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Petroleum Reservoir Uncertainty 
Mitigation Through the Integration 
with Production History Matching 
This paper presents a new methodology to deal with uncertainty mitigation using observed 
data, integrating the uncertainty analysis and the history matching processes. The 
proposed method is robust and easy to use, offering an alternative way to traditional 
history matching methodologies. The main characteristic of the methodology is the use of 
observed data as constraints to reduce the uncertainty of the reservoir parameters. The 
integration of uncertainty analysis with history matching naturally yields prediction under 
uncertainty. The workflow permits to establish a target range of uncertainty that 
characterize a confidence interval of the probabilistic distribution curves around the 
observed data. A complete workflow of the proposed methodology was carried out in a 
realistic model based on outcrop data and the impact of the uncertainty reduction in the 
production forecasting was evaluated. It was demonstrated that for complex cases, with a 
high number of uncertain attributes and several objective-function, the methodology can 
be applied in steps, beginning with a field analysis followed by regional and local (well 
level) analyses. The main contribution of this work is to provide an interesting way to 
quantify and to reduce uncertainties with the objective to generate reliable scenario-based 
models for consistent production prediction. 
Keywords: reservoir simulation, uncertainty mitigation, history matching, production prediction 
 
 

 

Introduction
1
 

The geological, reservoir, economic and technologic 

uncertainties influence the management decisions of hydrocarbon 

reserves and of future development plans. Consequently, the 

quantification of the impact of these uncertainties provides an 

increased reliability of this process. 

The uncertainty term states the degree of knowledge about the 

properties of the system under analysis. The risk concept indicates 

the objective-functions (OF) variability of the problem, obtained 

from the probability analysis of the possible scenario-based models. 

In the context of this work, the OF indicates the misfit between the 

observed production and pressure data and the simulated data of the 

corresponding models. The cumulative distribution of the objective-

function probabilities is a density curve, known as uncertainty 

curve, which allows determining the history matching quality for the 

analyzed possible models. 

The scarcity of quality information makes the construction of a 

dynamic model difficult, making it necessary its calibration derived 

from the productive response measured in the field. The history 

matching is an inverse problem, in which different combinations of 

the reservoir‟s parameter values can lead to acceptable responses, 

especially when the degree of uncertainty of these parameters is 

high. The problem tends to worsen in the cases when the history 

period is short. Even though different solutions provide reasonable 

confidence comparing with observations, any one of them could 

produce a different prediction, leading to a range of distinct 

responses. 

The methodology used in this paper leads to the detection of 

calibrated models within the range of defined acceptability. The 

integration is made gradually, proceeding through stages (global, 

regional and local), for the different attributes and the identified 

objective-functions (OF). The objective is seeking to reduce the 

occurrence probabilities of those scenarios that do not present a 

good matching and, consequently, increase the probabilities of the 

models which have performed close to the history. This paper 

presents methods that make possible a redefinition of the values of 

the studied uncertain attributes, allowing a reduction of the 

uncertainty in the history matching stage as well as in the 

prediction period. 

                                                           
Paper accepted November, 2010. Technical Editor: Celso K. Morooka 

The uncertainty inherent to dynamic modeling of a reservoir 

depends on several factors. One of them is a consequence of the 

model‟s own error in trying to represent a reality. Other factors are 

caused by random nature and insufficient static and dynamic data. 

The uncertainties are analyzed taking into account that knowledge 

of the reservoir is only partial, using, in the initial phases of 

exploration and discovery of a field, indirect information, having 

few, sparse direct data. From the field development up to its 

abandonment, new information about the reservoir is added, but the 

knowledge is always partial and incomplete. Thus, it is necessary to 

incorporate a probabilistic approach in the history matching and 

predictions of production with uncertainty. 

Traditionally, the uncertainty analysis is applied in the initial 

stages or in the prediction phase; however, the advance was small in 

the use of this analysis in history matching studies. Obtaining the 

best deterministic matching is not the target of the proposed 

methodology, but rather reflecting on how the history data makes 

possible the mitigation of uncertainties. 

The objective of this paper is to apply and improve, in more 

complex reservoir model, the methodology proposed by Maschio et 

al. (2005) and Moura Filho (2006), originally developed in a simple 

model. The static and dynamic data, detected in the uncertainties 

analysis workflow, are included through a consistent methodology 

that permits integration of probabilistic analyses of the uncertain 

attributes with the history matching process. 

