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Numerical Simulation of Two Dimen-
sional Compressible and Incom-
pressible Flows 
In this article, we make use of a stabilized Finite Element method to solve the complete set 
of Navier-Stokes equations. The methodology adopted is such that it allows for the use of 
different sets of variables, particularly the so called conservative and pressure variables. A 
space-time formulation using a simple augmented SUPG stabilizing term is proposed for 
the particular case of pressure variables. Comparison with data published in the available 
literature is done and a reasonably good agreement is obtained. 
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Introduction 

Computation of fluid flows through the Finite Element Method 
has been the subject of much research over the last decades. The 
development of the methodology to be used throughout this paper 
can be traced back to the SUPG (Streamline Upwind Petrov-
Galerkin) formulation for the simple advection-diffusion equation (a 
milestone reference on the theme is the work of Brooks & Hughes, 
1982). Several attempts to extend the method to systems of equa-
tions can be reported since then, giving rise to different versions of 
SUPG-like formulations and discontinuity capturing operators, 
which are added to account for shocks in the case of compressible 
flows (see, for instance, Hughes & Mallet, 1986 and Shakib et al., 
1991). In addition to that, is the fact that basically two different 
approaches are at sake: one for compressible and another for incom-
pressible flows, this last one usually causing the decoupling of the 
energy balance equation and reducing the number of variables in-
volved. Attempts have been made, however, towards a unified 
approach for both flow regimes (see, for instance: Moussaoui, 2003, 
Mittal & Tezduyar, 1998 and Hauke & Hughes, 1994. For refer-
ences on works using techniques other than Finite Elements only, 
the reader can consult, for example: Gustafsson & Stoor, 1991 and 
Yoon et al., 1998). In this work, we follow the methodology intro-
duced by Hauke & Hughes (1994), introducing a SUPG stabilizing 
matrix made out of two simple terms, one of them suitable for com-
pressible flows and the other, for incompressible flows, in an at-
tempt to deal with the two regimes with a single formulation. The 
resulting approach is such that all the element matrices and vectors 
can be analytically evaluated, whereas in typical formulations, the 
stabilizing term generally needs to be evaluated numerically (Hauke, 
1995). Results show that this approach has given reasonably good 
results, when comparing to others found in the literature, though, 
due to the very simple stabilizing matrix, our formulation has re-
vealed to be over diffusive in both regimes.1 

This paper is divided as follows: first a brief review of the gov-
erning equations is given, followed by the finite element formula-
tion presentation. The drawbacks of the compressible scheme when 
used for incompressible flows, are discussed within the context of a 
formulation which makes use of a predictor-multicorrector algo-
rithm, where an augmented SUPG matrix is, then, proposed. Finally, 
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numerical results are given and compared with results published in 
the literature. 

Nomenclature 

nd = number of spatial dimensions  
u  = velocity, /m s 

ku  = kth component the velocity vector, u  

p  = absolute pressure, 2N m  

e  = internal energy per unit mass, J kg 

vc  
= specific heat at constant volume, ( )J kgK  

pc  = specific heat at constant pressure, ( )J kgK  

x  = spatial position vector, m  
T  = upper time limit , s 
t  = time , s 

rC  = Courant-Friedrichs-Lewy number (CFL) 

M  = Mach number 
I  = open time interval, s 

Q = space-time domain 

n  = vector normal to the spatial boundary, m nd×  

nN  = number of spatial nodes 

eN  = number of spatial elements 

I  = identity matrix of order m 
P  =SUPG perturbation function 
P  = space-time boundary 

eh  = characteristic element dimension, m 

c  = speeed of sound, m / s 
R  = perfect gas constant, ( )/J kgK  

kq  
= kth component of the heat flux vector, /W kg κ

 = thermal conductivity tensor, /W mK 
U  = solution vector in terms of conservation variables 
Y  = solution vector in terms of pressure variables 
V  = set of entropy variables (see Shakib, 1991) 

kF , kD  
= kth component of the advective and diffusive flux 

vector, respectively 

0A  = Jacobian matrix /∂ ∂U Y  

0Ã  = Jacobian matrix /∂ ∂U V  
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kA  
= Jacobian matrix /k∂ ∂F Y  

