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System Identification and Active 
Vibration Control of a Flexible 
Structure  
The aim of this paper is to illustrate the active control of vibration of a flexible structure 
using a model-based digital controller. The state-space model of the system is derived 
using a system identification technique known as the Observer/Kalman Filter 
Identification (OKID) method together with Eigensystem Realization Algorithm (ERA). 
Based on the measured response of the structure to a random input, an explicit state-space 
model of the equivalent linear system is determined. The model is used in a Linear 
Quadratic Regulator (LQR) to control the first two modes of vibration of a cantilever beam 
using a piezoelectric actuator/sensor pair. Experimental results demonstrate the efficacy 
of the proposed approach. 
Keywords: Observer/Kalman Filter Identification (OKID), Eigensystem Realization Algorithm 
(ERA), optimal vibration control, piezoelectric smart structures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Introduction 

Smart structures, which use actuators, sensors and a controller, 
can be used to suppress vibration in situations where passive measures 
are undesirable because of weight or space constraints. Frequently, 
piezoelectric actuators and sensors are used as they are light, cheap 
and convenient to bond to structures (Crawley and de Luis, 1987; 
Abreu et al., 2003). Lead zirconate titanate (PZT) is often used as an 
actuator because it is relatively stiff and couples well to a structure, 
and polyvinylidene fluoride (PVDF) is used as a sensor as it can be 
very thin and is light. In some cases the same element can be used as 
both an actuator and a sensor (Dosh et al., 1992). 

Although actuators and sensors are crucial elements in the 
design of a smart structure, they are not the focus of this paper. The 
focus is on the design of the controller. Two generic types of 
controller can be used; one requires no model of the system and can 
be analogue (Gatti et al., 2007) or digital (Fuller et al., 1996), and 
the other requires a model of the structure to be controlled. The 
model based controller can be further subdivided into two types: one 
type uses a numerical model of the structure derived theoretically, 
using finite element models (Allik and Hughes, 1970; Tzou and 
Tseng, 1990), for example. The second type involves the 
determination of a model of the structure using measured input and 
output data (Wang et al., 1999). This paper concentrates on this 
approach, and demonstrates the procedure to design such a 
controller. The main objective is to investigate the combination of a 
system identification method and the optimal control technique to 
actively control vibration. 

Ljung (1999) provides an excellent introduction to the subject of 
system identification, and describes the various methodologies that 
have been developed. Among the time domain methods, the 
Observer/Kalman Filter Identification (OKID) algorithm has shown 
to be efficient and robust (Juang et al., 1993; Juang and Phan, 2001), 
and has been applied to space structures, such as the Shuttle Remote 
Manipulator System (Scott et al., 1993). It has several advantages 
for the active vibration control application discussed here. First, it 

assumes that the system is a discrete linear time-invariant (LTI) 
state-space system. Second, it requires only input and output data to 
formulate the model (no a priori knowledge of the plant is needed). 
Third, a pseudo-Kalman state estimator is produced, and lastly, any 
residual truncation errors will be small. Together with the OKID 
algorithm, the Eigensystem Realization Algorithm (ERA) (Juang 
and Phan, 2001; Juang and Pappa, 1985) generates a low order state-
space model of the system to be controlled.  

The design of an optimal controller for active vibration control 
has been studied by many researchers (Anderson and Moore, 1989; 
Lewis and Syrmos, 1995; del Rosario and Smith, 1997; Shen et al., 
1999; Abreu et al., 2003). Here, a Linear Quadratic Regulator 
(LQR) is employed to design a control law for controlling the 
vibrations of a piezoelectric smart structure because it is a powerful 
technique for designing controllers even for complex systems. 

The paper is organized as follows. Firstly, the OKID and ERA 
approaches are summarized, and the LQR control technique is 
employed to design the optimal control law. The next section 
describes the experimental work in which the model and the 
controller of an experimental beam, fitted with piezoelectric 
actuators and sensors is determined. Following this, real time 
control is implemented to demonstrate the efficacy of the approach. 
Finally, the paper is closed with conclusion section which contains 
some concluding remarks. 

