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Geometrically Non-Linear Analysis of
Inclined Elastic Rods Subjected to
Self-Weight

The behavior of inclined slender elastic rods saotgd to axial forces and distributed
load is discussed in this paper. Mathematical medahd numerical solutions are
developed for small and large displacements. A #sbmged boundary condition is
assumed and the analysis is carried out for difiénealues of non-dimensional weight
(distributed load) and angle of inclination. The timamatical formulation results from
considering geometrical compatibility, equilibriurof forces and moments and
constitutive relations. For large displacements,sat of six first order non-linear
ordinary differential equations with boundary cotidins prescribed at both ends is
obtained. This two-point boundary value problemnismerically integrated using a
three-parameter shooting method. When small digpfents are assumed the problem
simplifies and a power series solution may be corergly employed. The results for

both simulations are presented, compared and dssmlis
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I ntroduction

The subject of buckling, post-buckling and largelattion
analyses of slender rods has experienced signif@asiution since
the early classical contributions from Bernoullyl& and Lagrange
in the 18th century, see Love (1944). This clasprablem may
exhibit complex phenomena such as limit load, leéition, jump
and hysteresis, depending on the non-linear natfigeometrical,
physical or load assumptions.

The buckling and post-buckling behavior of weigbslerods
have been addressed, for instance, by Gurfinkebg)},9Wang
(1997), Tan and Witz (1995), Lee and Oh (2000) ad and Silva
(2002). The use of long submersed columns suchamenrisers
and drill-strings in the offshore oil&gas indusimptivated the study
of buckling and initial post-buckling of verticabds subjected to
variable axial forces resulting from self-weight. Lubinski (1950),
Huang and Dareing (1966, 1968 and 1969), Plunk&®7), Wang
(1983), Bernitsas and Kokkinis (1983a-b and 1984akimkkinis
and Bernitsas (1985 and 1987), Vaz and Patel (1928l and Vaz
(1996), Jurjo et al. (2001), Vaz and Mascaro (20€% rod
buckling, initial post-buckling and post-bucklingolstions are
developed.

In some potential applications a heavy slendercgire may be
supported at its extremities, such as in the ardadrill string
mechanics and flexible pipe jumper configuratioor fnstance,
Sampaio Jr and Hundhausen (1998) employed an enstyod to
derive the governing equations and generalized riggoenetric
functions to solve the small displacement problérimdined beam-
columns. In this situation the gravitational figidt only imposes a
variable axial force (problem is no longer symnueit), but it also
imparts to the rod a lateral distributed load. lis tpaper a large
displacement formulation is developed (hence thamggrical non-
linear nature of the problem is captured), a nucaérsolution is
obtained and results are compared.

Nomenclature

L = beam length, m

P = longitudinal load, N

H = |ateral Load, N

E = Young’s modulus, N/m
|

= second moment of cross-sectional ared, m
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=rod arc-length

= curvature

= bending moment, N.m

=top end X- Coordinate,

= non-dimensional S

non-dimensional Y

= non-dimensional X

= non-dimensional P

= non-dimensional H

X;  =non-dimensional X

Greek Symbols

= self-weight per unit length, N/m
inclinationt to the horizontal axis, deg
axial displacement, m

= angle between the tangent and the X-axis, deg
= non-dimensional K

= non-dimensionap
=non-dimensionalA

XZA®

ST X< 0 X
1|

U VX DI D

Subscripts

0  =relative to top end X-coordinate

1 = relative to lower end X-coordinate
max = relative to maximum

The Mathematical M odel

Consider an inextensible slender uniform rod wéitgth L and
self-weight (per unit length)p supported by two points at an
inclination B with respect to the horizontal axis, as shownim F
1(a). When the rod is inclined the self-weight dlieeously
modifies the distribution of longitudinal and laér loads,
respectively given by P and H. In addition, a purending
formulation is assumed and the material is lindaste so the
bending stiffness is given by El, where E is theu@’s Modulus
and | is the second moment of cross-sectional area.pfolglem
can be load or displacement controlled, so Zet be the axial
displacement of the upper end as shown in Fig. 1(a)

ABCM



Geometrically Non-Linear Analysis of Inclined Elastic Rods Subjected to Self-Weight

Figure 1(a). Schematic of an inclined deflected vertical rod subjected to
self-weight.
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Figure 1(b). Infinitesimal element of rod.

