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Numerical Simulation of Two Dimen-
sional Compressible and Incom-
pressible Flows

In this article, we make use of a stabilized Filitement method to solve the complete set
of Navier-Stokes equations. The methodology addptedch that it allows for the use of
different sets of variables, particularly the sdled conservative and pressure variables. A
space-time formulation using a simple augmented G&Rbilizing term is proposed for
the particular case of pressure variables. Comparisvith data published in the available
literature is done and a reasonably good agreen®abtained.

G. K. Costa
and P. R. M. Lyra

Universidade Federal de Pernambuco
Rua Académico Hélio Ramos S/N®
50740-530 Recife, PE. Brazil
gkc@demec.ufpe.br
prmlyra@demec.ufpe.br

C. A. B. de Oliveira Lira

Universidade Federal de Pernambuco
Av. Prof Luiz Freire n° 1000
50740-540 Recife, PE. Brazil

cabol @ufpe.br

Introduction

Computation of fluid flows through the Finite ElembéMethod
has been the subject of much research over theléstdes. The
development of the methodology to be used througttda paper
can be traced back to the SUPG (Streamline Upwiettof-
Galerkin) formulation for the simple advection-difon equation (a
milestone reference on the theme is the work obBsa& Hughes,
1982). Several attempts to extend the method ttemgs of equa-
tions can be reported since then, giving rise ffedint versions of
SUPG-like formulations and discontinuity capturiraperators,
which are added to account for shocks in the cAsmmpressible
flows (see, for instance, Hughes & Mallet, 1986 &fwhkib et al.,
1991). In addition to that, is the fact that balbjcéwo different
approaches are at sake: one for compressible ahearfor incom-
pressible flows, this last one usually causingdbeoupling of the
energy balance equation and reducing the numbearidbles in-
volved. Attempts have been made, however, towardsified
approach for both flow regimes (see, for instahdeussaoui, 2003,
Mittal & Tezduyar, 1998 and Hauke & Hughes, 1994r Fefer-
ences on works using techniques other than Firleené&nts only,
the reader can consult, for example: Gustafssorta®rS1991 and
Yoon et al., 1998). In this work, we follow the thetlology intro-
duced by Hauke & Hughes (1994), introducing a SU#abilizing
matrix made out of two simple terms, one of theitasle for com-
pressible flows and the other, for incompressitibevé, in an at-
tempt to deal with the two regimes with a singlenfalation. The
resulting approach is such that all the elementio®st and vectors
can be analytically evaluated, whereas in typicainulations, the
stabilizing term generally needs to be evaluataderically (Hauke,
1995). Results show that this approach has givasorably good
results, when comparing to others found in thedtige, though,
due to the very simple stabilizing matrix, our fadation has re-
vealed to be over diffusive in both regimes.

This paper is divided as follows: first a brief i@wv of the gov-
erning equations is given, followed by the finitereent formula-
tion presentation. The drawbacks of the compressibheme when
used for incompressible flows, are discussed withecontext of a
formulation which makes use of a predictor-multiestor algo-
rithm, where an augmented SUPG matrix is, thema@sed. Finally,
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numerical results are given and compared with teguiblished in
the literature.

Nomenclature

nd = number of spatial dimensions

u = velocity, m/ s

u, = kth component the velocity vectar,

p = absolute pressureN,/n?

e = internal energy per unit massy/kg

¢, = specific heat at constant volumg(kgK)
¢, = specific heat at constant pressutgkgK)
X = spatial position vectorm

T =upper time limit, s

t =time, s

C. = Courant-Friedrichs-Lewy number (CFL)
M = Mach number

| =open time interval, s
Q- space-time domain

r

n = vector normal to the spatial boundaryix nd
N. = number of spatial nodes

N, = number of spatial elements

| = identity matrix of order m

P =SUPG perturbation function

P =space-time boundary

h, = characteristic element dimension, m

¢ = speeed of sound, m /s

R = perfect gas constan, (kgk)

n

g, = kth component of the heat flux vectar/ kg

k = thermal conductivity tensoky/ mk

U = solution vector in terms of conservation variable

Y = solution vector in terms of pressure variables

V = set of entropy variables (see Shakib, 1991)

