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The aim of this paper is to illustrate the activantrol of vibration of a flexible structure
using a model-based digital controller. The stgtece model of the system is derived
using a system identification technique known ag tBbserver/Kalman Filter
Identification (OKID) method together with Eigen®ys Realization Algorithm (ERA).
Based on the measured response of the structiaegndom input, an explicit state-space
model of the equivalent linear system is determiniéte model is used in a Linear
Quadratic Regulator (LQR) to control the first twwdes of vibration of a cantilever beam
using a piezoelectric actuator/sensor pair. Expental results demonstrate the efficacy
of the proposed approach.
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Introduction

Smart structures, which use actuators, sensorsaacwhtroller,

assumes that the system is a discrete linear tinagiant (LTI)
state-space system. Second, it requires only iapdtoutput data to
formulate the model (no a priori knowledge of thanp is needed).

can be used to suppress vibration in situationsevb@ssive measures Third, a pseudo-Kalman state estimator is produaed,lastly, any

are undesirable because of weight or space cantstrérequently,
piezoelectric actuators and sensors are used wasathdight, cheap
and convenient to bond to structures (Crawley aed_dis, 1987;
Abreu et al., 2003). Lead zirconate titanate (Pi&T9ften used as an
actuator because it is relatively stiff and couples| to a structure,
and polyvinylidene fluoride (PVDF) is used as asseras it can be
very thin and is light. In some cases the sameeaiecan be used as
both an actuator and a sensor (Dosh et al., 1992).

Although actuators and sensors are crucial elementthe
design of a smart structure, they are not the feubkis paper. The
focus is on the design of the controller. Two geneypes of
controller can be used; one requires no model @&tstem and can
be analogue (Gatti et al., 2007) or digital (Fulral., 1996), and
the other requires a model of the structure to detrolled. The
model based controller can be further subdivided two types: one
type uses a numerical model of the structure dertheoretically,
using finite element models (Allik and Hughes, 197@ou and
Tseng, 1990), for example. The second type involike
determination of a model of the structure using sneed input and
output data (Wang et al., 1999). This paper comateg on this
approach, and demonstrates the procedure to desigh a
controller. The main objective is to investigate tombination of a
system identification method and the optimal cdntechnique to
actively control vibration.

Ljung (1999) provides an excellent introductiorthie subject of
system identification, and describes the variouthouplogies that
have been developed. Among the time domain methtus,
Observer/Kalman Filter Identification (OKID) algthim has shown
to be efficient and robust (Juang et al., 1993ndund Phan, 2001),
and has been applied to space structures, sutle &tttle Remote
Manipulator System (Scott et al., 1993). It hasesalvadvantages
for the active vibration control application dissed here. First, it
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residual truncation errors will be small. Togethgth the OKID
algorithm, the Eigensystem Realization AlgorithmR@& (Juang
and Phan, 2001; Juang and Pappa, 1985) genelateeder state-
space model of the system to be controlled.

The design of an optimal controller for active wition control
has been studied by many researchers (AndersoManck, 1989;
Lewis and Syrmos, 1995; del Rosario and Smith, 19®%ien et al.,
1999; Abreu et al.,, 2003). Here, a Linear Quadr&igulator
(LQR) is employed to design a control law for colling the
vibrations of a piezoelectric smart structure beeaitiis a powerful
technique for designing controllers even for compgstems.

The paper is organized as follows. Firstly, the DKind ERA
approaches are summarized, and the LQR controlniged is
employed to design the optimal control law. The tnegction
describes the experimental work in which the modetl the
controller of an experimental beam, fitted with zmelectric
actuators and sensors is determined. Following, ttesal time
control is implemented to demonstrate the efficatyhe approach.
Finally, the paper is closed with conclusion settichich contains
some concluding remarks.

