for ρ = 100 . 
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Figure 5(c). θθθθ

0
 versus p

0
 for ρ = 100 . 
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Figure 5(d). y

max
 versus p

0
 for ρ = 100 . 

Conclusions 

This paper presents formulation and solution for inclined elastic 
rods subjected to terminal forces and a gravitational field. The rod is 
assumed hinged at both ends. An analytical (power series) solution 
is obtained when small deflections are considered and the problem 
is geometrically linear. The large deflection non-linear analysis is 
obtained from solving a complex two-point boundary value problem 
governed by a set of six first order non-linear ordinary differential 
equations. As expected the numerical and analytical solutions are in 
good agreement when displacements are kept small, once the 
geometrical non-linearities do not significantly influence the results. 
In addition, the results evidence a change in the response behavior 
as the rod becomes vertical and a post-buckling instability 
phenomenon takes place. The boundary conditions affect the rod 
response and it can be readily calculated with the methodologies 
developed here. 
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