F., D, = kth component of the advective and diffusive flux
vector, respectively

A, = Jacobian matrixau/ay

A, = Jacobian matrixau/av
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A, = Jacobian matrixdr, /oY

Greek Symbols

Q = spatial domain

I = spatial boundary

6 = absolute temperaturg;

p =density,kg/ n?

@ =shape function

k. = kinetic energy per unit mass/kg

r', =viscous tension, N /m

4 = dynamic viscosity, & n?

A = second viscosity coefficienys/ nf

T = SUPG matrix

. = incompressible part of the SUPG matrix
1., = compressible part of the SUPG matrix
o, o, = discontinuity capturing operators

a = weighting function for the stabilization paratees

A = discrete increment operator

dy, = Kronecker delta §,, =1 if k=h and g, =0 otherwise)

T

Subscripts and Superscripts

k,h relative to the spatial component of a given vector
n relative to the time step

e relative to the element

i,j relative to the node and the function numbering

The Navier-Stokes Equations

Fluid flows can be mathematically modeled by thevida
Stokes equations which, in the absence of bodye$oaend internal
heat generation, can be written in vector consimaform as
(Anderson, 1995):

U, 9F, D,

0%,

ot

=0, k=1...nd
0%,

@

wherend is the number of spatial dimensiond, is the vector of
conservation variables;, is the advective flux vector and, is the

diffusive flux vector.

Each of these vectordJ , F, and D, , may be written as a

function of a general set of variables that is: U=U(Y),
F.=F(Y) and D, =D,(Y). In this paperY will always refer to
pressure primitive variables, so that:

U'=[p oy pu pE )
Y'=[p u u 6 (3)
where:
p is the density
u, is the kth component of the velocity vector
@ is the absolute temperature
p is the absolute pressure
E is the total energy per unit mass:
E=e+k (4)
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In Eq. (4), e is the internal energy per unit mass. It is relate
with the temperatur@ by:

e=¢l (5)

wherec, is the specific heat at constant volume.
Also, k. is the kinetic energy per unit mass:

(6)

The advective and diffusive flux vectors are gitgn

0

PuU+ Py,
F= 7
¥ AU+ POy, ")

(PE+ p)y,

0
v
le
v
TZk

v
Up Ty — O

D, = ,h=1..nd 8)

where 1y, are the components of the viscous tensby q, is the
kth component of the heat flux vectgr and ¢, is the Kronecker
delta. For a Newtonian fluid, we can write:

O ©

Tl‘:h :lu(auk+auh]_2 auk

0X, 0% 3”&

where u is the dynamic viscosity and is the molecular viscosity.
In Eq. (9), we assumed that the Stoke’s hypothesis valid,
that is:

A :_g'u (10)

3

For a detailed description of equations (9) to (1@ reader can
consult Schlichting (1979).

It is generally admitted that the viscosity is dans in the case
of incompressible flows. For compressible flowsdfically speak-
ing of perfect gases in the common regimes of ésteiit is possible
to relate the viscosity with the absolute tempertihrough the
empirical Sutherland’s law (see, for instance, Aade, 1995).

The Fourier law relates the heat flux with the dlteotempera-
ture:

q=-«x18 (11)
where x is the thermal conductivity tensor. For an isoitdiuid,
the tensork can be substituted by a scalar value, This assump-
tion will be used hereafter.