Nomenclature � = state matrix �  = input matrix � = output matrix �  = direct influence matrix � = Hankel matrix � = identity matrix � = index counter � = cost function 
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	 = controller gain matrix 
  = sampled time � = observer gain matrix � = Hankel matrix dimension 
 = Markov’s observer gain matrix �   = control vector dimension �  = state vector dimension � = solution matrix of the algebraic Riccati equation �,� = controller design matrices �  = output vector dimension � = input vector �, � = unitary matrices �  = external load perturbation � = state vector � = output vector � = Markov parameters 

Greek Symbols 

ΣΣΣΣ = diagonal matrix of positive singular values � = scalar design parameter 

Subscripts 

e = relative to observer 

Superscripts 

T = relative to transpose 
^ = relative to estimative 

Identification of the Dynamic Model Using Vibration 
Excitation and Response Data 

In this section an overview is given of system identification 
technique used to determine a model of the system to be controlled. 
It consists of two parts – the OKID method to determine the 
system’s Markov parameters, and the ERA to translate these into a 
state-space model of the system. 

Description of the OKID technique 

The OKID method was developed to compute the Markov 
parameters of a linear system, which are the same as the sampled 
impulse response of the system. It is a time domain method which 
can work with general response data such as random vibration, 
impulsive signals or chirps. First, the observer Markov parameters 
are calculated, then the system Markov parameters are determined 
recursively from the Markov parameters of the observer system. The 
process of system identification using this method is described in 
(Juang and Phan, 2001; Juang et al., 1993). In this section a brief 
overview of the process is given. 

Consider first a general linear system expressed in discrete-time 
state-space form as 
 ��
 + 1 = ���
 + ���
  ��
 = ���
 + ���
                                                        (1a,b) 
 
where � is an �	 × 1 state vector, � an � × 1 input or control vector 
and � a � × 1 output vector. Matrices �, �, � and � are the state, 
input, output, and direct influence matrix, respectively. The integer k 
represents sampled time. 

The input-output description of the system with zero initial 
conditions can be obtained from Eq. (1) recursively as 
 ��
 = ∑ �%&'(%)* ��
 − � − 1 + ���
                                    (2) 
 

where �% = ��%� and � are the Markov parameters of the system – 
they are also samples of the system impulse response. For a lightly 
damped system, many Markov parameters are needed because the 
impulse response takes a long time to decay away. To reduce this 
number, an observer is introduced to artificially add damping and 
hence reduce the length of the impulse response of the combined 
system. If (�, �) is an observable pair, then there exists an observer 
of the form 
 �	,�
 + 1 = ��-	�
 + ���
 − 
[��
 − �-�
 ] 
          					= �� + 
� �-�
 + �� + 
� ��
 − 
��
            (3a,b) 

      �-�
 = ��-�
 + ���
  
 

The matrix 
 can be interpreted as an observer gain matrix. 
Consider the special case where all eigenvalues of � + 
� are zero. 
Thus, the estimated state �- converges to the true state ��
  after at most � steps, where � is the order of the system. Equation (3) then becomes 
 ��
 + 1 = �� + 
� ��
 + �� + 
� ��
 − 
��
     (4a,b) ��
 = ���
 + ���
  

 
The input-output description of the system described by Eq. (4) 

is given by (for 
 ≥ �) 
 
 	��
 = ∑ �1%2'(%)* [��
 − � − 1 ��
 − � − 1 ]3 + ���
       (5) 

 
where  
 �1% = 4��� + 
� %�� + 
� −��� + 
� %
5 
      	= 4�1%�( �1%�6 5, 
 
in which �1% and � are the Markov parameters of the observer system. 

A particular feature of this type of observer is that the Markov 
parameters �1% will become identically zero after a finite number of 
time steps. A standard recursive least-squares technique is used to 
solve Eq. (5) and then the observer Markov parameters are 
computed. Once the Markov parameters of the observer system are 
identified, the actual system Markov parameters can be calculated. 
The relationship between the Markov parameters of the observer 
system and those of the actual system is given by 

 �% = ��%� = �1%�( + ∑ �1&�6 %'(&)* �%'&'( + �1%�6 �                      (6) 
 
Once the system Markov parameters have been determined, a state-
space model of the system can then be derived using the ERA, 
which is described in the following subsection. 