Greek Symbols 

Ω  = spatial domain 
Γ  = spatial boundary 
θ  = absolute temperature, K 

ρ  = density, 3kg m  

ϕ  = shape function 

 ck = kinetic energy per unit mass, J kg 
v
hkτ  = viscous tension, N / m2 

µ  = dynamic viscosity, NS / m
2  

λ  = second viscosity coefficient, 2/Ns m  τ  = SUPG matrix 

in
τ  = incompressible part of the  SUPG matrix 

cp
τ  = compressible part of the SUPG matrix 

cδ , ,
cδ   = discontinuity capturing operators 

α  = weighting function for the  stabilization parameters 
∆  = discrete increment operator 

khδ   = Kronecker delta ( 1khδ =  if k h=  and 0khδ =  otherwise) 

Subscripts and Superscripts 

,k h    relative to the spatial component of a given vector 
n   relative to the  time step 
e    relative to the element 
,i j    relative to the node and the function numbering 

The Navier-Stokes Equations  

Fluid flows can be mathematically modeled by the Navier-
Stokes equations which, in the absence of body forces and internal 
heat generation, can be written in vector conservation form as 
(Anderson, 1995): 

 

k k

k kt x x

∂ ∂ ∂+ − =
∂ ∂ ∂
U F D

0 , 1k nd= K  (1) 

 
where nd is the number of spatial dimensions, U  is the vector of 
conservation variables, kF is the advective flux vector and kD  is the 

diffusive flux vector. 
Each of these vectors: U , kF  and kD , may be written as a 

function of a general set of variablesY , that is: ( )=U U Y , 

( )k k=F F Y
 
and ( )k k=D D Y . In this paper,Y  will always refer to 

pressure primitive variables, so that: 
 

[ ]1 2
T u u Eρ ρ ρ ρ=U  (2) 

 

 
[ ]1 2

T p u u θ=Y  (3) 

 
where: 

ρ  is the density 

ku  is the kth component of the velocity vector u  

θ  is the absolute temperature 
p  is the absolute pressure 

E  is the total energy per unit mass: 
 

cE e k= +  (4) 
 

In Eq. (4), e  is the internal energy per unit mass. It is related 
with the temperature θ  by: 

 

ve cθ=  (5) 
 

where vc  is the specific heat at constant volume. 

Also, ck  is the kinetic energy per unit mass: 
 

2ck
⋅= u u

 (6) 

 
The advective and diffusive flux vectors are given by: 
 

( )

1 1

2 1

k k
k

k k

k

u u p

u u p

E p u

ρ
ρ δ
ρ δ

ρ

 
 + =
 +
 +  

F  (7) 

 

  

1

2

0
v
k

k v
k

v
h hk ku q

τ
τ

τ

 
 
 =
 
  − 

D , 1h nd= K  (8) 

 

where v
hkτ  are the components of the viscous tensor vτ , kq  is the 

kth component of the heat flux vector q  and khδ  is the Kronecker 

delta. For a Newtonian fluid, we can write: 
 

2

3
v k h k
kh kh

h k k

u u u

x x x
τ µ µ δ

 ∂ ∂ ∂= + − ∂ ∂ ∂ 
 (9) 

 
where µ  is the dynamic viscosity and λ  is the molecular viscosity. 

In Eq. (9), we assumed that the Stoke’s hypothesis was valid, 
that is: 

 

2

3
λ µ= −  (10) 

 
For a detailed description of equations (9) to (10), the reader can 

consult Schlichting (1979). 
It is generally admitted that the viscosity is constant in the case 

of incompressible flows. For compressible flows, specifically speak-
ing of perfect gases in the common regimes of interest, it is possible 
to relate the viscosity with the absolute temperature through the 
empirical Sutherland’s law (see, for instance, Anderson, 1995). 

The Fourier law relates the heat flux with the absolute tempera-
ture: 

 
θ= − ∇q κ  (11) 

 
where κ  is the thermal conductivity tensor. For an isotropic fluid, 
the tensor κ  can be substituted by a scalar value, κ . This assump-
tion will be used hereafter. 