It is important to note that Eg. (1) can also béttem in its
quasi-linear form:

aY
—+

Ai
° ot

o o [ 12)

Y
ka R K kh] =0

ox,
where:
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. - (13)  Will be marked with an over “hat”. Having said thist Q be an
oY . - A
approximate partition of the doma@ such thatQ is composed by
oF, N -1 space-time slabgShakib, 1991). Figure 1 illustrates the
Ay :W (14) partitioned domain. The'hspace-time slab partition can be repre-
sented as:
and K, is such that: A~ oA
Qn =QpxIy (23)
nd
D =) KoY (15) - . . o .
ox, where Q,, is the spatial approximate partition at time lavaind | |
is an open time interval.
Expressions for the matrices,, A, and K,, can be found in The time discontinuous Galerkin approach, whicH ba used
the appendix. hereafter, allows the approximate solution to b&calitinuous at

The two-dimensional Navier-Stokes equations carbeatolved time levelt,. We then defind, in Eq.(23)as:
without a further state equation since there ate &muations and

five variables (o, p, @, u, andu,). In this paper, we assume that I, :]tnitnﬂ[ (24)
the fluid can be either a liquid or a gas, and mades of the thermo-
dynamic Maxwell relations (Wark, 1995) to obtain: The whole approximate domain is written as:
de _pp-af . (N-1.
» o (16) Q :[nL_JOQnJU{toitlv--tN} (25)
oe _ c _a,p 17) Figure 1 also highlights a prismatic element agtieveln. The
@ * p elementary domain being:
e _ Ae
9p _ o8 (18) Qn =Qpxly (26)
op
Let us also denote the border of the spatial dorlugaiﬁ and the
9p =-pa (19) space-time “border” bfﬂ’ , the superscripg¢ , when used, indicating
a6 P that those entities are taken element-wise. Wdlfirabserve that
nodes need not have the same spatial locationcét tgae level.
_ a§6' This particularity makes the time discontinuouseBdah approach
G=6 _E (20) specially suitable for moving boundary problems igbadi and

Tezduyar, 1995).
where c, is the specific heat at constant pressurgand 8

are the isochoric expansivity and the isothermahm@ssibility,
respectively, and are given by:

_ifov

a"'u[aejp (1)
__1fov

L= u(apl (22)

where: v is the specific volume.

Equations (16) to (20) are enough to complemensytséem of
Navier-Stokes equations. It can be shown that EQ) (educes to
the perfect gas lawp = pRF, once the hypothesis of a perfect gas
is made. Equations (16) to (19) are particularlgfulsfor the deter- Figure 1. A space-time slab.
mination of the Jacobian matriX, in the case of liquids, when the

necessary derivatives are not easily obtained &£qr{20).

A Constant-in-Time Approach

Space-Time Formulation In order to write the finite element variationafrfo of Eq.(1),
let S andV," be, respectively, the set of trial functions ahd t

A solution ¥ =Y (X’t) for the Eq.(1) is sought in the space- space of weighting functions, taken at time lavahd given by:

time domainQ =Qx[0,T| . From this moment on, we define that
all the approximations to geometric entities, valea and functions
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(27)

g;:{oyuszQWTozg@)u@J)aes}

vh= {w‘w 0 [co(é)]mxm,w =0,0(x,t)0 P,?} (28)

where P represents the portion of the space-time bordetime

level n, where Dirichlet boundary conditions are presatibe
The Time Discontinuous Galerkin method can be dtats:

given WOV," and g(t)00", we search forU OS] such that
(Shakib, 1991):
th+l oW -~
( %m—
Q t ot

ey B =0

wiey
where, ﬁk = ﬁk(l]nﬂ),f)k = I5k(0n+l)and n, is the kth component
of the vectorn , normal to the spatial domain.

jw(un+1 U )dQ

th+l gy ( (29)

o Fk)dtdQ +rf |

Qty It

We approximate the solution vector in the usual manner, that
is:

U= ¢ (30)
j=1

where N, is the number of nodes in the spatial domain,is the

shape function corresponding to nogleand G,- is the nodal value
of the solution vectorU . Let us also define thaodal solution

vector u as being themx N, hypervector containing the solution

at each node.

