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Study of Water Entry of Circular
Cylinder by Using Analytical and
Numerical Solutions

Water impact phenomenon in the case of a circuldinder is an important issue in
offshore industry where cross members may be isplesh zone of the incident wave. An
analytical method as well as a numerical solutioe amployed to study the water entry
problem of a circular section. The procedure foridation of the analytical formulas is
demonstrated step by step. The volume of fluid jV€dRulation of the water entry
problem is also performed to offer comparison @& thsults of the linearized analytical
solution with a fully nonlinear and viscous fluldw solution. To achieve this, the FLOW-
3D code is utilized. Some consideration has alemlggven to the points of intersection of
the free surface and the body, where the singigariéxist in the free surface deformation
and velocities, as predicted by the linear thedtyese singularities appear to be avoided
in the real fluid by the formation of jets whichiekly break up into sprays under the
action of surface tension. Slamming force, freefaq@r profile, impact force, pressure
distribution and evolution of intersection pointealso presented and comparisons of the
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Introduction

When an object falls into the water, an impact éascgenerated
on the body surface. Bluff bodies impacting on waserface
experience a heavy impulsive pressure. This magecaxtreme
damage on the marine structure. Due to the critroglortance of
this phenomenon, the water entry problem has beesupd by
many researchers.

Von Karman (1929) and Wagner (1932) were the fiesdple
who presented an analytical work on this subjeltyTtheoretically
developed formulas by using asymptotic theory. Hwmwe their
work was for the case of wedge section. Later,stasnming loads
on the circular members, which can cause damagiewarious
marine structures, was a motivation for the expental and
theoretical studies by Faltinsen et al. (1977).

The water entry of circular section has been ingattd by a
limited number of researchers. Here, the most itapoiworks that
are presented in the literature are reviewed. Aesponding process
of the impacting circular section on the water vgigea rapid water
entry of circular cylinders into initially calm wet If the variation
along the length of the cylinder is discounted wa-timensional
problem in the cross plane can be considered (8dnFaltinsen,
2006). Due to the fact that the classical Wagnedeha@annot
describe the important details of the impact precesome
researchers have tried to improve Wagner solutiomportant
corrections were made with the help of the methbdnatched
asymptotic expansions by Armand and Cointe (19BiB)vison et
al. (1991), Oliver (2002), Logvinovich (1969) andidbkin (2004).
Different asymptotic models were derived, which pamed to the
original Wagner model predict the loads on the remgebody more
accurately. Zhao et al. (1996) solved the boundaiye problem at
each time instant by the boundary element methddMPB and
numerically obtained the vertical velocity distritmn on the free
surface to evaluate the shape of the free surfadettee splash-up
height at the next time instant. Owing to the flsingularity at the
intersection points, the nonlinear Bernoulli eqomti predicts
negative and unbounded pressures close to thestspdhao et al.
(1996) suggested integration of the hydrodynamiesgure
distribution only over the part of the wetted sudfawhere the
pressure is positive. Within the same approachlyica results
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obtained results against the results of previousliss illustrate favorable agreements.
Keywords: circular section, analytical method, FLOW-3D, ingp#orce, intersection point

were obtained by Mei et al. (1999) for the entrphpems of a
wedge, a circular cylinder and ship sections of iselgrms; this is
for the problems with known conformal mapping ofh®artz-
Christoffel that maps the flow domain onto a hadHme. The
boundary-value problems of the generalized Wagoértien are
much simpler than those within the original forntida, making the
approach very attractive in practice. This schesnatilized in this
paper.

Another analytical model of water entry was devetbpoy
Vorus (1996). The model was fully novel. The geainat
nonlinearity of the impact problem was neglectedt bhe
nonlinearity in the boundary conditions was congde By using
this condition at the intersection point where thygrodynamic
pressure is zero, positions of the intersectionntsoican be
evaluated. Obtaining numerical results based ou¥arodel by Xu
(1998) were in good agreement with the experimedatd.

