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Study of Water Entry of Circular 
Cylinder by Using Analytical and 
Numerical Solutions 
Water impact phenomenon in the case of a circular cylinder is an important issue in 
offshore industry where cross members may be in the splash zone of the incident wave. An 
analytical method as well as a numerical solution are employed to study the water entry 
problem of a circular section. The procedure for derivation of the analytical formulas is 
demonstrated step by step. The volume of fluid (VOF) simulation of the water entry 
problem is also performed to offer comparison of the results of the linearized analytical 
solution with a fully nonlinear and viscous fluid flow solution. To achieve this, the FLOW-
3D code is utilized. Some consideration has also been given to the points of intersection of 
the free surface and the body, where the singularities exist in the free surface deformation 
and velocities, as predicted by the linear theory. These singularities appear to be avoided 
in the real fluid by the formation of jets which quickly break up into sprays under the 
action of surface tension. Slamming force, free surface profile, impact force, pressure 
distribution and evolution of intersection points are also presented and comparisons of the 
obtained results against the results of previous studies illustrate favorable agreements. 
Keywords: circular section, analytical method, FLOW-3D, impact force, intersection point 
 
 
 

Introduction1 

When an object falls into the water, an impact force is generated 
on the body surface. Bluff bodies impacting on water surface 
experience a heavy impulsive pressure. This may cause extreme 
damage on the marine structure. Due to the critical importance of 
this phenomenon, the water entry problem has been pursued by 
many researchers. 

Von Karman (1929) and Wagner (1932) were the first people 
who presented an analytical work on this subject. They theoretically 
developed formulas by using asymptotic theory. However, their 
work was for the case of wedge section. Later, the slamming loads 
on the circular members, which can cause damage on the various 
marine structures, was a motivation for the experimental and 
theoretical studies by Faltinsen et al. (1977). 

The water entry of circular section has been investigated by a 
limited number of researchers. Here, the most important works that 
are presented in the literature are reviewed. A corresponding process 
of the impacting circular section on the water waves is a rapid water 
entry of circular cylinders into initially calm water. If the variation 
along the length of the cylinder is discounted, a two-dimensional 
problem in the cross plane can be considered (Sun and Faltinsen, 
2006). Due to the fact that the classical Wagner model cannot 
describe the important details of the impact process, some 
researchers have tried to improve Wagner solution. Important 
corrections were made with the help of the method of matched 
asymptotic expansions by Armand and Cointe (1987), Howison et 
al. (1991), Oliver (2002), Logvinovich (1969) and Korobkin (2004). 
Different asymptotic models were derived, which compared to the 
original Wagner model predict the loads on the entering body more 
accurately. Zhao et al. (1996) solved the boundary-value problem at 
each time instant by the boundary element method (BEM) and 
numerically obtained the vertical velocity distribution on the free 
surface to evaluate the shape of the free surface and the splash-up 
height at the next time instant. Owing to the flow singularity at the 
intersection points, the nonlinear Bernoulli equation predicts 
negative and unbounded pressures close to these points. Zhao et al. 
(1996) suggested integration of the hydrodynamic pressure 
distribution only over the part of the wetted surface where the 
pressure is positive. Within the same approach, analytical results 
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were obtained by Mei et al. (1999) for the entry problems of a 
wedge, a circular cylinder and ship sections of Lewis forms; this is 
for the problems with known conformal mapping of Schwartz-
Christoffel that maps the flow domain onto a half-plane. The 
boundary-value problems of the generalized Wagner solution are 
much simpler than those within the original formulation, making the 
approach very attractive in practice. This scheme is utilized in this 
paper. 

Another analytical model of water entry was developed by 
Vorus (1996). The model was fully novel. The geometrical 
nonlinearity of the impact problem was neglected but the 
nonlinearity in the boundary conditions was considered. By using 
this condition at the intersection point where the hydrodynamic 
pressure is zero, positions of the intersection points can be 
evaluated. Obtaining numerical results based on Vorus model by Xu 
(1998) were in good agreement with the experimental data. 