It is important to note that Eq. (1) can also be written in its 
quasi-linear form: 

 

0 k kh

k k ht x x x

 ∂ ∂ ∂ ∂+ − = ∂ ∂ ∂ ∂ 

Y Y Y
A A K 0  (12) 

 
where: 
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0

∂=
∂
U

A
Y

 (13) 

 

k
k

∂=
∂
F

A
Y

 (14) 

 
and khK  is such that: 

 

1

nd

k kh
n hx=

 ∂=  ∂ 
∑

Y
D K  (15) 

 
Expressions for the matrices 0A , kA  and khK  can be found in 

the appendix. 
The two-dimensional Navier-Stokes equations can not be solved 

without a further state equation since there are four equations and 
five variables (ρ , p ,θ , 1u  and 2u ). In this paper, we assume that 

the fluid can be either a liquid or a gas, and make use of the thermo-
dynamic Maxwell relations (Wark, 1995) to obtain: 

 

ppe

p

β α θ
ρ
−∂ =

∂
 (16) 

 

p
p

pe
c

α
θ ρ

∂ = −
∂

 (17) 

 

 p

ρ ρβ∂ =
∂

 (18) 

 

 
p

ρ ρα
θ

∂ = −
∂

 (19) 

 

 

2
p

v pc c
α θ
βρ

= −  (20) 

 

where pc  is the specific heat at constant pressure, pα  and β  

are the isochoric expansivity and the isothermal compressibility, 
respectively, and are given by: 

 

1
p

p

να
ν θ

∂ =  ∂ 
 (21) 

 

  

1

p θ

νβ
ν
 ∂= −  ∂ 

 (22) 

 
where: ν  is the specific volume. 

Equations (16) to (20) are enough to complement the system of 
Navier-Stokes equations. It can be shown that Eq. (20) reduces to 
the perfect gas law: p Rρ θ= , once the hypothesis of a perfect gas 
is made. Equations (16) to (19) are particularly useful for the deter-
mination of the Jacobian matrix 0A  in the case of liquids, when the 

necessary derivatives are not easily obtained from Eq.(20). 

Space-Time Formulation 

A solution ( ),t=Y Y x  for the Eq. (1) is sought in the space-

time domain [ ]0,Q T= Ω × . From this moment on, we define that 

all the approximations to geometric entities, variables and functions 

will be marked with an over “hat”. Having said this, let Q̂  be an 

approximate partition of the domain Q  such that Q̂  is composed by 

1N −  space-time slabs (Shakib, 1991). Figure 1 illustrates the 
partitioned domain. The nth space-time slab partition can be repre-
sented as: 

 

nnn IQ ×Ω= ˆˆ  (23) 
 

where nΩ̂ is the spatial approximate partition at time level n and nI  

is an open time interval. 
The time discontinuous Galerkin approach, which will be used 

hereafter, allows the approximate solution to be discontinuous at 
time level nt . We then define nI  in Eq. (23) as: 

 

] [1,n n nI t t +=  (24) 

 
The whole approximate domain is written as: 
 

 { }Nn

N

n
tttQQ ,...,ˆˆ

10

1

0
UU 









=

−

=
 (25) 

 
Figure 1 also highlights a prismatic element at time level n. The 

elementary domain being: 
 

n
e
n

e
n IQ ×Ω= ˆˆ  (26) 

 

Let us also denote the border of the spatial domain by $Γ  and the 

space-time “border” byP̂ , the superscript e , when used, indicating 
that those entities are taken element-wise. We finally observe that 
nodes need not have the same spatial location at each time level. 
This particularity makes the time discontinuous Galerkin approach 
specially suitable for moving boundary problems (Aliabadi and 
Tezduyar, 1995). 

 

 
Figure 1. A space-time slab. 