Nomenclature

= state matrix

= input matrix

= output matrix

= direct influence matrix
= Hankel matrix

= identity matrix

= index counter

= cost function

_—smmoows
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= controller gain matrix

= sampled time

= observer gain matrix

= Hankel matrix dimension

= Markov’s observer gain matrix
= control vector dimension

= state vector dimension

= solution matrix of the algebraic Riccati equation
,R = controller design matrices

q  =output vector dimension

u  =inputvector

U,V = unitary matrices

K
k
L
l
M
m
n
P
Q

w = external load perturbation
X = state vector

y = output vector

Y =Markov parameters
Greek Symbols

¥  =diagonal matrix of positive singular values
p = scalar design parameter
Subscripts

e = relative to observer
Superscripts

T  =relative to transpose

A =relative to estimative

Identification of the Dynamic Model Using Vibration
Excitation and Response Data

In this section an overview is given of system tdation
technique used to determine a model of the sysbelne tcontrolled.
It consists of two parts — the OKID method to detiee the
system’s Markov parameters, and the ERA to traedlase into a
state-space model of the system.

Description of the OK 1D technique

The OKID method was developed to compute the Marko

parameters of a linear system, which are the sarnbeasampled
impulse response of the system. It is a time domathod which
can work with general response data such as randbration,
impulsive signals or chirps. First, the observerkda parameters
are calculated, then the system Markov parametersletermined
recursively from the Markov parameters of the obsesystem. The
process of system identification using this meti®diescribed in
(Juang and Phan, 2001; Juang et al., 1993). Ins#tton a brief
overview of the process is given.

Consider first a general linear system expressetisicrete-time
state-space form as

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (1ab)
wherex is ann X 1 state vectoru anm X 1 input or control vector
andy aq x 1 output vector. Matriced, B, C andD are the state,
input, output, and direct influence matrix, respegy. The integek
represents sampled time.

The input-output description of the system with ozénitial
conditions can be obtained from Eq. (1) recursiealy

y(k) = X5 Yy u(k — i — 1) + Du(k)
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whereY; = CA!B andD are the Markov parameters of the system —
they are also samples of the system impulse respéis a lightly
damped system, many Markov parameters are neededideethe
impulse response takes a long time to decay awayeduce this
number, an observer is introduced to artificialjdadamping and
hence reduce the length of the impulse respongbeotombined
system. If A, C) is an observable pair, then there exists an @bser
of the form

X (k+1) = AL (k) + Bu(k) — M[y(k) — y(k)]
= (A + MC)X(k) + (B + MD)u(k) — My(k)

y(k) = CX(k) + Du(k)

(3a,b)

The matrix M can be interpreted as an observer gain matrix.
Consider the special case where all eigenvalugs ©MC are zero.
Thus, the estimated st&eonverges to the true statgk) after at most
n steps, where is the order of the system. Equation (3) then imeso

x(k +1) = (A + MO)x(k) + (B + MD)u(k) — My(k) (4a,b)
y(k) = Cx(k) + Du(k)

The input-output description of the system desdribg Eq. (4)
is given by (fork = n)

y() =¥ Yilu(k—i—1) yk—i—1]"+Duk) (5)

where

Y, = [C(A+MC){(B+MD) —C(A+MC)'M]
— ¥ ¥,

in whichY; andD are the Markov parameters of the observer system.
A particular feature of this type of observer isttithe Markov
parameterd; will become identically zero after a finite numisr
time steps. A standard recursive least-squareshicpoh is used to
solve Eqg. (5) and then the observer Markov parammetee
¥omputed. Once the Markov parameters of the obsepgtem are
identified, the actual system Markov parameters lwarcalculated.
The relationship between the Markov parametershef dbserver
system and those of the actual system is given by
Y, =CAB=Y" + 2 ¥?y,_,_, + Y®D (6)
Once the system Markov parameters have been detslm state-

space model of the system can then be derived ubi@dgERA,
which is described in the following subsection.