In the case of a rigid circular section, the free surface will 
initially change very rapidly. Therefore, the exact solution of the 
water entry is an intricate procedure. It can also be due to the fact 
that the water entry process may involve many complicated effects 
such as air cavity, flow separation, breaking waves. Actually, the 
rate of change of the wetted surface is initially infinite according to 
Wagner (1932). In this situation, the approximate solutions such as 
flat plate theories (Faltinsen, 1990) may often be used in practice. 
To find the accurate solution of the problem with fully nonlinear 
free surface conditions, numerical methods have to be used. 
Greenhow (1988) studied the water entry of a rigid circular cylinder 
by using a boundary element method based on Cauchy’s theorem. 
However, the calculations needed to be refined and the flow 
separation model needed to be improved to be more stable. The 
water entry of a rigid circular cylinder was studied by Zhu et al. 
(2007) which used a constrained interpolation profile (CIP) method. 
The time history of the body motion and the evolution of the free 
surface contours were well predicted except at the initial time due to 
the infinite rate of change of the wetted surface. Sun and Faltinsen 
(2006) developed a two dimensional boundary element code to 
simulate the water flow and pressure distribution during the water 
impact of the horizontal circular cylinder. They satisfied the exact 
free surface boundary conditions. The non-viscous flow separation 
on the curved surface of the cylinder was simulated by merging a 
local analytical solution with the numerical method. 

The present study is motivated by the work of Zhao et al. (1996) 
and Mei et al. (1999), but it is focused on the derivation of analytical 
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formulas and by performing a comparison between linear and 
nonlinear solutions. In order to accomplish this task, the numerical 
solution is also adopted based on VOF method for which the 
FLOW-3D code is utilized. Some considerations have been given to 
the points of intersection of the free surface and the body, where the 
confluence of boundary condition can cause singularities in the free 
surface displacement and velocities, as expected by linear theory. 
Slamming force, free surface profile, impact force, pressure 
distribution and evolution of intersection point are also computed. 
Analytical solutions and numerical results are compared against the 
results of previous studies. 

Nomenclature 

(y,z)   = y-axis lies on the undisturbed water surface while the 
z-axis coincides with the symmetric axis of the body 

h=H(y)  = the vertical distance between a point on the body 
surface and its apex 

ϕ    = velocity potential 

 t    = time 
D

Dt

   
= substantial derivative

 

η     = vertical coordinate of a point on the water free surface 
g    = gravitational acceleration 
n    = unit outward normal of the body surface 
V     = water entry velocity 

( )oS t   = the instantaneous wetted body surface 

( )Y t   = the horizontal coordinate of the intersection point of 

the body and the free surface 
(y', z')  = the coordinate system after Galilean transformation 
τ   = dummy time variable 

( )y l t=  = intersection point 

( , )v l τ    = vertical velocity of the fluid particle at ( )y Y t=  

N     = number of discrete points on the body surface 

na   = unknown coefficients of the Chebyshev polynomial 

nT    = the n-th order Chebyshev polynomial of the first kind 

maxY          = the maximum horizontal coordinate of the 
intersection point in the impact 

knc      = the known coefficients of the Chebyshev polynomial 

( )n Yβ   = influence coefficient 

R        = radius of circular cylinder 
Z-plane  = physical flow plane 
W-plane = mapped flow plane 

Q iξ ζ= +  = intermediate complex variable 

v     = dimensionless coefficient 
Re  = real part 

ρ    = fluid density 

P     = pressure 
CP    = pressure coefficient 
CS  = impact force coefficient 
U    = fluid velocity 
α   = volume fraction 

Analytical Method 

Formulation 

A two dimensional impact problem of a rigid body at a constant 
vertical velocity with an initially calm horizontal water surface is 
considered. The solid body is assumed to be symmetrical about its 
axis. In the assumed Cartesian coordinate system (y, z), y-axis lies 

on the undisturbed water surface, while the z-axis coincides with the 
symmetric axis of the body (Fig. 1).   

To illustrate the body surface, the relation h = H(y) is presented 
where h denotes the vertical distance between a point on the body 
surface and its apex. Water is considered to be incompressible and 
inviscid and flow to be irrotational. Here, the flow is described by a 
velocity potential ϕ  that satisfies the Laplace’s equation with 
boundary condition in the fluid domain: 

 
2

0ϕ∇ = .                                                                                  (1) 
 

 
Figure 1. Two-dimensional body with arbitrary section dropping into (initially) 
calm water.  