In the case of a rigid circular section, the freeface will
initially change very rapidly. Therefore, the exactution of the
water entry is an intricate procedure. It can dsodue to the fact
that the water entry process may involve many caragd effects
such as air cavity, flow separation, breaking wavegually, the
rate of change of the wetted surface is initiatifinite according to
Wagner (1932). In this situation, the approximaikitons such as
flat plate theories (Faltinsen, 1990) may oftenulsed in practice.
To find the accurate solution of the problem withlyf nonlinear
free surface conditions, numerical methods haveb#o used.
Greenhow (1988) studied the water entry of a ragidular cylinder
by using a boundary element method based on Cam¢hgbrem.
However, the calculations needed to be refined #ra flow
separation model needed to be improved to be ntatdes The
water entry of a rigid circular cylinder was stutliby Zhu et al.
(2007) which used a constrained interpolation prdiCIP) method.
The time history of the body motion and the evalntbf the free
surface contours were well predicted except airtii@l time due to
the infinite rate of change of the wetted surfé®en and Faltinsen
(2006) developed a two dimensional boundary elenuente to
simulate the water flow and pressure distributiomirty the water
impact of the horizontal circular cylinder. Theytisfed the exact
free surface boundary conditions. The non-viscéow eparation
on the curved surface of the cylinder was simuldtgdnerging a
local analytical solution with the numerical method

The present study is motivated by the work of Zagal. (1996)
and Mei et al. (1999), but it is focused on thewadgion of analytical
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formulas and by performing a comparison betweeralinand

nonlinear solutions. In order to accomplish thisktehe numerical
solution is also adopted based on VOF method forchwlihe

FLOW-3D code is utilized. Some considerations Hagen given to
the points of intersection of the free surface tredbody, where the
confluence of boundary condition can cause singidarin the free
surface displacement and velocities, as expectetinbgr theory.

Slamming force, free surface profile, impact forgesessure
distribution and evolution of intersection poineaslso computed.
Analytical solutions and numerical results are camp against the
results of previous studies.

Nomenclature

= y-axis lies on the undisturbed water surface wltile
z-axis coincides with the symmetric axis of theybod
=the vertical distance between a point on the body
surface and its apex

= velocity potential

=time
= substantial derivative
= vertical coordinate of a point on the water fre@face

= gravitational acceleration

= unit outward normal of the body surface
= water entry velocity

= the instantaneous wetted body surface

v,2)

h=H(y)

<> @3 glo~+®

S, (1)
Y (1) = the horizontal coordinate of the intersectioing of

the body and the free surface

=the coordinate system after Galilean transforroati
= dummy time variable

= intersection point

= vertical velocity of the fluid particle gf =y (1)

= number of discrete points on the body stafa

v, z)
T

y =It)
v(l,7)

Pz

=the n-th order Chebyshev polynomial of the fistl

< —

max

= the maximum horizontal coordinate of the
intersection point in the impact
=the known coefficients of the Chebyshevmmtyial

= influence coefficient

Ck

n

B,()
R radius of circular cylinder
Z-plane = physical flow plane

W-plane = mapped flow plane

Q=¢+i¢ = intermediate complex variable

v = dimensionless coefficient
Re =real part

) = fluid density

P = pressure

Cp = pressure coefficient

Cs = impact force coefficient

U = fluid velocity
a = volume fraction

Analytical Method

Formulation

A two dimensional impact problem of a rigid bodyaatonstant
vertical velocity with an initially calm horizontakater surface is
considered. The solid body is assumed to be syrniwakaibout its
axis. In the assumed Cartesian coordinate system),(y-axis lies
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on the undisturbed water surface, while the z-aeaiscides with the
symmetric axis of the body (Fig. 1).

To illustrate the body surface, the relation h y)H¢ presented
where h denotes the vertical distance between & paoi the body
surface and its apex. Water is considered to benipcessible and
inviscid and flow to be irrotational. Here, theilas described by a
velocity potential ¢ that satisfies the Laplace’s equation with

boundary condition in the fluid domain:

1)

Horizontal coordinate of
Instantaneous intersection
Arbitrary section

Initial calm free surface
of the water

=

Water

le——Y(t)

A

V=cte

—

Disturbed free surface
of water

Figure 1. Two-dimensional body with arbitrary section dropping into (initially)
calm water.