Nomenclature 

A = reservoir uncertainty attribute 

A0 = probable level attribute 

A1 = pessimistic level attribute 

A2 = optimistic level attribute 

A0N = new probable level attribute 

diobs = observed data (history) 

disim = simulated data (calculation) 

D = sum of misfit 

Ds = sum of square misfit 

Dn = sum of misfit of all models of the level n 

OF = objective-function 

Li = attribute inferior limit  

Ls = attribute superior limit 
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LiN = new attribute inferior limit  

LsN = new attribute superior limit 

k = total number of uncertainty levels 

Mn = number of models of the level n 

NS = simulations number 

NTG = net-to-gross ratio 

Np = standard cumulative oil (m3) 

Pn = probability of the level n 

P[A0] = probability of the level A0 

P[A1] = probability of the level A1 

P[A2] = probability of the level A2 

p = reservoir pressure (kPa) 

pwf = bottom hole pressure (kPa) 

Q = standard oil production rate (m3/d) 

Qo = standard oil production rate (m3/d) 

Qw = standard water production rate (m3/d) 

Sn  = symmetry of the level n 

S0  = symmetry of the level A0 

S1  = symmetry of the level A1 

S2  = symmetry of the level A2 

t = time (days) 

wQw = weight for water production rate in well’s OF 

wpwf  = weight for bottom hole pressure in well’s OF 

Wp  = standard cumulative water (m3) 

Literature 

The first papers presented in the technical literature combining 

probability analysis procedures of static and dynamic data with a 

variety of scenarios date from the 1990‟s. The multi-disciplinary 

approach to history matching combined with uncertainty analysis is 

rather recent (approximately 8 to 10 years) and there is a variety of 

treatments in the literature. Roggero (1997); Christie et al. (2002) 

and Kashib and Srinivasan (2006) proposed methods based on 

conditional probabilities, following the Bayesian formalism, to 

update the distribution of geologic attributes taking into 

consideration the additional information contained in the dynamic 

responses of the observed variables. 

The combination of geostatistical modeling and the recorded 

history values is discussed by Bissel (1997); Bennett and Graf 

(2000) and Jenni et al. (2004). The uncertainties of fields in 

production are estimated by means of generating multiple reservoir 

models and evaluating the history matching through the respective 

gradient information, demanding a large computation effort. The 

practical use can be limited depending on the complexity of the 

models. Zabalza-Mezghani et al. (2004) present several options for 

the uncertainties management based on techniques of experimental 

design, construction of proxy-models and the combined use of 

geostatistics. The method consists in obtaining multiple history 

matching considered probabilistically equivalent by the stochastic 

proximity, and then extrapolated for the prediction under uncertainty 

analysis. 

Lépine et al. (1999) propose a practical method, although 

restrictive, to calculate the effects of the uncertainties during the 

prediction period. From a single history matched simulation model, 

using gradient minimization techniques, the base values of attributes 

that permit the solution are slightly disturbed. Then, the 

modification of the selected gradients allows a range of possible 

future production profiles to be obtained. Landa and Guyaguler 

(2003) proposed the use of the gradient information of uncertainty 

attributes to determine the influence of the uncertainties and the 

subsequent construction of response surface at the end of the history 

period. Proxy-models are also used to reduce the computational 

effort required by the combination of a large quantity of uncertainty 

attributes to reach the representative models. Along the same line 

are the works of Manceau et al. (2001). 

The joined matching of production data with seismic attributes 

is the line of study begun by Guérillot and Pianelo (2000). Litvak et 

al. (2005) presented an article for the estimation of the degree of 

prediction variation by means of production and seismic data. The 

neighborhood algorithm was applied to select the matching 

parameters in each simulation. Varela et al. (2006) used the seismic 

amplitude data and analyzed its influence on production 

performance to reduce the prediction uncertainties. When the 

authors evaluated the range of production predictions, it was 

observed that the seismic amplitude data do not improve uniformly 

the variability of predictions for water breakthrough time in 

production wells. 

The use of statistical methods is another analytical line. Gu and 

Oliver (2004) applied the Kalman filter method to obtain automatic 

multiple history matching for subsequent estimation of the 

predictions uncertainty. Alvarado et al. (2005) pointed out the 

importance of quantification of uncertainty in production 

predictions. A procedure that considers probability distribution of 

the prediction period based on the quality and weight attributed to 

the matching of a defined objective-function for the history period 

was proposed. Other papers along the same research topic are from 

Williams et al. (2004) and Ma et al. (2006). Queipo et al. (2002) 

present a methodology based on the use of artificial neural networks 

on efficient global optimization, for the calculation of the spatial 

distribution of permeability and porosity in heterogeneous reservoirs 

with multiple fluids through the calibration of available static and 

dynamic data. Reis (2006) also uses artificial neural networks to 

combine risk analysis with history matching. 

Based on the use of optimization algorithms, Nicotra et al. 

(2005) and Rotondi et al. (2006) showed methods of production 

prediction and uncertainty quantification using neighborhood 

algorithms, consisting of stochastic sampling algorithms, in search 

of an acceptable matching of the observed data. Also, using the 

neighborhood algorithm in conjunction with a geostatistical 

multiple-point process was the suggestion of Suzuki and Caers 

(2006), in whose paper each scenario was quantitatively described 

by a training image and a geological model execution, both 

stochastically generated. 