 
There are two free surface boundary conditions involved in the 

formulation of the problem: 
(1) The kinematic boundary condition on the free surface: 

 
D

Dt z

ϕ ϕ∂
=

∂
   On    ( , )z y tη=                                                 (2) 

 
(2) The dynamic boundary condition on the free surface: 
 

1 2 2
( ) 0

2

D
gy z

Dt

ϕ
ϕ ϕ η− + + =  On   ( , )z y tη=                    (3) 

 

where 
D

Dt  
denotes the substantial derivative, η  represents the vertical 

coordinate of a point on the water free surface and g is the gravitational 
acceleration. The effect of possible air trapped between the body and the 
free surface is ignored and the effect of gravity compared to the body’s 
inertia can be considered negligible. Consequently, the dynamic 
boundary condition transforms into Eq. (4). 
 

1 2 2
( ) 0

2

D
y z

Dt

ϕ
ϕ ϕ− + =         On       ( , )z y tη= .                (4) 

 
Nonlinear terms in these two boundary conditions are the 

sources of major difficulty in solving the boundary value problem. 
Therefore, to overcome this difficulty, Wagner (1932) simplified the 
dynamic boundary condition as: 

 
( , , ) 0y z tϕ =    On       ( , )z y tη= .                                      (5) 

 
This condition is applied on the horizontal line that crosses the 

intersection point between the body and the free surface 
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( , )z y tη= , which basically means that this condition must apply 
to the horizontal plane passing through the intersection points 

( , )z y tη= , and that the horizontal line is not the exact free 
surface. To determine the intersection point between the free surface 
and the body, the kinematic free surface boundary condition is used. 

Another boundary condition is the no-flux condition which is 
imposed on the body surface: 

 

Vnz
n

ϕ∂
= −

∂
    On        ( )S to                                                  (6) 

                                         
where n  is the unit outward normal of the body surface, V is water 

entry velocity and ( )S to  represents the instantaneous wetted body 

surface. To determine ( )S to , the relation ( )h H y=  must be 

known with ( )y Y t≤ , where ( )Y t  is the horizontal coordinate of 

the intersection point of the body and the free surface. Another 
boundary condition is the far field condition as in 
 

0ϕ∇ →      As  
2 2 1/2

( )y z+ → ∞   .                                 (7) 

 
 For the initial condition, we can write: 
 

( , , 0) 0y zϕ =  & ( , 0) 0yη =      on   0z = .                        (8) 
 
Subsequent to finding the velocity potential ϕ , the pressure on 

the body is determined by Bernoulli equation and the impact force 
on the body is obtained by direct integration of the pressure over the 
wetted body surface. 

The boundary value problem for ϕ  must satisfy the Laplace’s 
equation, the kinematic free surface boundary condition, the 
linearized dynamic free surface boundary condition which is a 
Dirichlet boundary condition, the Newman body boundary 
condition, the radiation condition and the initial condition. It must 
be emphasized that the approximations carried out above are invalid 
for the flow region where the free surface profile changes sharply. 
However, for flow near the water intersection point, nonlinearity 
must be considered. 

Analytical solution of boundary value problem 

An analytical method for the solution of the linearized water 
entry problem of circular cylinder will be presented. To solve the 
Laplace’s equation, Eqs. (2), (5), (6) and (7) are implemented, 
which are known as boundary value problem for the velocity 
potentialϕ . It must be emphasized that the approximations made 
here are invalid for the flow region where the free surface profile 
changes sharply. The body boundary condition is imposed at the 
instantaneous position of the body. Since the Dirichlet boundary 
condition 0ϕ =  is applied on the free surface ( )z yη= , ϕ  is 

considered symmetric with respect to ( )z yη=  plane. Therefore, 
the hydrodynamic images method can be used. As a result, the 
linearized boundary value problem can be considered as a closed 
body moving in an infinite fluid with a constant downward velocity, 
V. This fictitious closed body is made of the immersed segment of 
the real body and its image about the horizontal plane ( )z yη= . 

Therefore, the geometry of this shape depends on ( )Y t . It should 
be noted that the position of the intersection of the body and the free 
surface, ( )Y t , is a priori unknown, which must simultaneously be 

solved with the initial boundary value problem. Thus, the velocity 
potential ϕ  is a function of ( )Y t . 