Minimum realization of the syssem model using the ERA

The estimated state-space modg) B, €, D) of a system is
determined from the system Markov paramet¥rsobtained by
OKID using the ERA. Details of this approach canfbend in
(Juang and Phan, 2001; Juang and Pappa, 1985nlya@ dorief
overview is given here. The algorithm begins byrfiorg thel x [
block Hankel matripH (1, i) given by

Y, Y Yiri-1
H(l, l) — Yi:-i-l Yi:+2 Yi:+l (7)
Yiri-1 Yin Yiiz2i—2
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The order of the system is determined from thewdargvalue
decomposition oH(!, 0) which is given by

H(l,0) = UZVT (8)
where the matrice¥) andV are unitary matricest is ann X n
diagonal matrix of positive singular values, ants the order of the
system. Defining a x lg matrix E] and anm x Im matrix E,
made up of identity and null matrices of the form

E] =[lg 0Ogxa-1q]
EL = [l Omxa-1ym], (%ab)

a discrete-time minimal order realization of thestsyn can be
written as

A == Y2uTH(l, 1)VE Y2 (10)
B= S2VTE,, (11)
C = Ejuz'/? (12)

and the direct influence matrdX can be identified by solving Eq. (5).

Abreu et al.

Optimal Controller Design

The state-space model given by Egs. (10)-(12) nbétaiusing
the procedure given previously can be used to deaigoptimal
controller. The control algorithm used here is tamnative version of
the Linear Quadratic Regulator (LQR). The controdensists of a
state feedback module and a state estimation madukhown in
Fig. 1, in which the external load perturbatiomisand is described
in this section. The control law is given by

u = —Kx(k) (13)
whereK is the matrix of feedback gains. These gains havke
determined while maintaining voltage levels lesantta prescribed
maximum level to prevent saturation of the actuatétence, a full
state feedback control is considered to minimize ¢bst function
given by (Anderson and Moore, 1989)

= %;[XT(k)Qx(k) +u” (l)Ru(k)] (14)

where the matrixQ defines the relative weight of each state variable

Obviously, theA, B, C, D matrices describe the state spacgdR stands for the relative weight of each actuattiage.

model, which are functions of the singular valuéshe collected
data. Note that now the state space variables abiog/to give a
clear physical meaning to the identified state-epastem.

State Estimator

System Dynamics

B
w
+ + 3+ 0 — + x()
L z71 -K B z71
- + +
A [ A ¢
¢

Figure 1. Block diagram of the discrete-time LQR co

ntroller.

The selection o) andR is vital in the control design process. where the positive definite matriX is the solution to the algebraic

They determine the relative importance of the arerformance

and the control effort. A larg@ puts higher demand on the control
performance and a larde puts a greater constraint on the control

effort (Anderson and Moore, 1989). The optimal ealfiorQ andR
are typically obtained by trial-and-error. The weigg matrix R

Riccati equation given by (Lewis and Syrmos, 1995)
ATPA-P —ATPB(R+ BTPB) 'BPA+Q =0 (16)

In Eq. (13) it is assumed that all of the states arailable for

can be set agl with p as a scalar design parameter. Thus, the tagkeghack. However, in practice only the system atstare available

of choosingQ andR reduces to one of choosipg Consequently,

for feedback. To estimate the states of the sydtemm sensor

the control performance, such as settling time #red maximum  oiputs, a state estimator

value of the actuator voltage can be tuned throcigginging the
value ofp.

The optimal feedback gain matrix that minimizes thest
function in Eq. (14) is given by

&(k + 1) = AR(k) + Bu(k) + L[y(k) — C&(k) — Du(k)|, (17)

is required, in whickk(k) andL denote the estimated state and the
observer gain matrices, respectively. Note thasthte vector in Eq.

K = (R+B7PB) 'B’PA (15) (13) should be replaced by the estimated $téit3.
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Since the system is observable, the dynamic obsewiaL is
obtained by solving an algebraic Riccati equatiorresponding to
the assumed observer design matriQgs(positive semi-definite)
and R, (positive definite). Thus, the observer poles é$thobe
selected so that it is much faster (by about aofagt 10) than the
desired closed-loop poles & ¢ BK).

One of the merits of the LQR technique lies in deparation
principle, which means that the design of the feettband the
estimator shown in Fig. 1 can be carried out seplra

Experimental Work

To demonstrate the system identification procedame the
subsequent controller design methodology an exgetimwvas
carried out. A single-input single-output system swahosen
involving an aluminum cantilever beam as shown iig. R2.
Although this appears to be a simple physical sysiewas quite

Voltage Amplifier

||
] IPLzoelectric Actuator
- (PZT)
(PVDF)

Charge Amplifier

(@)

Figure 2. Photographs of the experimental setup: (a

I dentification of a Model for the Cantilever Beam

To identify a model of the system, the experimeséalip shown

in Fig. 3 was used. AJSPACE 1103 board together with the
Matlab® and Simulink® software were used to generate and process

the signals. The beam was driven with white ndiseugh the PZT
actuator and the beam response was measured (En§MDF
sensor. A sampling frequency of 1 kHz was used.