From the bibliographic review, it can be deduced that the 

combined analysis of uncertainty and risk with history matching is a 

subject that has various, recent approaches. In the methodology 

showed in this paper, improved by Becerra (2007), the main 

differences in relation to the discussed methods are centered on the 

techniques of uncertainty quantification, on the OF used and on the 

way the degree of knowledge in certain areas of the reservoir is 

conditioned through the observed data. 

Methodology 

The main idea is to reduce the uncertainties as much as possible 

within boundaries set by the quantity and quality of the observed 

data. Consequently, the conditioned probabilistic analysis allows a 

quantitative integration approach. Three methods are presented, 

based on probability redistribution. In Method 1, there is a change in 

the initial probabilities assigned to the levels of uncertainty of the 

attributes. In Method 2, those uncertainty levels that produce great 

mismatch are discarded, reducing the number of possible scenarios. 

Method 3 implies the use of acceptance and evaluation criteria that 

conduct a reduction of the uncertain attributes variation range 

considered. The proposed methodology is more appropriate for 

petroleum fields in intermediate stages of production, in which a 

reasonable quantity of information is available, but, even so, a high 

degree of uncertainty exists in the description of the reservoir. 
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Original methods 

Several scenarios of the reservoir are obtained from the 

combinations of the most important uncertain attributes. Fig. 1(a) 

shows a general view of the procedure. The upper left frame illustrates 

an example of an uncertain attribute represented by a probability 

density function with three discrete levels. The graph also illustrates 

the probability redefinition of the discrete levels. The extreme values 

of the levels represent the initial variation range associated with a 

probability distribution. The lower left frame shows examples of the 

obtained cumulative probability curves, being that the central vertical 

line represents the history data. The frames to the right present the 

redefinition of the distributions and the effect on the production 

profile during the history and prediction period.  

The uncertainty quantification was carried out through 

derivative tree technique using reservoir simulation (Maschio et al., 

2005); however, other techniques could be used (neural networks, 

experimental design combined with surface response, Monte Carlo 

simulation, etc). The levels of the uncertain attributes are combined, 

such that each branch of the tree results in a different simulation 

model. Thus, ba models are generated, where „b‟ is the number of 

levels and „a‟ the number of attributes (Schiozer et al., 2005). For 

example, for four attributes each with 3 levels of uncertainty, the 

total number of simulations will be 34 = 81. The inclusion of one 

more variable, also with three levels, elevates the number to 35 = 

243. This makes evident the importance of sensitivity analysis, in 

order to identify the more critical uncertain attributes and to limit 

the total number of simulations. 

 

 

Figure 1. General aspect of the methodology (a) and examples production 
profiles (b). 

 

The OF is defined according to the following equations: 
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In the above equations, N is the number of observed data. The 

quotient D/|D| in Eq. (1) defines the sign of mismatching, indicating 

the position of the simulated data in relation to the observed data, an 

important concept for the next steps. 

Method 1 uses the deviation distances calculated between the 

simulation models and the observed data for redistributing the 

probabilities of the attribute levels. The new probability for each 

level is calculated in accordance with the following equation: 
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The subscript n identifies one of the discrete levels considered 

(0, 1 or 2 in the case of 3 levels, k = 3), while Dn and Sn are 

calculated by means of: 
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In Eq. (4), Eq. (5) and Eq. (6), k is the number of discrete levels 

of the analyzed attribute, Mn is the number of models referred to the 

level n and the term Dn is the sum of deviation distances squared 

(Ds) of the Mn models during the history period considered. Sn factor 

represents a concept introduced as a measure of symmetry. It 

provides a greater probability value for those models better 

distributed around the production history curve. The sum (from j = 1 

to Mn), in Eq. (5) is a global indicator of deviation above or below 

the values observed in the scenarios corresponding to the level n.  

Consequently, the value of Sn varies between –1 and +1, zero 

being the value that indicates a curve distribution centered with 

respect to the history data. The value –1 indicates that all the curves 

are above the history data, and +1 that the curves are below the 

same. From the previous affirmation, it can be deduced that values 

close to zero have greater influence on the calculation of the 

respective value of Pn. In Eq. (4), the factor (1/ Sn) represents the 

degree of relative importance or weight of the group of curves for a 

given level. In the original work, a limitation for this factor is 

considered, with a maximum value of five, to avoid attributing very 

high weights and, consequently, to avoid excessive influence of the 

same: 
 

511 
nS

 
                                                (7) 

 
From Eq. (7), the value of module |Sn| varies in the interval from 

0.2 to 1. Figure 1(b) exemplifies the distribution of the observed 

data with respect to the curves of possible reservoir models 



Gustavo Gabriel Becerra et al. 