As for the weighting functionV , a Petrov-Galerkindefinition
is due, to avoid the well known oscillations andstabilize the
method:

= (¢i| +Pi) (31)

where | is the identity matrix andP is the SUPG perturbation
term, given by:

(32)
k

P :[Ak?

2

where t is the stabilizing SUPG matrix.

The shape functiop; may be a polynomial function of and

t, though it is not strictly necessary to be so ,(dee instance,
Bonhaus, 1998). In our work we choose it to bedinia x and
constant int , that is:

(33)

Such assumption, considerably simplifies the foatiah given
by Eq. (29) since it implies that:
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%—0 andaf— (34)
ot 0Xg

Substitution of equations (30) through (34) in E2P) finally
gives:

If)k)dQ +

de:O

where At =t,,, —t, and J, is the shock capturing operator to be

defined later on. The sum in Eq. (35) is necesbacause the stabi-
lizing terms are not defined in the element bouiedar

Equation (35) can be solved with the use of a ptedi
multicorrector algorithm (Shakib, 1988) (the readan consult that
reference for details). By applying a change ofaldes U - Y,

j¢|( Upsy -U )dQ Atj—dtdQ(

(35)
[PI aFk

aﬂwm

+ At£¢i [(151( - 'A:k% }dr + Z .[ axk 0%y

e—lQ

and considering the counterpq}t of the nodal solution hipervector

U, the following linear system can ultimately beaibed:

_MiA§ =R, (36)

where, for the case of a single correction steghim predictor-
multicorrector algorith, one can write:

~ An+l

Ay =y

-y (37)

In Eq.(36), the residu®, and the matrixM, can be assembled
from their corresponding elementary counterpaks and R,
which hold the following pattern:

M =HY+AtH +H +H ) (38)

Re = Ha(0nes = )+ 86Vr Vo +V g +Vae +Vy)  (39)

The elements of the matriM, and of the vectovV, can be

easily determined for the case of pressure vasatihough their
expressions will not be given here, it is worthiciag that neither
the SUPG stabilizing matrixc , nor the discontinuity capturing

operator g, are well defined for purely incompressible flomgen
both a, and B, given by equation§21) and (22) become zero

(the reader may consult Hauke, 1995, for furthdait®. The key
for developing a methodology that embraces bothpeessible and
incompressible flows, therefore, reside in handtingse two terms
of stabilization in such a way that both limits avell attained. In
this work, we propose two things:

a) To make use of an augmented SUPG stabilizingibmat,
given by:

t=ar, +(1-a)r1, (40)

where the sub-indexegn and cp stand for incompressible and

compressible andr is a function of the Mach numbevl that
must be such that:

a=1whenM - 0anda =0 whenM - o (41)
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b) To annul the effect of the discontinuity captgrioperator G\
whenever the flow becomes incompressible. Thisbeadone if we Ao U (47)
replace the operatod, in Eq.(35) by the augmented operator
(1—a)56. V being the set of entropy variables (see, for examBhakib,
1988).

In Eq.(40), 7,, is suited for the incompressible limit whereas

T is valid for compressible flows, so that the bextremes of the

The factor (1-a) in Eq. (46) is very important, sinc&;" be-

comes singular in the incompressible limit.

spectrum are covered. o _ The SUPG stabilizing matrices are given by (see KEU1995
Hauke (1995) used a full stabilizing matrix for bot,, and  and Aliabadi & Tezduyar, 1995):