Minimum realization of the system model using the ERA 

The estimated state-space model (�7, �7, �8, �7 ) of a system is 
determined from the system Markov parameters �% obtained by 
OKID using the ERA. Details of this approach can be found in 
(Juang and Phan, 2001; Juang and Pappa, 1985), so only a brief 
overview is given here. The algorithm begins by forming the � × � 
block Hankel matrix ���, �  given by 
 

���, � = 9 �% �%:( ⋯ �%:<'(�%:( �%:6 ⋯ �%:<⋮ ⋮ 	 ⋮�%:<'( �%:< ⋯ �%:6<'6
>                                  (7) 
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The order of the system is determined from the singular value 
decomposition of ���, 0  which is given by 

 ���, 0 = �ΣΣΣΣ�3                                                                        (8) 
 
where the matrices � and � are unitary matrices, ΣΣΣΣ is an � × � 
diagonal matrix of positive singular values, and � is the order of the 
system. Defining a � × �� matrix @A3 and an � × �� matrix @B3  
made up of identity and null matrices of the form 
 @A3 = [�A CA×�<'( A] @B3 = [�B CB×�<'( B],                                                      (9a,b) 
 
a discrete-time minimal order realization of the system can be 
written as 
 �7 = ΣΣΣΣ

'(/6�3���, 1 �ΣΣΣΣ'(/6 (10) �7 = ΣΣΣΣ
(/6�3@B (11) �8 = @A3�ΣΣΣΣ(/6 (12) 

 
and the direct influence matrix �7  can be identified by solving Eq. (5).  

Obviously, the �7, �7, �8, �7  matrices describe the state space 
model, which are functions of the singular values of the collected 
data. Note that now the state space variables allow one to give a 
clear physical meaning to the identified state-space system.  

Optimal Controller Design 

The state-space model given by Eqs. (10)-(12) obtained using 
the procedure given previously can be used to design an optimal 
controller. The control algorithm used here is an iterative version of 
the Linear Quadratic Regulator (LQR). The controller consists of a 
state feedback module and a state estimation module as shown in 
Fig. 1, in which the external load perturbation is �, and is described 
in this section. The control law is given by 

 � = −	��
  (13) 
 

where 	 is the matrix of feedback gains. These gains have to be 
determined while maintaining voltage levels less than a prescribed 
maximum level to prevent saturation of the actuators. Hence, a full 
state feedback control is considered to minimize the cost function 
given by (Anderson and Moore, 1989) 
 

E = 12G[�3�
 ���
 + �3�
 ���
 ]H
&)(  

 
(14) 

 
where the matrix � defines the relative weight of each state variable 
and � stands for the relative weight of each actuator voltage. 

 
 
 
 
 

 
Figure 1. Block diagram of the discrete-time LQR co ntroller. 

 
The selection of � and � is vital in the control design process. 

They determine the relative importance of the control performance 
and the control effort. A large � puts higher demand on the control 
performance and a large � puts a greater constraint on the control 
effort (Anderson and Moore, 1989). The optimal values for � and � 
are typically obtained by trial-and-error. The weighting matrix � 
can be set as �� with � as a scalar design parameter. Thus, the task 
of choosing � and � reduces to one of choosing �. Consequently, 
the control performance, such as settling time and the maximum 
value of the actuator voltage can be tuned through changing the 
value of �. 

The optimal feedback gain matrix that minimizes the cost 
function in Eq. (14) is given by 

 		 = I� + �73��7J'(�73��7                     (15) 

where the positive definite matrix � is the solution to the algebraic 
Riccati equation given by (Lewis and Syrmos, 1995) 
 �73��7 − � − �73��7I� + �73��7J'(�73��7 + � = 0 (16) 

 
In Eq. (13) it is assumed that all of the states are available for 

feedback. However, in practice only the system outputs are available 
for feedback. To estimate the states of the system from sensor 
outputs, a state estimator  

 �-�
 + 1 = �7�-�
 + �7��
 + �4��
 − �8�-�
 − �7��
 5, (17) 
 
is required, in which �-�
  and � denote the estimated state and the 
observer gain matrices, respectively. Note that the state vector in Eq. 
(13) should be replaced by the estimated state �-�
 . 

K'( K'( � 

�7 

�7 

�8 

−	 �7 

�7 �8 
�-�
  ��
  

− 

+ + + 

+ 

+ 

+ 

State Estimator System Dynamics 

� 
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Since the system is observable, the dynamic observer gain � is 
obtained by solving an algebraic Riccati equation corresponding to 
the assumed observer design matrices �L (positive semi-definite) 
and �L (positive definite). Thus, the observer poles should be 
selected so that it is much faster (by about a factor of 10) than the 
desired closed-loop poles of (�7 − �7	). 