150 / Vol. XXXIII, No. 2, April-June 2011   ABCM 

classified according to an uncertain attribute. The yellow points 

represent the production history. The curves in red are all located on 

the same side (below) of the history data, thus they present an S 

value equal to +1. The curves in green and in blue, however, are 

distributed around the production history and, for this reason, 

present S values that vary from –1 to +1. Even so, because the group 

of curves in blue presents greater symmetry around the history, their 

respective factor S value is closer to zero. 

Figure 2 illustrates the aim of Method 1. The example 

schematizes the theoretic curves obtained from 9 scenarios derived 

from the combinations of two defined attributes with three defined 

levels. The three groups of curves represent the combination of the 

three levels of attribute A (A0, A1 and A2) with each level of 

attribute B. Level A2 receives the greatest probability because of the 

proximity of the corresponding models to the observed data. In the 

opposite direction, level A1 has a lower probability. 

Method 2 consists of the elimination of one or more uncertainty 

levels of the attribute being considered and a redistribution of the 

probabilities resulting from this elimination. For a discrete level to 

be eliminated, it must satisfy the conditions expressed in Eq. (8) and 

Eq. (9). 
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and 
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If the simulated curves are entirely asymmetric with respect to 

the history and if the occurrence probability of the level is less than 

10%, this level is eliminated and the probabilities are redistributed 

to the remaining levels of that parameter. Considering the example 

of Fig. 2, level A1 is discarded and the values of the occurrence 

probabilities of the remaining levels are recalculated. 

Finally, Method 3 consists in the redefinition of the uncertainty 

levels, in conformity with the curve distribution of the models 

relative to each attribute level. Following the example of Fig. 3(a), 

the new levels are calculated by Eq. (10) and Eq. (11). 
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The new probable level is calculated as: 
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Considering the example shown in Fig. 3(b), the new probable 

level is calculated as follow: 
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and the new upper and lower limits are given by: 
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With the calculation of the new limits and most probable level, 

according to the triangular distribution, the new pessimistic and 

optimistic levels (A1
N and A2

N) are obtained. There are several 

possible conditions for obtaining the new values of the uncertainty 

attributes of the reservoir with triangular distribution. The same 

considerations are valid in the case of adoption of other types of 

probability distributions (normal, lognormal, and uniform, among 

others). 

 

 

Figure 2. Schematic representation of Methods 1 and 2. 

 

 

 

Figure 3. Method 3: redefinition of attribute limits. 

 

The attempt is made to modify the uncertainty curve of the OF 

being studied, by the application of these methods, in the direction 

presented by Fig. 1(a) (left down picture), or in other words, bring it 

closer to the vertical axis representative of the history. Several 

attempts were made for the calibration and practical application of 

the methods for a complex model. 

Proposed changes 

The following items are improvements proposed to the 

methodology presented initially by Moura Filho (2006): 

a) Choice of local objective-function: It is suggested, for local-

level analysis, the combination of variables Qw (water rate) and Pwf 

(bottom-hole pressure) measured in the wells (Moura Filho used 

only Qw). Equation (16) presents the OF used for wells history 

matching. It contains different factor of relative weight for each 

variable, as a function of its validity and degree of importance. 
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where wiQw and wiPwf are weight for water rate and bottom-hole 

pressure, respectively. 

b) Probabilistic scenario treatment: modifications are made of 

the original formulation. 

c) Definition of the target uncertainty range: This allows for 

evaluation as to whether the uncertainty reduction process should be 

refined. 

d) Case analysis before and after uncertainty reduction: an 

evaluation of the integration consistency at this point permits 

restarting the process at the well or regional level. This indicates the 

interactive character of the methodology. 

e) New sensitivity analysis: other variables having been 

discarded originally could influence the OF at this stage. This 

analysis is made to reinstate the convenience of including additional 

attributes in the process and re-start a new step. 

f) Uncertainty reduction analysis of the predictions: calculation 

of the uncertainty range reduction after application of the proposed 

methods on the predictions of main variables of the model. 

Method modifications 

After applying the original equations, several alterations 

attempts were made on weights and calculations of new associated 

probabilities to apply the methodology to a complex case. The 

weights act on the alteration of probabilities of the uncertainty levels 

and the variation of attribute values. At the stage of OF global 

evaluation, the effects of attribute uncertainty reduction act together, 

cumulating the dislocations on the newly generated uncertainty 

curve. Figure 4(a) schematizes a situation in which the uncertainty 

curve obtained after application of Method 1 manifests an 

undesirable effect caused by an increase in relative uncertainty for 

positive values of the OF between 0 and 40% approximately. 

Positive OF values mean that the values calculated are smaller than 

the observed values. 