1, - We propose to use a very simple designifgrand a diagonal

pressure based,, . As will be seen in the numerical examples, such Ty, = diag(7., 7 Ty o) (48)
an approach gives relatively good results for thealitesting prob- ] -
lems. Tcp = dlag[rcp( I, I)j| (49)
Stabilization Matrices and DC Operator 7.,(i,i) = max( 07, -7;) (50)
Before proceeding, some important definitions arevenient. where:
Let X be a(mnd)x1 vector andM be a mxm matrix. We '
define the following norms:
g 2 luln -
2
M -~ 0
XL, =x0 @ . X | and|X]|=vX X (42) ho R
0 - M T, =min o (52)
2o|ul| 121
Let us also define the gradient of the vec¥orwith respect to 5
the Cartesian coordinates: =min h h
T, , (53)
20c,||u] "12¢
(OX)' [fm 6xj @3) "
0%, 0% L SRTINTIY (54)
2(c+[ul)
Under the assumption that there is a mappipg- ¢, , between
the Cartesian coordinateg, and the natural coordinates , we = 4, . (55)
proceed to define the gradient of the vec¥orwith respect to the (C+HUH)

natural coordinates as:
In equations (51) to (54), abovh, is a characteristic dimension

0.X =370X (44)  of the element. It may be taken as:
where J is given by: h=JA (56)
9, 08, where A, corresponds to the element’s area. In the previous-
0% 2 tions, we also have that is the speed of sound.
Jt=l e (45)
06 . 0y Numerical Examples
0% 0%

In what follows, a GMRES (General Minimum Residse)ver
. . ! . ) with reverse communication was used to obtain thetisn of Eq.
Making use of these definitions, let us first wrie expression (3gy in the predictor—multicorrector algorithm. eftsolver was
for the discontinuity operator. We have choserottof Aliabadi &  gpiained as a closed package from the public domiaéztory of

Tezduyar (1986) and use the following expressiandp, slightly  cERFACS (In French: “Centre Europeen de Recherche et de Fo

modified in order to accommodate only compresdibles: mation Avancée en Calcul Scientifique”). The codeduwas copy-
righted in 1998 and is a single precision packdgely a block

Y 2 diagonal preconditioner was used with the solvet tie GMRES

A, tolerance was set 0.01 in all the examples. Alse,dimension of

5 =(1—a) 0, gt k=1..nd (46) the Krylov subspe_lce was set to 50. Only' one cdmeq_l)ass was

3 HAODEY 251 used for the predictor-multicorrector algorithmesghakib, 1988),

s0, the prefix “multi” may be dropped and we hamdact, a predic-

tor-corrector algorithm.
where:

2 Current web address: http://www.cerfacs.fr
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Pressure variables were used in all the examplscancerning
the time marching algorithm, we observed the follmyvequation
for the global time step (Shakib, 1991):

C
At=—"— 5
f+1 (57

where C, stands for the Courant-Friedrichs-Lewy number (CFL
and the coefficientsf, and f, are given by:

Jul+c

h,

= Zmef 2001
R p PG

f.= (59

(59

Figure 2 shows the unstructured mesh that was U$eimesh
has 3688 triangular elements and 1936 nodes armbrieewhat
refined near the lid to smoothen oscillations ie fressure field
(Hauke, 1995). A similar sized mesh was used bykEad995)
though, in his case, the mesh was structured wttx 40 square
elements, slightly refined near the two upper can&hia et al.
(1982) used a much more refined structured mesh X1121) and a
multigrid technique to solve the same problem.

Steady state was reached after 20000 interactoyribé case or
Re=1 and 30000 interactions for the case of Re=4086. average
global time step could not be chosen arbitrarilye \WsedC, =1

(see E(57)) for Re = 1 and C, =500 for Re = 400. No conver-
gence was achieved when we tried to @e=10 for the case of

Re=1.0, indicating that there might be a maximunk. @&lue, over
which there is no convergence. Figure 3 shows éhecity vectors
and the pressure isolines obtained. A relativelgdgagreement is