A Constant-in-Time Approach 

In order to write the finite element variational form of Eq. (1), 
let h

nS  and h
nV  be, respectively, the set of trial functions and the 

space of weighting functions, taken at time level n and given by: 
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( )[ ] ( ) ( )






 ∈∀=∈= d

n
mh

n PttQCS ,,ˆ,ˆˆˆ 0 xgUUU  (27) 

 

( )[ ] ( )






 ∈∀=∈= d

n
mxmh

n PtQCV ,,,ˆ0 x0WWW  (28) 

 

where d
nP  represents the portion of the space-time border, at time 

level n, where Dirichlet boundary conditions are prescribed. 
The Time Discontinuous Galerkin method can be stated as: 

given n
hV∈W  and ( ) mt ∈ℜg , we search for n

hS∈Û  such that 

(Shakib, 1991): 
 

( )

( ) ( )[ ] 0DFWFD
W

U
W

UUW

=Γ−Γ+Ω−
∂
∂

−Ω








∂
∂−Ω−

∫ ∫∫ ∫

∫ ∫∫

Γ

+

Ω

+

Ω

+

Ω
+

dtdndtd
x

dtd
t

d

nt

nt
kkkkk

nt

nt k

nt

nt
nn

11

1

1

ˆˆˆˆ

ˆˆˆ                

 (29) 

 

where, ( ) ( )11
ˆˆˆ,ˆˆˆ

++ == nkknkk UDDUFF and kn  is the kth component 

of the vector n , normal to the spatial domain. 
 

We approximate the solution vector Û  in the usual manner, that 
is: 

 

∑
=

=
nN

j
jj

1

ˆˆ uU ϕ  (30) 

 
where nN  is the number of nodes in the spatial domain, jϕ  is the 

shape function corresponding to node j  and $ ju  is the nodal value 

of the solution vector Û . Let us also define the nodal solution 

vector $u  as being the nm N×  hypervector containing the solution 

at each node. 
As for the weighting function W , a Petrov-Galerkin definition 

is due, to avoid the well known oscillations and to stabilize the 
method: 

 

( )i iϕ= +W I P  (31) 

 
where I  is the identity matrix and iP  is the SUPG perturbation 

term, given by: 
 τAP 











∂
∂=

k

i
ki x

ϕˆ  (32) 

 
where τ  is the stabilizing SUPG matrix. 

 
The shape function jϕ  may be a polynomial function of x  and 

t , though it is not strictly necessary to be so (see, for instance, 
Bonhaus, 1998). In our work we choose it to be linear in x  and 
constant in t , that is: 

 

 
( )j jϕ ϕ= x  (33) 

 
Such assumption, considerably simplifies the formulation given 

by Eq. (29) since it implies that: 

0
t

ϕ∂ =
∂

 and 
2

2
0

kx

ϕ∂ =
∂

 (34) 

 
Substitution of equations (30) through (34) in Eq. (29) finally 

gives: 
 

( ) ( )

( )[ ] 0
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FD

DFUU

=Ω







∂
∂

∂
∂+








∂
∂+Γ−∆+

+Ω−Ω
∂

∂
∆−−

+

= ΩΓ

+

∑ ∫∫

∫∫

d
xxx

Pitdnt

ddtd
x

td

k

n

k

i
c

eN

e e k

k
kkki

kk
k

j
nni

1

1

�� 1

ˆˆ
ˆˆ

ˆˆ�ˆˆ              

ϕδϕ

ϕ
ϕ

(35) 

 
where 1n nt t t+∆ = −  and cδ  is the shock capturing operator to be 

defined later on. The sum in Eq. (35) is necessary because the stabi-
lizing terms are not defined in the element boundaries.  

Equation (35) can be solved with the use of a predictor-
multicorrector algorithm (Shakib, 1988) (the reader can consult that 
reference for details). By applying a change of variables →U Y , 

and considering the counterpart $y  of the nodal solution hipervector 

$u , the following linear system can ultimately be obtained: 
 

$
i i− ∆ =M y R  (36) 

 
where, for the case of a single correction step in the predictor-
multicorrector algorith, one can write: 

 

 $ $ $
1n n+

∆ = −y y y  (37) 
 
In Eq.(36), the residue iR  and the matrix iM  can be assembled 

from their corresponding elementary counterparts eM  and eR  

which hold the following pattern: 
 

( )y
e a v pg dc dt= + ∆ + + +M H H H H H  (38) 

 