Thus, it is necessary some revision or variation on the weights 

assigned to these models, in which calculated curves are below the 

history values. The selected variation criterion is related to the 

standard deviation of misfit distances calculated for all the analyzed 

models, in relation to the chosen OF variable during the history 

period. Additionally, the models should be arranged according to the 

pessimistic, optimistic and most probable levels, beginning with the 

attribute of greatest sensitivity and continuing with the remaining 

attributes. Thus, for each analyzed attribute, the standard deviation 

is calculated as: 
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The smallest standard deviation value also corresponds to the 

attribute with the greatest 1/S value. Next, an Fn factor based on the 

inverse of standard deviation of each uncertain level permits the 

modification of initially calculated probabilities Pn. In this manner, a 

smaller weight is given to the levels originally of greater importance 

in the combined models with positive OF values. 
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where nA is the number of chosen attributes.  

The new probabilities are calculated according to Eq. (21), in 

which the factor Fn is the proposed change in the original manner of 

calculating Pn shown in Eq. (4). 
 

n
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In Figure 4(a), the effects of the applied correction on the 

uncertainty curve are also shown. At the global evaluation stage of 

OF, the effects of attribute uncertainty reduction act in conjunction 

on the newly generated uncertainty curve. 

The improvement of this method also produces a similar effect 

on the subsequent methods. Thus, Methods 2 and 3 are modified 

beginning from the use of Pn
mod and the new weights are calculated. 

Modified Method 3 is defined from the parameters obtained in 

Method 1 corrected, following the explained procedure. The 

variation of limits is only applied on those attributes having great 

weight variation, being that it is readily possible to obtain an 

uncertainty curve that is centered in relation to the OF value of zero, 

however, slightly more inclined. Figure 4(b) exemplifies the shift of 

the uncertainty curve from Method 3. 

 

 
(a) 

 
(b) 

Figure 4. Theoretic uncertainty curves: correction of cumulative effects (a) 
and comparison of the methods (b). 
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Definition of an uncertainty range target 

 This range should be based on the value of the objective-

function of the curves considered as acceptable limits, selected 

according to the value of a percentage of the total range between the 

extreme cases considered. In the example of Fig. 5(a), the maximum 

negative dispersion is calculated from the difference between the 

history matching corresponding to the smallest value of the OF with 

a negative sign (Min. OF Neg. Matching red curve) and the history 

matching that corresponds to the maximum negative OF value 

(Maximum OF Neg.). Thus, the maximum positive range is 

calculated from the difference between the matching corresponding 

to the smallest OF value with a positive sign (Min. OF Pos. OF 

Matching blue curve) and the matching corresponding to the 

maximum negative value acceptance (Maximum OF Positive). From 

the calculation of these extreme ranges and by means of the choice 

of an acceptance percentage of each total range for each sign, it is 

possible to identify the acceptable limits. These limits have OF 

values of the closest models within an acceptable tolerance limit 

(Negative Acceptable Limit and Positive Acceptable Limit). Figure 

5(a) shows an example for the case of a specific percentage choice 

of the total range. Thus, after the identification of the 

aforementioned cases, the calculated limits can be plotted on the 

uncertainty curve graph, permitting the qualitative and quantitative 

measurement of the degree of uncertainty reduction reached through 

the application of the methods (Fig. 5(b)). 

 

 

 
Figure 5. Definition of an uncertainty range target: selection of bound 
models (a), target range and uncertainty curves (b). 

Integration of global, regional and local stages 

An interactive five phase‟s process is proposed, in the scope of 

the reduction uncertainty and evaluation, from this procedure. 

Phase 1: Application of the described methods, over the chosen 

OF with global scope, until obtaining acceptable results (Fig. 6(a)). 

In this way, through an interactive process, new simulations are 

performed directed by Method 3 until an acceptable reduction is 

reached. As a result, a range of curves of global production smaller 

than the initial dispersion is obtained, and this range is positioned 

around the observed data. 

Phase 2: In this phase, the local stages of history matching 

integration at the regional and well levels begin. In Fig. 6(b) the 

process is schematized. Matching by zones is performed, proceeding 

from the choice of the best global matching from the previous 

phase. In this phase, manual or automated history matching 

methodologies can be used. 

Phase 3: All the modifications at the regional and well levels, 

explored at the previous stage, are considered. Obtaining new 

combinations of models, considering the uncertainty still present in 

the zones where little information is found, permits evaluation of the 

degree of uncertainty based on the observed data. Figure 7(a) 

illustrates the final profiles obtained after the reconstruction of the 

derivative tree with improved local matching. 

Phase 4: It is necessary to keep control of the results obtained to 

be in accordance with the acceptable limits determined in the 

beginning of the process. This evaluation phase is critical. If the 

uncertainty curves obtained in the previous phases are not included 

in this range, the whole process can be started again, this being the 

interactive character of the methodology. 