When the image method is used, the Galilean transformation can 
be utilized. Accordingly, we have: 

 
( , , ) ( ', ', ) 'y z t y z t Vzϕ ϕ= −                                                 (9) 

 
where ϕ  is the velocity potential for uniform flow passing a closed 
body, and relations between the (y', z') coordinate system and (y, z) 
coordinate system are: 
 

' , ' ( )y y z z yη= = −                                                           (10) 
 
To solve for ϕ  analytically, the conformal mapping technique is 

applied, which depends on the body geometry. The best conformal 
mapping technique that may be used is Schwartz-Christoffel 
transformation. 

Following the work done by Wagner (1932) and Mei et al. 
(1999), we define the intersection point ( ( ), ( ) )Y t H Y Vt−  as the 
location where the fluid particle on the free surface meets the body 
surface for the first time. Due to the usage of the kinematic free 
surface boundary condition and this definition, the governing 
equation for the intersection point ( )y l t=  is taken to be: 

 

( ) ( , )
0

t
H l Vt v l dτ τ− = ∫                                                        (11) 

 
where τ  is the dummy time variable and ( , )v l τ  is the vertical velocity 

of the fluid particle at ( )y Y t= . Upon using Eq. (9), we have: 
 

' ' '
( , ( ( )), ) ( ( ), 0, )Y z Y Y Y t z t Vzϕ η τ τ ϕ= = = = −         (12)  

 
Then, we write 
 

( , ) ( , ( ), ) ( , 0, )'v l l Y l V
z z

ϕ ϕ
τ η τ τ

∂ ∂
= = −

∂ ∂
.                      (13) 

 
Substitution of Eq. (13) into Eq. (11) would yield in 

 

( ) ( , 0, )'0

t
H Y l d

z

ϕ
τ τ

∂
= ∫

∂
.                                                     (14) 

 

By introducing the variable ( )
vd

Y
dY

τ
µ =  into Eq. (14) and 

changing the variable of integration from τ  to Y, we will have 
 

( ) 1
( ) ( , 0, ) ( )

0 '

Y t
H Y v l Y dY

z

ϕ
τ µ

∂−= ∫
∂

                              (15) 

 

If 
1

( , ) ( , 0, )0
'

v l Y v l
z

ϕ
τ

∂−=
∂

, Eq. (15) becomes 

 

( ) ( , ) ( )00

l
H l v l y Y dYµ= ∫ .                                                 (16) 
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In order to perform the integration, the dependence of the 

kernel 0v  on ( )Y lη =  must be known. For arbitrary bodies, the 

dependence of 0v  on l is complicated and a closed-form solution 

for ( )lµ  from Eq. (16) cannot be obtained. For bodies with 
smooth surfaces, the intersection point moves smoothly with time 
and hence varies smoothly with l. In such cases, we can write an 
expansion for ( )lµ  based on Chebyshev polynomial. The 
polynomial expansion of Chebyshev is applied to the first N terms 
to describe ( )Yµ  as follows: 

 
1 1

0 0

( ) ( )
N N

n
n n n

n n

Y a T Y b Yµ
− −

= =

= =∑ ∑       [0, ]
max

Y Y∈                 (17) 

 
where an are the unknown coefficients, Tn represents the n-th order 
Chebyshev polynomial of the first kind, Ymax is the maximum 
horizontal coordinate of the intersection point in the impact and bn is  

 

0

n
b a cn k knk

∑=
=

               0,1, 2, ...,n N=                        (18) 

 

where ckn are the known coefficients of the Chebyshev polynomial 
Tn (Y ). To determine the unknown coefficients an, Eq. (17) is 
substituted into Eq. (16) as in 

1
( ) ( ) 0 00

l N
H l v a T Y dYn nn

−
∑= ∫
=

.                                          (19) 

 
If the influence coefficient βn (Y ) is introduced as 
 

( ) ( , ) ( )00

l
l v l y T Y dYn nβ = ∫     0,1, 2, ..., 1n N= −          (20) 

 
then, Eq. (19) becomes 
 

1
( ) ( )

0

N
H l a ln nn

β
−
∑=
=

                                                          (21) 

 
In the case of a circular cylinder, Eq. (21) must be determined 

numerically. By applying this equation at N + 1 discrete points on the 
body surface, a linear system of equation is formed. The resulting 
system of equation must be solved for an where n = 0, 1, … N. N can 
be chosen to be 10, in order to acquire a better accuracy for a circular 
cylinder (Table 1). In the next section, the water impact of a circular 
cylinder will be analyzed.  