 ( ) ( )ddcpgvnnae t VVVVVUUHR +++−∆+−= Γ+
ˆˆ

1  (39) 

 
The elements of the matrix eM  and of the vector eV  can be 

easily determined for the case of pressure variables. Although their 
expressions will not be given here, it is worth noticing that neither 
the SUPG stabilizing matrix τ , nor the discontinuity capturing 
operator cδ  are well defined for purely incompressible flows, when 

both pα  and β , given by equations (21) and (22) become zero 

(the reader may consult Hauke, 1995, for further details). The key 
for developing a methodology that embraces both compressible and 
incompressible flows, therefore, reside in handling these two terms 
of stabilization in such a way that both limits are well attained. In 
this work, we propose two things: 

a) To make use of an augmented SUPG stabilizing matrix τ , 
given by: 

 

( )1in cpα α= + −τ τ τ  (40) 

 
where the sub-indexes in  and cp  stand for incompressible and 

compressible and α  is a function of the Mach number M  that 
must be such that:  

 

 1α =  when 0M →  and 0α =  when M → ∞  (41) 
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b) To annul the effect of the discontinuity capturing operator 
whenever the flow becomes incompressible. This can be done if we 
replace the operator cδ  in Eq.(35) by the augmented operator 

( )1 cα δ− . 

In Eq.(40), in
τ  is suited for the incompressible limit whereas 

cp
τ  is valid for compressible flows, so that the both extremes of the 

spectrum are covered. 
Hauke (1995) used a full stabilizing matrix for both in

τ  and 

cp
τ . We propose to use a very simple design for cp

τ  and a diagonal 

pressure based in
τ . As will be seen in the numerical examples, such 

an approach gives relatively good results for the usual testing prob-
lems. 

Stabilization Matrices and DC Operator 

Before proceeding, some important definitions are convenient. 
Let X  be a ( ). 1m nd ×  vector and M  be a m m×  matrix. We 

define the following norms: 
 

  
  = ⋅   
    

M

M 0

X X X

0 M

L

M O M

L

 and = ⋅X X X  (42) 

 
Let us also define the gradient of the vector X  with respect to 

the Cartesian coordinates: 
 

( )
1

T

ndx x

δ δ 
∇ =  ∂ ∂ 

X X
X L  (43) 

 
Under the assumption that there is a mapping k kx ε→ , between 

the Cartesian coordinates kx  and the natural coordinates kε , we 

proceed to define the gradient of the vector X  with respect to the 
natural coordinates as: 

 
1

ε
−∇ = ∇X J X  (44) 

 

where 1−J  is given by: 
 

1 1

1

1

1

nd

nd nd

nd

x x

x x

ε ε

ε ε

−

∂ ∂ 
 ∂ ∂ 
 =
 

∂ ∂ 
 ∂ ∂ 

J

L

M O M

L

 (45) 

 
Making use of these definitions, let us first write an expression 

for the discontinuity operator. We have chosen to follow Aliabadi & 
Tezduyar (1986) and use the following expression for cδ , slightly 

modified in order to accommodate only compressible flows: 
 

( )
1

0

1
0

2

2

0

1

k
k

c

x

ε

δ α
−

−

∂
∂

= −
∇

Ã

Ã

Y
A

A Y
, 1k nd= K  (46) 

 
where: 

 

1
0
− ∂=

∂
V

Ã
U

 (47) 

 
V  being the set of entropy variables (see, for example, Shakib, 
1988). 

The factor ( )1 α−  in Eq. (46) is very important, since 1
0
−Ã  be-

comes singular in the incompressible limit. 
The SUPG stabilizing matrices are given by (see HAUKE, 1995 

and Aliabadi & Tezduyar, 1995): 
 

( ), , ,in c m m ediag τ τ τ τ=τ  (48) 

 

( ),cp cpdiag i iτ =  
τ  (49) 

 

 
( ) ( ), max 0,cp ai i δτ τ τ= −  (50) 

 
where:  

 

2
e

c

h
τ =

u
 (51) 

 
2

min ,
2 12

e e
m

h hτ
ρ µ

 
=   

 u
 (52) 

 
2

min ,
2 12

e e
e

v

h h

c
τ

ρ κ
 

=   
 u

 (53) 

 

 ( )2
e

a

h

c
τ =

+ u
 (54) 

 

 
( )2

c

c
δ

δτ =
+ u

 (55) 

 
In equations (51) to (54), above, eh  is a characteristic dimension 

of the element. It may be taken as: 
 

e eh A=  (56) 

 
where eA  corresponds to the element’s area. In the previous equa-

tions, we also have that c  is the speed of sound. 