Phase 5: A final range of uncertainty of the dynamic 

performance of the reservoir in the prediction period is reached 

(Figure 7(b)). The models corresponding to the percentiles 10% 

and 90% (although other percentiles can be chosen) of the 

uncertainty curve accepted in the previous phase are appropriate 

indicators for future performance with uncertainty, after applying 

the methodology. 
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Figure 6. Integration of global (a) and local analysis (b). 

 

 

 

 

Figure 7. Schematic final dispersion in history period (a) and in prediction 
period (b). 

 

Summarizing, the main changes and improvements in the 

methodology presented originally by Maschio et al. (2005) and 

Moura Filho (2006) are: 1) Equation (4) was changed (see Eq. (21)); 

2) the use of local objective function; 3) the definition of a target 

uncertainty range; 4) the integration of global and local analysis and 

5) the application to a more complex case. 

Application 

The methodology was applied in a reservoir model based on 

outcrop data from Brazil, including well information and seismic 

interpretations of analog fields in turbidity systems deposited in 

deep water. The data were treated, qualitatively and quantitatively, 

for the parameterization of the reservoir. The chosen objective-

function is based on monthly water production for the evaluation at 

global level; however, special attention was given to the well 

bottom-hole pressures in the phase of local application. 

The modeled depositional elements are channels, lateral deposits 

and hemi-pelagic shales, which represent pauses in the dominant 

sedimentation process of a turbidite system in deep water. The 

petrophysical parameters (porosity and permeability) were attributed 

from correlations with the net-to-gross ratio (NTG), the values being 

representative of the typical range of existing reservoirs of the 

Brazilian continental platform (Silva et al., 2005). The refined static 

model obtained has a grid with 217 x 275 x 6 blocks, with 12 

vertical wells, 7 producers and 5 injectors. This model permitted the 

generation of the synthetic production data taken as reference, for a 

period of 10 years. This data was subjected to a random noise to 

represent the common production measurement errors. 

Finally, to reproduce the typical conditions of model building in 

real conditions a second model was constructed from the refined 

geologic model, to represent the dynamic behavior of the reservoir. 

The size of the coarse grid model is 43 x 55 x 6 blocks, and with the 

purpose of changing the original geological conditions, the 

parameters of the considered elements in each layer were modified 

following other depositional patterns typical of this environment. 

Figure 8 shows a three-dimensional view of the corner-point grid 

used with the spatial distribution of porosity. 

After the choice of the uncertain static and dynamic attributes, 

their global and local influence on the model is evaluated. Each 

uncertain attribute is discretized into three levels with a probability 

of 20%-60%-20% considering a triangular probability distribution 

function. Table 1 lists the most probable values and the pessimistic 

and optimistic levels of the considered attributes. The listed extreme 

values were used in the sensitivity analysis. 

 

 
Figure 8. Three-dimensional view of the model studied (porosity). 
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Table 1. Description of the uncertain attributes. 

Attribute 
Representative 

Values 
Description 

NTGf0 (0.6) 
Net to Gross ratio (poor 

reservoir zone) 
NTGf1 (0.2) 

NTGf2 (1.0) 

Ka0 (2.0) 
Absolute permeability 

multiplier sandstone zone  
Ka1 (1.0) 

Ka2 (3.4) 

Kf0 (0.65) Absolute permeability 

multiplier (poor reservoir 

zone) 
Kf1 (0.30) 

Kf2 (1.00) 

KK0 (0.12) 
Vertical vs. horizontal 

permeability ratio 
KK1 (0.05) 

KK2 (0.35) 

Vma0 (1.20) 
Porous volume multiplier of 

sandstone zone 
Vma1 (0.85) 

Vma2 (1.55) 

VMf0 (0.85) 
Porous volume multiplier 

(poor reservoir zone) 
VMf1 (0.61) 

VMf2 (1.10) 

Kra0 (0.40) 
Relative permeability of the 

sandstone 
Kra1 (0.26) 

Kra2 (0.54) 

Krf0 (0.60) 
Relative permeability (poor 

reservoir zone) 
Krf1 (0.40) 

Krf2 (0.90) 

BAR0 (0.50) 

Horizontal barriers BAR1 (0.00) 

BAR2 (1.00) 

RIJ0 (1.25) 
Horizontal permeability 

anisotropy 
RIJ1 (1.00) 

RIJ2 (1.75) 

BARK0 (0.65) 

Vertical seals BARK1 (0.40) 

BARK2 (0.88) 

PVT0 (790) 

Oil density PVT1 (725) 

PVT2 (855) 

Results 

The analysis of the history matching quality is performed in two 

ways: 1) from the production curves, by observing the reduction of 

dispersion and comparing it with the observed data and 2) by 

obtaining the OF‟s cumulative probabilities curve (uncertainty 

curve). In this case, the reduction of the uncertainty degree, after 

application of the methodology, can be evaluated in function of the 

dispersion around the zero axis, taking into account the target 

uncertainty range.  