Geometrical equations

Geometrical restrictions are obtained from trigoetio
relations applied to an infinitesimal rod elemesed Fig. 1(b)):

(;—)5 = cosd (1a)
Z—Z - sing (1b)

Where S is the rod arc-lengthQ <S <L), (X,Y) are the

Cartesian coordinates of the deflected rod dhdis the angle

between the tangent and tie-axis. Furthermore, the curvatuté
may be defined by:

_de

ds

K (1c)

Equilibrium of forcesand moments

A schematic of the internal forces and momentshia tod
infinitesimal element is shown in Fig. 1(b). Theu#tprium of
longitudinal and lateral forces and bending momeetpectively
yields:

g—f =-psing (2a)
Z': = pcosf (2b)

where M is the bending moment.
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Congtitutiverelations

Assuming linear elastic, homogeneous and isotropéderials,
and considering the state of pure (Euler-Bernobdéiding results in:

M =EIK (3)
Therefore, substituting Eq. (3) into (2¢) results:
&K_1 (H cos@ - Psind) @)

ds  El

Boundary conditions

A set of six boundary conditions must be defined &r the
double-hinged rod they may be specified as:

X©0)=Y(@©0)=K(@0) = X(L)-X, =Y(L)=K(L)=0 (5)
where X, is the top end X-coordinateX, =L —A). The influence

of the boundary conditions on the rod response hbsiooisly
significant, but it can be easily approached withe tsame
methodology presented here.

The governing equations

It is clearly advantageous to reduce the set demiftial Eqgs.
(1a)-(1c), (2a)-(2b) and (4) to a non-dimensionainf using the
following change of variablesS=sL, Y=yL, X=xL, K=k/L,

p=pEI/L’, P=pEl/L* andH =hEI/L*, where0 <s <1. Hence:

% = cosd (6a)
% =sind (6b)
% —x (6c)
d_s =-psing &)
%‘ = p cosf (6e)
z—lzz-psin0+hcos€ (6f)

where (X,y) constitute the deflected rod non-dimensional Gaate
coordinates, ¢ the non-dimensional arc-lengthk the non-
dimensional curvaturef the angle formed by the curve tangent and
the longitudinal axis,p and h respectively the non-dimensional
longitudinal and lateral loads andd the non-dimensional
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distributed weight. Furthermore, the boundary ctbods are also
made non-dimensional:

x(0) =y(0 =kOQ) =k@) -x, =y@ =k@ =0 @)

where x, =1-3 (d=A/L). Equation (7) represents non-movabIeU(X)

and movable hinged conditions respectively at theet (s=0) and
upper (Ss=1) ends. Two parameters control the problgrand p .

The Solution for Large Displacements

As the set of six first order non-linear ordinaryffetential
equations and its boundary conditions constituteoapoint boundary
value problem, a classical shooting technique nayeimployed to
transform it into an initial value problem, hendéowing a direct
integration scheme. Three boundary conditions arengat the end,
i, x(0)=y(0)=k(©0)=0 and x()-x, =y@d) =k(@) =0, so the
missing initial valuesh(O), 9(0) and p(O) need to be found. The
software Mathcad offers a simple procedure to cample initial
missing values. This procedure may be summarizeth wwhe
following main steps: (a) the set of differentiafjuations is
defined (i.e., equations (6a)-(6f)); (b) the initmissing values are
guessed (i.e., values fdn(O), 6(0) and p(O)); (c) the boundary
value endpoints are specified (i.ex() -x, = y(1) = k@) =0); (d)
a load function which returns the initial conditiandefined; (e) a
score function to measure the distance betweeniralmand
desired conditions is employed; (f) the equivalemitial
conditions are calculated (i.e., the values If&tb) 9(0) and p(O)).
From this point, a Runge-Kutta high order solutalgorithm is
applied to solve the set of non-linear ordinary feténtial
equations. Given the highly non-linear nature oé throblem
adequate convergence may be achieved through sivees
approximations. If the self-weight is disregardectlased-form
analytical solution via elliptical integrals may bbtained.

The Solution for Small Displacements

When small displacements are assumdsd,[1ds, sin(G)I]e
and cos(e) 01, a simplified differential governing equation is
obtained:

dy,

A dy _
o [p, - sin(8) x| o =PoodB)x+h,  ®

where p, and h, are respectively the longitudinal and lateral bad
at x=0 and,p and p, are known. A solution for Eq. (8) may be
obtained via Maclaurin series, yielding:

¥(x) = Sx)+CT(x)+CU )+ hV(x)+C; (@

where G ,C,C,,h, are constants ancE(x),T(x),U(x),V(x) are
series functions given by:
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_= 4
Q@:{%%%?ﬁwnmm%ﬁmwhh5M%ﬁ+4
T(x)=

X I s o . B i
“oa55o LS PSin(B) X’ +15120psin(B) x* - 2016p, psinB) x°..)