 
 

Table 1. Coefficients an for the circular cylinder section. 

N a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 

5 0.717311 1.05285 0.506851 0.252121 0.08144 
     

6 0.745768 1.107906 0.583992 0.327875 0.155867 0.050481 
    

7 0.767847 1.160124 0.638363 0.395079 0.216911 0.09924 0.031859 
   

8 0.788787 1.201096 0.68838 0.446078 0.272286 0.146436 0.063983 0.020378 
  

9 0.806371 1.224012 0.728513 0.493316 0.318191 0.190904 0.10013 0.041773 0.013433 
 

10 0.822802 1.272391 0.765664 0.531383 0.369154 0.229835 0.134027 0.068333 0.027384 0.008549 
 

 

Impact of the circular cylinder 

Consider the circular cylinder with radius R. All lengths are 
normalized with respect to the radius and then R = 1. The lower part 

of the circle can be defined by 
2

( ) 1 1h l l= − − . As shown in 

Fig. 2, ( )Y t  is the horizontal coordinate of the intersection point 
between the body and the free surface. 

 

 
Figure 2. Definition of the horizontal coordinate of intersection point 
between the body and free surface. 

 
The boundary condition 0ϕ =  is applied on ( )z yη= . This 

implies that the problem is equivalent to the solution of closed body, 

which moves by constant velocity in the opposite direction of z-axis. 
The closed body is obtained by imaging the immersed part of body 

toward the ( )z yη=  or 
'

0z = . Therefore, the velocity potential 

' '
( , , )y z tϕ  at any instant t describes the vertical uniform flow past 

(doubly convex) lens of width 2Y(t) and thickness 2h(Y). Finally, 
closed form solution for ϕ  can be obtained by conformal mapping. 
The physical flow in the Z-plane is mapped onto a uniform vertical 
stream in the W-plane through a double conformal mapping: 

 

tan

iY
Z

Q

−
=    ,   

sin( )

iY v
W

vQ

−
=                                               (22) 

 
where Q iξ ζ= +  is as intermediate complex variable and 

dimensionless coefficient v which is defined as 
 

/ 2

2
( / (1 (1 ))

v
arctan Y Y

π
=

− −
.                                           (23)   

           
The planes W, Z and Q are shown in Fig. 3.  
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Figure 3. Definition of the planes W, Z and Q. 

 
Therefore, the velocity potential can be obtained as 

 
' '

( , , ) Re{ }y z t iVWϕ = −                                                      (24) 
 
where Re means the real part of the expression and the vertical 
component of the velocity vector may be acquired by the following 
computations: 
 

  

2
cot( )

sin( )

dW iY v vQ

dQ vQ
=             ,                  

2
sindQ Q

dZ iY
=   

2 2 2 2
sin ( ) sin ( )

'
' sin( ) tan( ) sin( ) tan( )

dW v Q i v Q
Vz

dz vQ vQ vQ vQ
ϕ→ = ⇒ = . 

 
Thus, the complex velocity is 
 

2 2
sin

sin( ) tan( )

v Q
u iv iV

vQ vQ
− = −                                              (25) 

 

The variable ( , )0V y l  at the free surface position and at the 

'
1Z y Q iζ= = → =  can be achieved as 

 
2 2

( , 0, ) sin1
( , )0 ' sin( ) tan( )

2 2
sinh

sinh( ) tanh( )

l v Q
V y l V

vQ vQz

v

v v

ϕ τ

ζ

ζ ζ

∂−= =
∂

=

.                 (26) 

 
The variables ζ  and l are related by 
 

tan( ) tan( )

1

tanh( )

iY iY
Z l

iQ i

l e e

Y e e

ζ
ζ ζ

ζ ζζ

= − → = − →

−+
= − = − −−

 

12 2
( 1) ( 1) ln( )

2

l l Y
e e

Y l Y

ζ ζ ζ
−

→ − = − + → =
+

.            (27) 

 
The velocity potential is a function of the intersection point 

between the body and the free surface. The velocity potential can be 
calculated by solving the boundary value problem, but the 
intersection point is an unknown which must be obtained. 