Initially, a comparison among the methods presented by 

Maschio et al. (2005) and Moura Filho (2006) and the modified 

methods proposed in this paper is depicted in Fig. 10. This figure 

shows the improvements in the uncertainty curves obtained. 

Additionally, it was also done an analysis of production 

predictions. From the five critical attributes selected from the 

sensitivity analysis, discrete in three levels of uncertainty, 35 = 243 

simulations were necessary. In Fig. 9(a) the water production 

curves, grouped following the Vma levels (porous volume in the 

reservoir zone), are presented as an example. Similar curves are 

made for all the attributes and, to make the process automatic, the 

curve differences are quantified and used for the probability changes 

of the attributes. 

The new probability value calculated by Method 1 for Vma1 

(pessimistic) is 5.4%, for Vma0 (probable) is 11.7% and for Vma2 

(optimistic) is 82.9%. It can be seen that the green curves 

corresponding to the optimistic level of Vma are closer to the 

recorded data. Figure 9(b) shows the uncertainty curves that 

indicated the degree of quality of the history matching (the OF 

shows normalized deviation from the history). The uncertainty 

curves obtained by the proposed methods demonstrate a significant 

uncertainty reduction, Method 3 being the most effective. In this 

figure, an acceptance range of 25% with respect to the interval of 

initial variation was considered. 

 

 

 
Figure 9. Probabilistic profiles of total field water production grouped 
according to Vma (a) and target uncertainty range in the case of 25% of 
the total range (b). 

Figure 11(a) shows the new disposition of productive profiles 

obtained from the models constructed after using Method 3 at the 

global level. The deviation reduction with respect to the history data 

is expressive, in addition to being well distributed around the 

observed data for all uncertainty levels. 

Results were also generated for an additional local history 

matching step integrating the global and local matching processes. 

Figure 11(b) shows the profiles obtained after Method 3, at a local 

level, for one well of the model. Great uncertainty reductions in all 

the wells were obtained with the application over an OF with global 



Petroleum Reservoir Uncertainty Mitigation Through the Integration with Production History Matching 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2011 by ABCM April-June 2011, Vol. XXXIII, No. 2 / 155 

scope; nevertheless, as it is evident in the case of well PROD5, the 

global uncertainty reduction is insufficient to improve the local well 

matching. This situation shows the necessity of a second stage to 

correct local matching. Including these data in the analysis permits 

obtaining probabilistic profiles more centered on the history data of 

each well, although there continues to exist uncertainty in the model 

because of the lack of data in the regions between wells or in 

underdeveloped regions, where sampling is not direct. 

Two different approaches were taken. In the first approach, the 

identification, at the regional level, of the wells with more 

influential overlapping attributes was proposed, in order to 

subsequently reinitiate the application of the methodology over this 

region, permitting the reduction of uncertainty around each well. 

Finally, in each well‟s influence area, it is selected a combination of 

uncertain attributes having lower OF values derived from the 

application of this method. In the second approach, more traditional, 

the zones close to the wells are modified locally and individual local 

matching is made without modifying the zones of the remaining 

wells. This approach is not covered in this paper. 
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Figure 10. Comparison of Method 1 and 3 proposed by Maschio et al. (2005) 
and Moura Filho (2006), and Modified Method 1 and 3 (present work). 

 

Different regions were selected by identification of zones with 

high coincidence of attributes that are more influential over the OF, 

based on water production and dynamic pressure of the target wells. 

Then, over each region, the methodology is applied for each well, 

now with the OF defined in Eq. (16), with weight factors wiQw and 

wiPwf with values of 0.75 and 0.25 respectively. The initial uncertain 

attributes chosen are Kv (vertical vs. horizontal permeability ratio), 

Krw (relative sand permeability), Ka (absolute sand permeability 

multiplier), Kf (multiplier of permeability in the non-reservoir zone) 

and VMf (porous volume non-reservoir zone). 

The variation range of some of these attributes was already 

reduced in the global treatment of the previous phase. In the case of 

well PROD3, Fig. 12(a) shows the initial spread of the curves for 

water rate in reference to the 243 simulation models. In Fig. 12(b), 

the curve distribution shown refers to the models matched after 

application of Method 3 modified for the well under analysis. An 

important narrowing of the range of history matching is verified as 

expected. 

 

 
Figure 11. Probabilistic profiles of total field (a) and well PROD5 (b) water 
production after the application of the methodology at global scale. 
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Figure 12. Initial probabilistic profiles of water rate (a) and after the 
application of the methodology at local scale (b). 

 

 

 

 
Figure 13. Final probabilistic profiles (a) and uncertainty curves (b). 