The time histories of the applied voltage to thd RZtuator and
the output voltage from the PVDF sensor are shawkigs. 4(a)
and 4(b), respectively.

Using the method described previously, the Markakameters
of the observer and the system were calculatedcandequently a
state-space model of the cantilever beam was detedmAs it was
intended to control the first two modes of the egstonly, it was
necessary to reduce the state space model. TheeHaokn model
reduction technique (Gawronski, 1998) was usedetterate a fifth
order model of the system, the matrices of whiehgiven by

0.526 —0.010 -0.010 -0.037 0.011
[ 0 +0.996 +0.080 —0.002 0.003]
Z\=| 0 —0079 +0.996 —0.002 0.002 (18)
0 0 0 +0.879 0.475
l 0 0 0 —-0.471 0.875J
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challenging from the control point of view as themping was very
light. The aim of the experiment was to control fingt two modes
of vibration which occurred at 12.75 Hz and 78.85 Mo achieve
this, a PZT actuator was bonded to one side obéaen, at the root,
as shown in Fig. 2(a), and a PVDF sensor was botaéue other
side of the beam. The positions of actuator andaremwere chosen
according to the methodology described in Abreal e2003).

The dimensions of the aluminum beam were 350 x#2 mm
x 2 mm, the piezoceramic actuator patch (model QR BINmmx
20 mmx 0.254 mm (ACX, 2011), and the PVDF sensor 30 mm
10 mmx 0.205 mm. The voltage amplifier and the chargeldiep
shown in Fig. 2(b) were used to drive the actuatat to condition
the signal from the sensor respectively. As ongy ftrst two modes
of the beam were of interest, the cut-off frequentyhe low-pass
filter in the charge amplifier was set to 100 Hz.

(b)

) the overall setup; (b) location of the piezoelect

ric sensor.

[—0.001331y
—0.000371
B =|+0.000139
—0.000143
+0.000653

(19)

€ =[-1.7960-0.0057 0.3621 0.18250.5290] (20)

D = —0.002572 (21)

The measured frequency response function (calclfaten 15
averages) of the system (in terms of the voltagdiegh to the PZT
actuator and the voltage measured from the PVDEhpadbgether
with the reconstructed frequency response fundtiom the model
are shown in Fig. 5. It can be seen that the frequeesponse of the
identified model is a reasonable match to the feegy response of
the actual system for the first two modes.

Controller Design

As the controller was designed using an iteratikec@dure as
discussed previously, some preliminary experimengse carried
out with some initial control parameters set adiily. The
experiment was set up as shown in Fig. 3 but n@nctmputer was
set in control mode instead of system identificatimode. The

Special Issue 2012, Vol. XXXIV / 389



controller was implemented usimgatlab® and Simulink® software
together with a PC and tkSPACEL103board. Figure 6 shows a
Simulink® block diagram of the controller.

The beam was excited at its free end by using thgact
hammer (model PCB 086C04) shown in Fig. 2(a). Tesponse of
the beam was measured by the PVDF sensor, withwatibut

control. The control gain matriK was then obtained by try-and-

error for the maximum voltage applied to the pieztuator (150V).
Using the following state weight matrices

——

Charge Amplifier

PVDF
Beam

Abreu et al.