To determine the unknown value an, the influence coefficient 
βn (l ) must be determined. By substituting Eq. (26) into Eq. (20), 
we have 

 
2 21 sinh ( )

( )      
0 sinh( ) tanh( )

    for     0,1, 2, ..., 1

v T Ynl dYn
v v

n N

ζ
β

ζ ζ
= ∫

= −

.                                  (28) 

 
Due to the intricacy of the dependence of v and ζ  upon l, the 

above equation may not be evaluated analytically. Therefore, Eq. (28) 

must be evaluated numerically for a given value of /maxY R . 

Equation (21) must be evaluated at N discrete points. To achieve fast 
convergence, the discrete points must be the extremum of the 

coefficient of the Chebyshev polynomial. The coefficients an  for 

different value of n are given in Table 1. It is seen that by increasing n, 
the coefficients an will have no effect. 

The present analytical solution can be employed at the very 
initial time of the impact. In this situation, in order to solve Eq. (28), 
an asymptotic solution can be obtained. When 1Vt << ,  the 
intersection point will be 1Y << . Therefore, by using Taylor 
expansion and very small values of l ( 1l << ), the circular cylinder 

may be represented as

2
4

( ) ( )
2

l
h l O l= + . Based on Eq. (23), we 

have 1 ( )v O Y= + . This can lead to 
 

( , ) cosh( )0 2 22

l Y l Y

ll Y l Y
v l Y

l Y
ζ

− +
+

+ −= = =
−

.    (29) 

 
Finally, we can arrive at 
 

11
( ) [1 ( )]

20 0 1

kn k
l l c d O ln knk

λ
β λ

λ

+
∑= +∫
= −

                  (30) 

 
which represents the influence coefficient, as pointed out earlier. 

Pressure distribution and slamming force 

After obtaining the motion of the intersection point, the boundary 
value solution can now be obtained and substituted in Eq. (24), in 
order to determine the velocity potential ϕ . By determining the 
velocity potential ϕ , the pressure at any wetted part of the body 
surface can be evaluated using the Bernoulli's equation, which in 
terms of the velocity potential ϕ  can be expressed as 

 

( , ) 1 2 2
( )

2

P l t
y z

t

ϕ
ϕ ϕ

ρ

∂
= − − +

∂
  

( , ) 1 2 2
( )

2

P l t D
v z y z

Dt

ϕ
ϕ ϕ ϕ

ρ
→ = − − − +                           (31) 

 
In this equation, ρ  is the fluid density and the effect of the 

gravity is ignored. By using Eq. (9) and Eq. (10), it can be 
concluded that 
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( , , ) ( ', ', )'y z t y z t vz zϕ ϕ= −                                            (32) 

 
and  
 

' ( )D D Dz D DH Y
v v

Dt Dt Dt Dt Dt

ϕ φ φ
= − = + .                             (33) 

 
Hence, after substituting (33) and (32) into (31), the pressure 

can be written in terms of ϕ  (the velocity potential for the uniform 
flow passing a closed body) as 

 

( , ) 1 1 ( )2 2 2
( )' '

2 2

P l t D DH Y
v vy z

Dt Dt

ϕ
ϕ ϕ

ρ
= − + − + − .       (34) 

 
Details of the relation may be found in Mei et al. (1999). 

Numerical Method 

Governing equations 

The governing equations for the fluid flow are momentum and 
continuity, which are as follows: 

 
2

1u u upi i iu gi j
t x x x xj i j j

ν
ρ

∂ ∂ ∂∂
+ = − + +

∂ ∂ ∂ ∂ ∂
                  (35) 

 

0
ui

x i

∂
=

∂
                                                                                 (36) 

 
In order to capture the sharp interface in hydrodynamic two-

phase flow problems, the volume of fluid method is employed. The 
VOF technique uses a color function named Volume Fraction (α ). 
A transport equation (37) is then solved for the advection of this 
scalar, using the velocity field calculated from the solution of the 
Navier-Stokes equations at the last time step. 