Numerical Examples 

In what follows, a GMRES (General Minimum Residue) solver 
with reverse communication was used to obtain the solution of Eq. 
(36), in the predictor–multicorrector algorithm. The solver was 
obtained as a closed package from the public domain directory of 
CERFACS2 (In French: “Centre Europeen de Recherche et de For-
mation Avancée en Calcul Scientifique”). The code used was copy-
righted in 1998 and is a single precision package. Only a block 
diagonal preconditioner was used with the solver and the GMRES 
tolerance was set 0.01 in all the examples. Also, the dimension of 
the Krylov subspace was set to 50. Only one correction pass was 
used for the predictor-multicorrector algorithm (see Shakib, 1988), 
so, the prefix “multi” may be dropped and we have, in fact, a predic-
tor-corrector algorithm. 

                                                           
2 Current web address: http://www.cerfacs.fr 
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Pressure variables were used in all the examples and, concerning 
the time marching algorithm, we observed the following equation 
for the global time step (Shakib, 1991): 

 

 

r

c d

C
t

f f
∆ =

+
 (57) 

 

where rC  stands for the Courant-Friedrichs-Lewy number (CFL) 

and the coefficients cf  and df  are given by: 
 

c
e

c
f

h

+
=

u
 (58) 

 

2

2 2
max ,d

e v

nd
f

h c

µ λ κ
ρ ρ

 +=  
 

 (59) 

 

Leaky lid driven cavity. This is an example of a totally incom-
pressible flow, where the density ρ  is assumed to be constant. A 
unit square recipient with infinite transversal length contains a 
hypothetic fluid which is driven to the left by the shearing tensions 
caused by the upper lid uniform rightwards motion, as shown in Fig. 
2. The moving lid will produce a whirl inside the recipient (cavity). 
Hauke (1995) solved a similar problem for a Reynolds number of 1 
and of 400 and we intend to compare our numerical results with his 
and with those published by Ghia et al. (1982). The boundary condi-
tions applied are as follows: at the upper lid (C), a unit velocity to 
the right plus a reference temperature were prescribed ( 1 1.0 /u m s=  

and 0Kθ = ), at the side and bottom walls (B, D and A) a non-slip 
condition was imposed and we also prescribed the pressure to be 
equal to zero in the mid point of the bottom wall. The problem 
marches to a steady state from a set of initial conditions which we 
have chosen to be: 0.0 /ku m s= , 0Kθ =  and 0.0p Pa= . The fluid 

properties were all assumed to be equal to the air’s at 293K and 
101325Pa ( 31 /kg mρ = , ( )1005.0 /pc J kgK= , ( )718 /vc J kgK= , 

6 11.0 10 Paβ − −= ×  and 10.0036Kα −= ). The viscosity, however, 
was allowed to vary, to adjust to the Reynolds number in each ex-
ample and the thermal conductivity was also modified under the 
assumption of a constant Prandtl number of 0.75. Then, for Re=1.0 
we have that: 22.0 /Ns mµ =  and 2700.0 /W mKκ =  whereas for 

Re=400, 20.005 /Ns mµ =  and 6.7 /W mKκ = . 
At the two upper corner nodes, the velocity field is discontinu-

ous, and that adds an extra difficulty to the problem. We have cho-
sen to set a linear gradual variation of the speed at the two corners, 
from 0,0 /m s to 1,0 /m s (Lyra, 1994 and De Sampaio et al., 1993). 
For linear shape functions, it suffices to set the speed at the two 
upper corner nodes to 1,0 /m s whereas at their adjacent nodes 
belonging to the side walls, the speed is set to zero.  

x

y

A

D

C

B

1

-1 10

-1  
Figure 2. Domain and mesh used for the driven cavit y problem. 