Leaky lid driven cavityThis is an example of a totally incom- ¢,nq petween our results and those publishedaritérature. The

pressible flow, where the density is assumed to be constant. Aqgcillations in the pressure isolines near theligypwhich become
unit square recipient with infinite transversal dém contains a more evident in the case of Re=400 can also bedfaumther au-
hypothetic fluid which is driven to the left by tiskearing tensions thors’ results (see, for instance, Zienkiewicz ket 5990). Hauke
caused by the upper lid uniform rightwards motias shown in Fig. (1995) seems to have reduced these oscillatiorsticitly by mak-
2. The moving lid will produce a whirl inside thecipient (cavity). ing a local mesh refinement near the upper left dghit corner
Hauke (1995) solved a similar problem for a Reyaaldmber of 1 podes.

and of 400 and we intend to compare our numeresllts with his

and with those published by Ghia et al. (1982). Gbendary condi- - @J\ N / /1/@
tions applied are as follows: at the upper lid (&ynit velocity to | \\///)/ > [ \g
the right plus a reference temperature were ptestriu, =1.0m/s ! c/ / \\;;
and 8 =0K ), at the side and bottom walls (B, D and A) a sbp- j A \\\4/

LS

condition was imposed and we also prescribed tesspre to be
equal to zero in the mid point of the bottom wdalhe problem
marches to a steady state from a set of initiabitmms which we
have chosen to be; =0.0m/s, #=0K and p=0.0Pa. The fluid
properties were all assumed to be equal to the air'293K and
101325Pa p=1kg/ni, c,=1005.Q0 (kgK), ¢, =718J /(kgK),

£=1.0x10°Pa™ and a =0.003& ™). The viscosity, however,
was allowed to vary, to adjust to the Reynolds nemib each ex-
ample and the thermal conductivity was also modifisnder the
assumption of a constant Prandtl number of 0.78nTFor Re=1.0
we have that:z=2.0Ns/nf and x =2700.0V /mK whereas for

Re=400, 4 =0.00Ns /nf and x =6. AW /mK.

At the two upper corner nodes, the velocity fiedddiscontinu-
ous, and that adds an extra difficulty to the peabl We have cho-
sen to set a linear gradual variation of the sgdtie two corners, ) o
from 0,0m/s to 1,0m/s (Lyra, 1994 and De Sampaio et al., 1993);'3;‘;‘2":’:('j l\é‘j\'lgf:"éea':’goggfssure isolines for the ca
For linear shape functions, it suffices to set $peed at the two
upper corner nodes t4,0m/s whereas at their adjacent nodes
belonging to the side walls, the speed is setito.ze

vity problem (upper:

The behaviour of the velocity componenis and u, can be

seen in Fig. 4 where some local approximate resbligined from a
visual observation of the charts published in therkwof Hauke

(1995) are plotted for comparison for Re=1. In ¢thse of Re=400,
our results are compared with the results foun@hia et al. (1982),
usually considered as a benchmark for this pagicekample. We
observe that there is a somewhat over diffusiveatielr of our

solution when a comparison is made. This is moeart} seem in
the case of Re=400 where advective effects becomee rpro-

X nounced and the stabilizing terms have a great@admon the
solution. Such over diffusive behaviour can beilaited to the
simpler SUPG matrix used. Nevertheless, our reshitsv a better
agreement when compared to those obtained by Zerdd et al.

(1990), who used a similar mesh.

L

e

—
AR

e

Figure 2. Domain and mesh used for the driven cavit y problem.
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Supersonic flow past a flat platext, we give a classic exam-
ple of a compressible flow known as Carter's probléShakib,
1988). A Mach 3.0 flow of air (considered here geeHect gas) past
a fixed flat plate will be studied as shown in FigThe unstructured
mesh used consists of 3707 elements and 1940 oded is di-
mensionally equivalent to the mesh found in Alme(#ie93), who
also used an unstructured mesh.