 

.( ) 0u
t

α
α

∂
+ ∇ =

∂

r r
                                                                   (37) 

 
Numerical solution of Eq. (37) gives the volume fraction of each 

phase (i.e. Air and Water) in all computational cells. Distribution of 
the volume fraction (α ) is as follows: 

 

1                   for cells including fluid 1

0                  for cells including fluid 2

0 1      for cells including the interface

α

α

=

< <






              (38) 

 
Using the volume fraction, an effective fluid with the variable 

physical properties is introduced: 
 

(1 )1 2

(1 )1 2

eff

eff

ρ αρ α ρ

υ αυ α υ

= + −

= + −
                                                       (39) 

 

where subscripts 1 and 2 represent two phases, e.g. Water and Air. 
For rigid body motion simulation, a body fitted mesh is used 

which will follow the body motion over time. This strategy is 
called the moving grid technique in which the grid velocity will be 
integrated into the surface fluxes calculated on each control 
volume face. 

The confluence of boundary condition can cause singularities in 
the free surface displacement and velocities, as anticipated by the 
linear theory. These singularities appear to be avoided in the real 
fluid by the formation of jets which quickly break up into sprays 
under the action of surface tension. Therefore, for including 
nonlinearity effect in the water impact problem of a circular 
cylinder, a commercial VOF solver, i.e. FLOW-3D (FLOW-3D 
Manual, 2009), is employed. The FLOW-3D code applies the FVM 
(finite volume method) in combination with the volume of fluid 
solution for free surface flow. VOF is an excellent tool for the 
simulation of two phase flow which includes water and air in this 
study. In this numerical scheme, an additional transport equation is 
solved for the volume percentage of air in each cell. More details of 
FVM and VOF solution can be found in many reference books and 
articles (Versteeg and Malalasekera (1995), Jasak (1996), 
Kleefsman et al. (2005), Rhee et al. (2005), Sicilian (1990), Hirt 
(2004), and Barkhudarov (2004)). 

A circular cylinder of arbitrary radius R and constant falling 
velocity is considered. The computational domain considered is a 
semi-circular lower region with radius 8 times larger than the body, 
and an upper rectangular region extending 3 times the radius of the 
body, as shown in Fig. 4. 

 

 
Figure 4. Computational domain and structured grid. 

 
Region surrounding the body is discretized with finer mesh 

resulting in approximately 75,000 cells. For the sake of boundary 
conditions, the side walls are treated as planes of symmetry. Vertical 
velocities are prescribed at the lower inlet implying constant flux 
and forcing the water rise at the same velocity of the water entry. At 
the upper outlet, pressure is assumed to be zero, while a no-slip wall 
condition is imposed on the body surface. The Generalized 
Minimum Residual (GMRES) pressure-velocity solver and the 
second order momentum advection scheme are used for the 
descritization and numerical solution of the governing equations. 
The initial free-surface level is set in a way that the interface touches 
the lowest point of the semi-cylinder at t = 0.00 (s). A time step size 
of 0.01 s is used to catch all detailed information of the solution 
process. The size of the time step can be controlled and adapted 
using the stability and convergence criteria during the solution. The 
dimension of the computational domain is set as such that will 
significantly decrease the dependency of the solution to the 
boundary condition. Grid independence studies verify that 
resolution and lateral extension of the grid are sufficient to make 
grid errors insignificant. 
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Results and Comparisons 

The vertical water entry of a two-dimensional circular cylinder 
at constant velocity is computed using both linear analytical solution 
and fully nonlinear numerical method. Various aspects of water 
impact of circular section are studied and linear and nonlinear 
solutions are compared with each other and against the results of 
previous works. Pressure coefficient (CP), impact force coefficient 
(CS), free surface profile, contours of pressure and evolution of the 
intersection point are presented with special considerations given to 
the motion of the intersection point.  

Based on Eqs. (22)-(25) and Eq. (34), the pressure distribution 
on the wetted body surface can be derived analytically. The obtained 
analytical expression for pressure should be evaluated numerically 
to gain the pressure distribution on the wetted part of the body 
surface. Figure 5 shows the pressure distribution at different time 
instants during the impact, based on both analytical results and 
numerical solution. It can be seen that the maximum pressure is 
initially located near the intersection point and eventually moves to 
the keel point. 