Figure 2 shows the unstructured mesh that was used. The mesh 
has 3688 triangular elements and 1936 nodes and is somewhat 
refined near the lid to smoothen oscillations in the pressure field 
(Hauke, 1995). A similar sized mesh was used by Hauke (1995) 
though, in his case, the mesh was structured with 40 x 40 square 
elements, slightly refined near the two upper corners. Ghia et al. 
(1982) used a much more refined structured mesh (121 x 121) and a 
multigrid technique to solve the same problem. 

Steady state was reached after 20000 interactions for the case or 
Re=1 and 30000 interactions for the case of Re=400. The average 
global time step could not be chosen arbitrarily. We used 1rC =  

(see Eq.(57)) for Re = 1 and 500rC =  for Re = 400. No conver-

gence was achieved when we tried to use 10rC =  for the case of 

Re=1.0, indicating that there might be a maximum CFL value, over 
which there is no convergence. Figure 3 shows the velocity vectors 
and the pressure isolines obtained. A relatively good agreement is 
found between our results and those published in the literature. The 
oscillations in the pressure isolines near the top lid, which become 
more evident in the case of Re=400 can also be found in other au-
thors’ results (see, for instance, Zienkiewicz et al., 1990). Hauke 
(1995) seems to have reduced these oscillations drastically by mak-
ing a local mesh refinement near the upper left and right corner 
nodes. 

 

 
Figure 3. Velocity and pressure isolines for the ca vity problem (upper: 
Re=1 and lower: Re =400). 

 
The behaviour of the velocity components 1u  and 2u  can be 

seen in Fig. 4 where some local approximate results obtained from a 
visual observation of the charts published in the work of Hauke 
(1995) are plotted for comparison for Re=1. In the case of Re=400, 
our results are compared with the results found in Ghia et al. (1982), 
usually considered as a benchmark for this particular example. We 
observe that there is a somewhat over diffusive behaviour of our 
solution when a comparison is made. This is more clearly seem in 
the case of Re=400 where advective effects become more pro-
nounced and the stabilizing terms have a greater impact on the 
solution. Such over diffusive behaviour can be attributed to the 
simpler SUPG matrix used. Nevertheless, our results show a better 
agreement when compared to those obtained by Zienkiewicz et al. 
(1990), who used a similar mesh.  
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Figure 4. From top to bottom: results for Re=1 (fir st two charts) and  
results for Re=400 (last two charts). 

 
 

Supersonic flow past a flat plate. Next, we give a classic exam-
ple of a compressible flow known as Carter’s problem (Shakib, 
1988). A Mach 3.0 flow of air (considered here as a perfect gas) past 
a fixed flat plate will be studied as shown in Fig. 5. The unstructured 
mesh used consists of 3707 elements and 1940 nodes and it is di-
mensionally equivalent to the mesh found in Almeida (1993), who 
also used an unstructured mesh. 

For the dynamic viscosity, we take the expression for the Suth-
erland’s law given in Almeida (1993): 

 
1.50.906

0.0001406

θµ
θ

=
+

 (60) 

 
The Prandtl number was assumed to be constant and equal to 

0.75. 
The boundary conditions for this problem are, as follows:  
 

• on A ( 0.2 0.0x− ≤ <  and 0.0y = ): 0.0⋅ =u n , 12 0.0vτ =  and 

0.0⋅ =q n  

• on B ( 0.2x = −  and 0.0 0.8y≤ ≤ ): 1 1.0u = , 2 0.0u = , 
42.769 10 Kθ −= ×  and 31.0 /kg mρ =  

• on C ( 0.2 1.2x− ≤ ≤  and 0.8y = ): 1 1.0u = , 2 0.0u = , 
42.769 10 Kθ −= ×  and 31.0 /kg mρ =  

• on D ( 1.2x =  and 0.0 0.8y≤ ≤ ): free flow 

• on E (0.0 1.2x≤ ≤  and 0.0y = ): 1 0.0u = , 2 0.0u = , 
47.753 10 Kθ −= ×  

 
The initial conditions have been chosen to match the values on 

boundary B. 
 