 

The local history matching obtained in the previous phase for all 

selected regions were combined together in the base case 

considering the reduced uncertainty ranges in Phase 1 for the rest of 

the reservoir. Finally, with the same limits identified with modified 

Method 3, the possible combined models are obtained. Figure 13(a) 

presents the final distribution of the probabilistic profiles of total 

water production. The obtained set of curves, with less dispersion 

and well centered in relation to the observed values, represents the 

final solution. The next phase is the result control through the 

definition of target ranges (or acceptable limits) for the process of 

uncertainty reduction. The demarcation limits of the target range are 

shown in Fig. 13(b). The chosen acceptance range, in this case, is 

25% of the total spread. In Fig. 14(a), there are plotted the 

corresponding curves for acceptable limits. 

The uncertainty curve constructed at the end of Phase 3 (Fig. 

13(b)) fits, almost entirely, within acceptable limits, demonstrating 

that the process reached its objectives. This can be confirmed in Fig. 

14(b), by contrasting the chosen limits to the final dispersion of the 

probabilistic profiles after Method 3. 

 

 

 

 
Figure 14. Acceptable limits versus initial dispersion of probabilistic 
profiles (a) and acceptable limits versus final dispersion of probabilistic 
profiles (b). 

 

The reduced ranges of the critical attributes allow to a 

consequent reduction of production prediction spread. The 

prediction of the water rate of the models representing the 

percentiles P10 and P90 is reported in Fig. 15. These models were 

chosen from the uncertainty curve before (Fig. 15(a)) and after (Fig. 

15(b)) the application of the methodology presented in this work. 

Finally, Figs. 16(a) and 16(b) present the values obtained from 

accumulated oil production (millions of m3) and water production 

(millions of m3) for each percentile and according to the applied 

phase. It can be clearly seen a gradual reduction of the difference 

between P10 and P90. 
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Figure 15. Prediction of the models P10 and P90 after (a) and before (b) 
the application of the methodology. 

 

 

  

 

Figure 16. Cumulative oil (a) and water (b) as a function of degree of uncertainty. 

Conclusions 

A consistent and flexible methodology to integrate history 

matching with uncertainty analysis at global, regional and local 

levels in a complex model was presented in this paper. The 

application allows obtaining the following additional conclusions: 

 The used methods permitted: 1) reduction of the range of 

possible history matching; 2) identification and conditioning of 

the uncertainty present as function of the observed data; 3) 

reduction of the uncertainty intervals of the identified critical 

attributes; and 4) demarcation of confident limits for the 

reservoir‟s future performance. 

 The focus on how to approach the history matching, when there 

is a set of highly variable attributes and restricted knowledge, 

was changed, obtaining a defined group of models that 

comprise the possible matching with their associated 

probabilities. 

 The sensitivity analyses permitted the detection of uncertain 

attributes critical to the evaluation of the degree of subsequent 

uncertainty, thus simplifying the problem as well as reducing 

significantly the number of attributes and, consequently, the 

run time. 

 Methods 1 and 2 were faster, as they did not require new 

simulations. A new calibration of Method 1 was necessary. 

Method 3 provided greater uncertainty reduction, yet required 

greater computational effort, compared to Methods 1 and 2. 

 The reduction of global uncertainty did not guarantee a local 

uncertainty reduction. Consequently, it was necessary to take 

into account the interaction between regions. The applied 

methodology permitted analysis by stages, which gives great 

flexibility to application in practical cases. 

 Obtaining representative prediction curves for the reservoir 

(percentiles P10 and P90, for example) permitted an estimation 

of the risk reduction of the considered project performance. 

 The probabilistic approach of the history matching made 

available a broader vision, as it points to several possible 

scenarios in the search for the reservoir‟s real behavior. 

Nevertheless, the final choice of representative scenarios 

depends on the criteria adopted by the analyst. 

 When new data are added to the study, the history matching 

and the predictions can be improved reducing the attribute 

range by the application of the complete proposed flow chart. 
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Considering all the above listed items, the consequence is 

increased confidence in the use of the simulation as an auxiliary tool 

in the decision process. One advantage is flexibility as to the use of 

different uncertainty analysis tools and the definition of distinct 

types of probability distribution in order to mark the levels of the 

uncertain attributes. Another advantage, compared to automated 

processes of model calibration, is to make unnecessary the use of 

sophisticated optimization methods. Equipment with parallel 

processing and software integration makes it possible its application 

to real cases. 

Other methodologies have analogous conclusions or are similar 

in some points covered. In this paper, a general procedure attempts a 

progressive mitigation of uncertainty in all phases of a project, 

incorporating history matching of the model. 

The choice of uncertain attributes levels and their variation 

limits is a crucial step in the process and has to reflect the real 

uncertainties of the problem. The experience of a multi-disciplinary 

team is critical at the beginning of the process, as long as in search 

for representative attributes levels, processed data from analogical 

basins and fields can be very useful. 
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