X2
" 120960

X3
V(x)=-
36288(

@o16psin(B) x° —144p, psin(B8) x° + 4 p2 psin(B) x +...)

(-1512psin(B) % + 72p, psin(B) x° + 5 pd +...)
(10)

When the boundary conditionsy(Gr dy dk O y@)=dydx @=0
are applied to Eq. (9), the following linear prablenay be written:

1 TO U@© VO | |Co -S(0)
1 TO U® VO [,|% || SO a
0 Q) R©O) W(@O| [Cy -P(0)
0 QD R® WO [ My -P@)

where the functionsF(x),dx),R(x),W(x) are respectively the
second differentiation qux),T(X),U(X),V(X). The number of

terms required for adequate convergence dependBeonalues of
B and p. Once G,C,C,,h, are calculated the angle, curvature

and forces distributions may be readily obtained.

Analysis of Results

A comparative study is carried out for power ser{emall
displacements) and numerical (large displacemesafi)tions for
several values of inclinatior(= 0,225,45,675,90deg) and non-
dimensional rod self-weight @ 35,100). Figures 2 and 3,
respectively, show the large displacement confitpmafor p = 35
and 100. In both figures the geometrical configorats plotted for
5= 0,0204,06,0.810. For horizontal rodsf§=0) the solution
is, as expected, symmetrical. However, when thdiniaion
increases the lateral displacement becomes moranasiyic. The
heavier and more inclined rod (i.ep = 100 and B =90deg)

exhibits a more pronounced lower bulge as the I@merupper ends
are respectively under compression and tension.
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Figure 2(a). Configuration for p =35, p:oo.
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Figure 2(b). Configuration for p=35, 8 =2250.
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Figure 2(d). Configuration for p =35, B = 67.5°.
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Figure 2(e). Configuration for p =35, B=90°.
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Figure 3(a). Configuration for p=100, B= 0°.
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Figure 3(b). Configuration for p=100, g = 2250,
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Figure 3(c). Configuration for p=100, = 459,
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Figure 3(d). Configuration for p=100, B = 67.5°.
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Figure 3(e). Configuration for p=100, B = 90°.

Figures 4 and 5 show the values of the non-dimeakiariables
o1 0, P,y 6, andy . (maximum lateral deflection) when small
and large displacements are considered, respgcfivelp =35and

100. The comparison between results for small argeldisplacement
formulations indicates when geometrical non-lineffects take place
and must be included for a correct response clegization.

66 / Vol. XXXIV, No. 1, January-March 2012

Murilo Augusto Vaz and Felipe Sant’Ana Castelpoggi

In Figs. 4(a) and 5(a) it is seen thatisrconstant fo3 =0 and
varies more intensively for3 =90deg. Observe that negative
values for p, in Figs. 4(b) and 5(b) indicate tensile forceseTh

change in behavior from a laterally and axiallyded rod to post-
buckling phenomenon is evidenced in Figs. 4(c)af 5(c)-(d) by
comparing results foB =90deg and 3 < 90deg.

P,

Figure 4(b). d versus Py for p=35.

4.0 4

35 [ ——Linear
3.0
254
2.0

B(deg)

920

30

pu
Figure 4(c). 90 versus p, for p=35.
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Figure 5(c). 90 versus p, for p=100.
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Figure 5(d).y,_ versus p for p=100.

Conclusions

This paper presents formulation and solution fatiired elastic
rods subjected to terminal forces and a gravitatifield. The rod is
assumed hinged at both ends. An analytical (poeees) solution
is obtained when small deflections are consideratithe problem
is geometrically linear. The large deflection narear analysis is
obtained from solving a complex two-point boundeajue problem
governed by a set of six first order non-linearimady differential
equations. As expected the numerical and analysi@altions are in
good agreement when displacements are kept smadle dhe
geometrical non-linearities do not significantlylirence the results.
In addition, the results evidence a change in éspanse behavior
as the rod becomes vertical and a post-bucklingaligy
phenomenon takes place. The boundary conditiorectathe rod
response and it can be readily calculated with rttrethodologies
developed here.
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