One of the merits of the LQR technique lies in the separation 
principle, which means that the design of the feedback and the 
estimator shown in Fig. 1 can be carried out separately. 

Experimental Work 

To demonstrate the system identification procedure and the 
subsequent controller design methodology an experiment was 
carried out. A single-input single-output system was chosen 
involving an aluminum cantilever beam as shown in Fig. 2. 
Although this appears to be a simple physical system, it was quite 

challenging from the control point of view as the damping was very 
light. The aim of the experiment was to control the first two modes 
of vibration which occurred at 12.75 Hz and 78.85 Hz. To achieve 
this, a PZT actuator was bonded to one side of the beam, at the root, 
as shown in Fig. 2(a), and a PVDF sensor was bonded to the other 
side of the beam. The positions of actuator and sensor were chosen 
according to the methodology described in Abreu et al. (2003). 

The dimensions of the aluminum beam were 350 mm × 42 mm 
× 2 mm, the piezoceramic actuator patch (model QP10N) 50 mm × 
20 mm × 0.254 mm (ACX, 2011), and the PVDF sensor 30 mm × 
10 mm × 0.205 mm. The voltage amplifier and the charge amplifier 
shown in Fig. 2(b) were used to drive the actuator and to condition 
the signal from the sensor respectively. As only the first two modes 
of the beam were of interest, the cut-off frequency of the low-pass 
filter in the charge amplifier was set to 100 Hz. 

 
 

 
(a) 

 
 

 
(b) 

Figure 2. Photographs of the experimental setup: (a ) the overall setup; (b) location of the piezoelect ric sensor. 

 
 

Identification of a Model for the Cantilever Beam 

To identify a model of the system, the experimental setup shown 
in Fig. 3 was used. A dSPACE 1103 board together with the 
Matlab® and Simulink® software were used to generate and process 
the signals. The beam was driven with white noise through the PZT 
actuator and the beam response was measured using the PVDF 
sensor. A sampling frequency of 1 kHz was used. 

The time histories of the applied voltage to the PZT actuator and 
the output voltage from the PVDF sensor are shown in Figs. 4(a) 
and 4(b), respectively. 

Using the method described previously, the Markov parameters 
of the observer and the system were calculated, and consequently a 
state-space model of the cantilever beam was determined. As it was 
intended to control the first two modes of the system only, it was 
necessary to reduce the state space model. The Hankel norm model 
reduction technique (Gawronski, 1998) was used to generate a fifth 
order model of the system, the matrices of which are given by 

 

�7 =
MNN
NO0.526 −0.010 −0.010 −0.037 0.0110 +0.996 +0.080 −0.002 0.0030 −0.079 +0.996 −0.002 0.0020 0 0 +0.879 0.4750 0 0 −0.471 0.875XYY

YZ
 (18) 

  
 

�7 =
MNN
NO−0.001331−0.000371+0.000139−0.000143+0.000653XYY

YZ
 

 
(19) 

  �8 = [−1.7960  −0.0057  0.3621  0.1825  −0.5290] (20) 
  �7 = −0.002572 (21) 

 
The measured frequency response function (calculated from 15 

averages) of the system (in terms of the voltage applied to the PZT 
actuator and the voltage measured from the PVDF patch) together 
with the reconstructed frequency response function from the model 
are shown in Fig. 5. It can be seen that the frequency response of the 
identified model is a reasonable match to the frequency response of 
the actual system for the first two modes. 

Controller Design 

As the controller was designed using an iterative procedure as 
discussed previously, some preliminary experiments were carried 
out with some initial control parameters set arbitrarily. The 
experiment was set up as shown in Fig. 3 but now the computer was 
set in control mode instead of system identification mode. The 

Piezoelectric Actuator 

(PZT) Charge Amplifier 

(PVDF) 

Piezoelectric Sensor 

(PVDF) 

Charge Amplifier 

(Hammer) 

Hammer 

Beam 

Voltage Amplifier Clamp 
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controller was implemented using Matlab® and Simulink® software 
together with a PC and the dSPACE 1103 board. Figure 6 shows a 
Simulink® block diagram of the controller. 