0.0-0.2 1.2

0.8

EA

B

C

D

 
Figure 5. Carter’s problem set up and mesh. 

 
Results are plotted after 3500 interactions when steady-state was 

reached. Figure 6 shows the Mach isolines and figures 7 and 8 show 
the density and temperature variation along the vertical axis which 
passes through 1.0x m= . Again, we notice that our method is more 
diffusive. The discrete points were obtained from Almeida (1993) in 
which the CAU (Consistent Approximate Upwind) method was 
used along with SUPG. 
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Figure 6. Mach isolines for the Carter’s problem. 
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Figure 7. Density variation along the y  axis for x  = 1.0m. 
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Figure 8. Temperature variation along the y axis fo r x = 1.0m. 

Conclusions 

The procedure outlined above has proved to work for solving 
both compressible and incompressible flows with reasonable accu-
racy. The results show that in both regimes, reasonably good agree-
ment is found between our results and those published in the litera-
ture, even with the use of simpler matrices though our results have 
shown to be over diffusive in both cases. There is much place for 
further work, mainly in what concerns to the SUPG stabilizing 
matrix and discontinuity capturing operator. Extension to three 

dimensional problems, which is a natural path from here, is already 
at course.  
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Appendix: Matrices Used in This Paper  

All the matrices below can be found in Hauke (1995). Some pa-
rameters which are used in the matrices are given below: 

 

  h e pν= +  (61) 
 

1e h k= +  (62) 
 

  1 1
p

pe eρβ α θ= −  (63) 

 

2 1 1p pe e= +  (64) 
 

  3 1
pe eρ=  (65) 

 

4 1
p

p pe e cρα ρ= − +  (66) 

 
2

k k vc u cθ= + ; 1k nd= K  (67) 
 

1ê h k= − ; 2 1
pê ê

να θ
β

= − ; 3 2 vê ê cθ= −  (68) 

 

2
4 1 12 2p p

v

c
ê ê e kc

να θ ν θ
θ

β β
 

= − + + 
 

 (69) 

 
χ λ µ= +  (70) 

 
Proceeding with the matrices, we have: 
 

4 1 3 2 3 2

1 1 2 11
0 2

2 2

1
v

ê u ê u ê ê

c u u uv

symm c uc θ
−

− 
 − =
 −
 
 

Ã  (71) 

 

 

1 1
0

2 2

1 1 2 4

0 0

0

0

p

p

p
p p

u u

u u

e u u e

ρβ ρα
ρβ ρ ρα
ρβ ρ ρα

ρ ρ

− 
 − =
 −
  
 

A  (72) 

 

 

1 1
2 2
1 1 1

1
1 2 2 1 1 2

2
1 2 3 1 1 2 1 4

0

1 2 0
p

p

p
p p p

u u

u u u

u u u u u u

u e e u u u u e

ρβ ρ ρα
ρβ ρ ρα
ρβ ρ ρ ρα

ρ ρ

− 
 + − =
 −
  + 

A  (73) 

 

 

2 2

1 2 2 1 1 2
2 2 2

2 2 2
2

2 2 1 2 3 2 2 4

0

1 0 2

p

p

p
p p p

u u

u u u u u u

u u u

u e u u e u u e

ρβ ρ ρα
ρβ ρ ρ ρα

ρβ ρ ρα
ρ ρ

− 
 − =
 + −
  + 

A  (74) 
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1 2

0 0 0 0

0 0 0

0 0 0

0 u u

χ
µ

χ µ κ

 
 
 =
 
  
 

K  (75) 

 

12

2 1

0 0 0 0

0 0 0

0 0 0

0 0u u

λ
µ

µ λ

 
 
 =
 
  
 

K  (76) 

 

21

2 1

0 0 0 0

0 0 0

0 0 0

0 0u u

µ
λ

λ µ

 
 
 =
 
  
 

K  (77) 

 

22

1 2

0 0 0 0

0 0 0

0 0 0

0 u u

µ
χ

µ χ κ

 
 
 =
 
  
 

K  (78) 
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