For validation, the impact force on the cylinder which is directly 
related with pressure distribution is compared against the 
experimental results of Campbell and Weynberg (1980) and 
potential flow results based on a finite difference method (Arai, 
1995). In the experiment, the cylinder is forced into the water with 
constant velocities. The comparisons are shown in Fig. 6. The 
present predictions based on analytical solution lie closer to the 
experimental results, but the best agreement is achieved by the 
current numerical findings which agree very well with the 
experiments. The three-dimensional effects in the experiments 
produce this small inconsistency. 

 

 
Figure 5. Pressure distribution at different time instants during the impact. 

 

 
Figure 6. Impact force on a circular cylinder entering the water with 
constant velocity. 

 
Figure 7. Free surface profile at four different time instants: a) t = 0.01, 
b) t = 0.05, c) t = 0.1 and d) t = 0.15. 

 

 
Figure 8. Contours of pressure at four different time instants: a) t = 0.01, 
b) t = 0.05, c) t = 0.1 and d) t = 0.15. 

 
Snapshots of four configurations at different stages of the 

penetration are illustrated in Fig. 7. The corresponding pressure 
contours are also presented in Fig. 8. 

From Fig. 5, it is obviously clear that the pressure peak 
gradually decreases and its effective area increases. Figure 8 shows 
that the maximum pressure gradient and maximum pressure appear 
at the spray root. This remains so until the spray detaches. 

The obtained free-surface profiles show that the thickness of the 
jet grows with the local deadrise angle of the impacting body and 
that, due to the rise up of the water, the wetted part of the cylinder is 
larger than the penetration measured at the still water level. The 
numerical simulation is in fact quite similar to that of Greenhow 
(1988). But all these are not the main concern here, as the purpose 
of this paper is to provide some understanding about the movement 
and characteristic of the flow near the intersection point and a 
comparison between linear and nonlinear solutions. This 
information can contribute to the physical understanding of the 
problem, which in turn can play an important role in the 
development of the numerical codes. 

Figure 9 shows position of the intersection point obtained using 
both analytical solution and numerical method. For comparison, 
Wagner’s solution corresponding to Eq. (30) is also plotted. As 
expected, the two solutions agree well for a very small period of 
time, compared to the Wagner’s solution, but differ significantly 
beyond the initial stage of the impact. In particular, Wagner’s 
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solution provides much higher speed for motion of the intersection 
point compared to the results of the two models offered here.  

 
Figure 9. Evolution of the intersection points. 

 
In the problem considered, based on the linear theory, the 

assumption of the linear free surface boundary condition leads to an 
unrealistic conclusion that the displacement of liquid particles at the 
intersection points are unbounded. This implies that the assumption 
is not valid near the intersection points, where separation of the 
liquid particles from the cylinder surface occurs. The position of the 
separation points have to be determined together with the liquid 
flow and the pressure distribution. 

The obtained free surface profile using the VOF solver confirms 
that the liquid flow near the intersection points is different from that 
in the main region. Thus, separation effects as well as the gravity 
must be taken into account. Liquid particles on the body surface, 
which are initially close to the separation points, can leave the body 
surface after the motion starts. 

Conclusion 

The present study focuses on the derivation of analytical 
formulas for a water entry problem and conducts a comparison 
between the linear and nonlinear solutions. Accordingly, a 
numerical solution is also obtained by the FLOW-3D software, a 
commercial VOF solver. Some attention is also given to the point of 
intersection between the free surface and the body, where the 
confluence of boundary condition can cause singularities in the free 
surface deformation and velocities, as predicted by the linear theory. 
These singularities appear to be avoided in the real fluid by the 
formation of jets which quickly break up into sprays under the 
action of surface tension. It is also understood that the gravity is of 
major importance near the intersection point. Pressure distribution, 
slamming force, free surface profile, contours of pressure and the 
evolution of intersection point are presented. By comparisons 
between analytical solutions, numerical results and existing previous 
studies, one can conclude that the numerical findings are more 
favorable, which is consistent with the expectation that a fully 
nonlinear model should behave in such a way. On the other hand, a 
less complicated analytical solution has also shown to be relatively 
close to the experimental results which may become very useful in 
some practical situations. Numerical investigation of general bow 
section may be considered as a future study. 
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