The beam was excited at its free end by using the impact 
hammer (model PCB 086C04) shown in Fig. 2(a). The response of 
the beam was measured by the PVDF sensor, with and without 
control. The control gain matrix 	 was then obtained by try-and-
error for the maximum voltage applied to the piezo-actuator (150V). 
Using the following state weight matrices 

 � = �[×[	 and  � = � = 0.04,                                            (22a,b) 
 
the control gain matrix 	 was calculated using Eq. (15) to give 

 		 = [−0.024 −3.203 0.916 −1.412 1.708]             (23) 
 

 

 
Figure 3. Experimental setup for model identificati on of the system. 

 

 
(a) 

 
(b) 

Figure 4. Time histories used in the system identif ication procedure (a) actuator and (b) sensor. 
 

 
 

Figure 5. Experimental and numerical frequency resp onse functions 
between the voltage applied to the PZT actuator and  voltage from the 
PVDF sensor (a) magnitude and (b) phase. 

 

As mentioned previously, the parameters � and � are 
determined by trial-and-error methods to most effectively control 
the structure. At the same time, these parameters are limited for the 
sake of the breakdown voltage of the piezoelectric actuator. 

The next step was to design a dynamic observer for the stability 
of the closed-loop system. This could be obtained by treating ��3 , �3  as if they were ��, �  in the feedback control law design.  

Using the weight matrices �L = �[×[ and �L = 10'\, the 
optimal observer gain vector was found to be 

 

� =
MNN
NO −18.0170.878124.49131.587−116.898XYY

YZ
                                                                     (24) 

 
The controller and the optimal observer were then implemented 

and the results are presented in the following section. 

Experimental Results 

The time-domain results of the control experiment are given in 
Fig. 7. Figure 7(a) shows the open and closed-loop responses of the 
sensor voltage, and Fig. 7(b) shows the corresponding control voltage. 
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Initially the controller was turned off and the results of this 
test are shown in Fig. 7(a). It can be seen that the damping in the 
system was quite light as the vibration took a long time to decay 
away. Close examination of the time response showed that the 
beam was vibrating primarily in its fundamental mode, and the 
damping ratio for this mode was estimated to be about 0.06. The 

experiment was then repeated, but this time with the controller 
turned on. From Fig. 7(a), it can be seen that the vibration decays 
away much more quickly demonstrating the effectiveness of the 
controller. The damping ratio in this case was found to be about 0.2. It is thus clear that the main effect of the control was to add 
more damping to the system. 

 
 

 

Figure 6. Simulink® block diagram of the controller. 

 

 
(a) 

 
(b) 

Figure 7. Time histories from the control experimen ts in which an impulsive force was applied to the e nd of the beam using a hammer. (a) Voltage from 
the PVDF sensor, (b) control voltage applied to the  PZT actuator.  

 
Figure 8 shows the experimental open-loop and closed-loop 

frequency response functions determined from the time histories 
shown in Fig. 7(a) and the time history of the force applied to the 
beam using the instrumented hammer. It can be observed that the 
control system reduced the vibrations in the frequency range 
containing the first two modes, with the dominant effect being on 
the first mode of vibration, as discussed above. The vibration 
reduction level was smaller for the second mode due mostly to the 
actuator location. In Abreu et al. (2003), the problem of choosing 
the optimal location of the actuator for the maximization of the 
control energy applied in each mode of vibration is discussed. 

Another relevant aspect that can be mentioned is that the LQR 
controller does not guarantee disturbance reduction at other 
locations along the beam. One of the studies undertaken to 
guarantee this important performance requirement was presented by 
Abreu and Ribeiro (2003), who developed a robust controller that 
minimizes the effect of disturbances over an entire beam. 

Conclusions 

This paper has described the system identification, controller 
design, and subsequent implementation to control the vibration of an 
aluminum beam, in which a PZT patch was used as a control actuator 
and a PVDF patch was used as the vibration sensor. The controller 
was designed by solving a standard optimal control problem, and 
required a state-space model of the system. This model was obtained 
using the OKID/ERA system identification technique, using input and 
output vibration data from the beam. Two modes of the beam were 
controlled. From the experimental results, it was observed that 
satisfactory performance of vibration attenuation was achieved. 
Although the system identification and control methodology was 
demonstrated on a simple one-dimensional structure in this paper, it 
can, in principle, be applied to more complicated structures with 
multi-input-multi-output control systems. 
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(b) 

Figure 8. Open- and closed-loop transfer functions of the beam in which 
an impulsive force was applied to the end of the st ructure using a 
hammer. (a) Magnitude, (b) phase. 
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