Q = ISXS andR = p = 004’, (23a,b

the control gain matriX was calculated using Eq. (15) to give

K=[-0.024 -3.203 0916 -—1412 1.708] (23)

PZT

YIIIIININNI4g

[\]

o o

e

Voltage Amplifier

Figure 3. Experimental setup for model identificati

150

Actuator Voltage (V)

-150
]

. . . . .
2.5 3 3.5 4 4.5 5
Time (s)

@

Figure 4. Time histories used in the system identif
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onse functions
voltage from the

Figure 5. Experimental and numerical frequency resp
between the voltage applied to the PZT actuator and
PVDF sensor (a) magnitude and (b) phase.
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ication procedure (a) actuator and (b) sensor.
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As mentioned previously, the paramete€@s and R are
determined by trial-and-error methods to most éffety control
the structure. At the same time, these parameterBnaited for the
sake of the breakdown voltage of the piezoeleetrtoator.

The next step was to design a dynamic observehéstability
of the closed-loop system. This could be obtaingd tieating
(AT, CT) as if they werdA, B) in the feedback control law design.

Using the weight matrice®), = Is,s and R, = 1074, the
optimal observer gain vector was found to be

~18.017
[ 0.878 ]
(24)
31.587

L= [ 124.491 j
—116.898

The controller and the optimal observer were thmeplémented
and the results are presented in the followingaect

Experimental Results

The time-domain results of the control experimemt given in
Fig. 7. Figure 7(a) shows the open and closed-fesponses of the
sensor voltage, and Fig. 7(b) shows the correspgradintrol voltage.
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Initially the controller was turned off and the wéis of this
test are shown in Fig. 7(a). It can be seen thaddmping in the
system was quite light as the vibration took a loinge to decay
away. Close examination of the time response shothatl the
beam was vibrating primarily in its fundamental rapdnd the
damping ratio for this mode was estimated to beuab®6. The

-K*u

>

experiment was then repeated, but this time with ¢bntroller
turned on. From Fig. 7(a), it can be seen thatvtheation decays
away much more quickly demonstrating the effectesmnof the
controller. The damping ratio in this case was fbio be about
0.2. It is thus clear that the main effect of the ecohtvas to add
more damping to the system.

4

Integrator

Discrete-Time

L*u

<
|‘

Figure 6. Simulink® block diagram of the controller.

Control off
Control on

Sensor Voltage (V)

-8 I I I I I I I I I
1.4 1.6 18 2

Time (s)

()
Figure 7. Time histories from the control experimen

the PVDF sensor, (b) control voltage applied to the PZT actuator.

Figure 8 shows the experimental open-loop and disep
frequency response functions determined from thee thistories
shown in Fig. 7(a) and the time history of the éoapplied to the
beam using the instrumented hammer. It can be wbddhat the
control system reduced the vibrations in the fregyerange
containing the first two modes, with the dominaffe& being on
the first mode of vibration, as discussed abovee Wbration
reduction level was smaller for the second mode rdostly to the
actuator location. In Abreu et al. (2003), the peab of choosing
the optimal location of the actuator for the maxation of the
control energy applied in each mode of vibratiodigcussed.

Another relevant aspect that can be mentionedaisttie LQR
controller does not guarantee disturbance reductidnother
locations along the beam. One of the studies uakiemt to
guarantee this important performance requiremestprasented by
Abreu and Ribeiro (2003), who developed a robusitrotler that
minimizes the effect of disturbances over an erft@am.
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Control Voltage (V)

Time (s)

(b)

nd of the beam using a hammer. (a) Voltage from

Conclusions

This paper has described the system identificateammtroller
design, and subsequent implementation to conteovibration of an
aluminum beam, in which a PZT patch was used astiat actuator
and a PVDF patch was used as the vibration sefber.controller
was designed by solving a standard optimal corgroblem, and
required a state-space model of the system. Thiehwas obtained
using the OKID/ERA system identification techniqusing input and
output vibration data from the beam. Two modeshef heam were
controlled. From the experimental results, it wassesved that
satisfactory performance of vibration attenuatiomswachieved.
Although the system identification and control neetblogy was
demonstrated on a simple one-dimensional strudtutkis paper, it
can, in principle, be applied to more complicatédictures with
multi-input-multi-output control systems.
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Control off
—————— Control on

Amplitude (dB)
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-200 L

Frequency (Hz)
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Figure 8. Open- and closed-loop transfer functions
an impulsive force was applied to the end of the st
hammer. (a) Magnitude, (b) phase.

of the beam in which
ructure using a
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