For the dynamic viscosity, we take the expressavrttie Suth-
erland’s law given in Almeida (1993):

0.9065"°

= 60
H 6+0.000140¢ (60)

The Prandtl number was assumed to be constant guel ®
0.75.
The boundary conditions for this problem are, dg¥s:

*onA (-0.2<x<0.0and y=0.0): ulh=0.0, r;,=0.0 and
gh=0.0

*on B (x=-0.2 and 0.0sy<0.8): uy=1.0, u,=0.0,
6=2.769< 10'K and p=1.0kg /n?

eon C (-0.2sx<12 and y=0.8). uy =10, u,=0.0,
6=2.769< 10'K and p=1.0kg /n?

e on D (x=1.2 and 0.0< y < 0.8): free flow

*on E (0.0sx<1.2 and y=0.0): u =0.0, u,=0.0,

6=7.753x 10°K

The initial conditions have been chosen to matehvilues on
boundary B.

A
0.8 Cc
B D
02 A 00 E 12 ™

Figure 5. Carter’s problem set up and mesh.

Results are plotted after 3500 interactions wheadst-state was
reached. Figure 6 shows the Mach isolines anddgydrand 8 show
the density and temperature variation along th&oaraxis which
passes througlx =1.0m. Again, we notice that our method is more
diffusive. The discrete points were obtained from@ida (1993) in
which the CAU (Consistent Approximate Upwind) methwas
used along with SUPG.
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dimensional problems, which is a natural path fifeere, is already
at course.
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Appendix: Matrices Used in This Paper

All the matrices below can be found in Hauke (19%8)me pa-
rameters which are used in the matrices are gietwb

h=e+ p (61)
Figure 6. Mach isolines for the Carter’s problem. = h+ k (62)
p (kg/im®) 2.0 & = pBe-a,0 63)
1.5 e =¢+1 (64)
& =pg (65)
1.0 -
e =-pa,g+pG (66)
0.5¢ 2
¢ =y +¢d; k=1..nd (67)
0.0 : : : A A _a Vol
=h-k;&=6-—L-;6=86-¢0 68
0.0 0.2 0.4 0.6 0.8 4 ©=4 B STeT6 (68)
y (m) o va 0 vc @
; ; iati ; - e4=q2—2q +2kgp+—7 (69)
Figure 7. Density variation along the y axis for x =1.0m. ﬂ ﬂ
0 (K) 0.0008 X=A+u (70)

Proceeding with the matrices, we have:

0.0006| g ug ug -¢
A= \ G uy, -y (71)

° symm ¢ -y

1

0.0004

pB 0 0 -pa,
pBuy, p 0 —pay

0.0002 A, = (72)

0 -pa

0.0 0.2 0.4 0.6 0.8 pﬁPUZ P TR,
¢ pu py, g
y (m)
Figure 8. Temperature variation along the y axisfo  rx =1.0m. p,Bu1 P 0 —pa,u,
Z+1 2 0o -
A= pBY; pu pa, & 73)
Conclusions pBuL, Py, pU —pa,ul,

The procedure outlined above has proved to worksving e €+pd puy Y&

both compressible and incompressible flows wittsoeable accu-

racy. The results show that in both regimes, realsigngood agree- PBu, 0 Y —pPa,y,

ment is founq between our results and .those puddlish the litera- | pBuu,  pu, oy -pa, uu,

ture, even with the use of simpler matrices thoaghresults have 2= BuZ+1 0 20U —oa P (74)
shown to be over diffusive in both cases. Thermixh place for P 2p 2 Pay

further work, mainly in what concerns to the SUPabiizing u,& puy, €+pd ué

matrix and discontinuity capturing operator. Extensto three
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0 0 0 O
0 x 0 O
Ky = (75)
0 0 u O
0 xyu uu, K
0 0 0 O
K = 0 0 A O (76)
270 4 0 0
0 pu, Ay O
0 0 0 O
0 0 u O
K, = 77
#1910 2 0 o0 "
0 Au, uu O
0 0 0 O
0O 4 0 O
K,, = (78)
0 0 xy O
0 my xu «
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