There are two free surface boundary conditionslieein the
formulation of the problem:
(1) The kinematic boundary condition on the fredaze:

D¢ 09
—=— 0On z=n(y,1) 2
Dt oz
(2) The dynamic boundary condition on the freeatef
Dg 1 2 2
—==Z(¢y +#7)*+9n=00n z =7(y,1) ®)
Dt 2
D

where o, denotes the substantial derivative, represents the vertical

coordinate of a point on the water free surfacegasdhe gravitational
acceleration. The effect of possible air trapped/iéen the body and the
free surface is ignored and the effect of gravitinpared to the body’s
inertia can be considered negligible. Consequertthg dynamic
boundary condition transforms into Eq. (4).

D¢

Dt

1
- @y e =0 on z=n(y0. (4)

Nonlinear terms in these two boundary conditions #re
sources of major difficulty in solving the boundarglue problem.
Therefore, to overcome this difficulty, Wagner (293implified the
dynamic boundary condition as:

#(y,z,t)=0 On  z=n(y,1). ®)

This condition is applied on the horizontal linattltrosses the
intersection point between the body and the freefasa

ABCM
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z =n(y,t), which basically means that this condition mugtlpap solved with the initial boundary value problem. Shthe velocity
to the horizontal plane passing through the intgise points Potential¢ is a function ofy (t).
z =n(y,t), and that the horizontal line is not the exactefre =~ When the image method is used, the Galilean tramsfiion can
surface. To determine the intersection point betvibe free surface D€ utilized. Accordingly, we have:
and the body, the kinematic free surface boundanglition is used.
Another boundary condition is the no-flux conditiarich is oy, z,t)=¢(y' 2 )-VZ 9)

imposed on the body surface:

where ¢ is the velocity potential for uniform flow passiagclosed

g body, and relations between the (y', z') coordisgstem and (y, z)
n =¥n, On  Sy(Y) ) (6 coordinate system are:
n
y'=y,z'=z=-n(y) (10)

where n is the unit outward normal of the body surfa¢ds water

entry velocity andS; (t) represents the instantaneous wetted body To solve forg analytically, the conformal mapping technique is
applied, which depends on the body geometry. Tis¢ de@nformal
mapping technique that may be used is Schwartzs@ifiiel

known with y < IY (t)| , whereY (t) is the horizontal coordinate of transformation. _
Following the work done by Wagner (1932) and Meiakt

(1999), we define the intersection poiftt (t), H(Y ) - V1) as the
location where the fluid particle on the free soefaneets the body

2 2.1/2 surface for the first time. Due to the usage of kivematic free
|D¢| -0 As(y +z7) - . (7) surface boundary condition and this definition, tgeverning
equation for the intersection point = | (t) is taken to be:

surface. To determineS, (t), the relation h = H(y) must be

the intersection point of the body and the freefema. Another
boundary condition is the far field condition as in

For the initial condition, we can write:
t
#(y,z,00=08& n(y,00=0 on z=0. (8) H(I)—Vt=éV(l,r)dr (11)

Subsequent to finding the velocity potentigl the pressure on
the body is determined by Bernoulli equation angl ithpact force
on the body is obtained by direct integration @& pinessure over the
wetted body surface.

The boundary value problem fag# must satisfy the Laplace’s B . 2 =n(Y(@).T) = ¢(YI = Y(), 7= 0, - V7 (12)
equation, the kinematic free surface boundary dmrdi the
linearized dynamic free surface boundary conditighich is a Then, we write
Dirichlet boundary condition, the Newman body boamyd
condition, the radiation condition and the init@ndition. It must
be emphasized that the approximations carried lboneare invalid v(l,7)= %(I N )r)= 5¢' (,0,7)-V (13)
for the flow region where the free surface profitanges sharply. ' s ' T '

However, for flow near the water intersection ppinonlinearity

where 7 is the dummy time variable an|, 7) is the vertical velocity
of the fluid particle aty =Y (t) . Upon using Eg. (9), we have:

0z

must be considered. Substitution of Eq. (13) into Eq. (11) would yiéfd
Analytical solution of boundary value problem t 9p
= g . 14
An analytical method for the solution of the linead water HE) (j)az (1.0.7)dr (14)

entry problem of circular cylinder will be presettelo solve the
Laplace’'s equation, Egs. (2), (5), (6) and (7) arplemented,
which are known as boundary value problem for thetogity
potentialg . It must be emphasized that the approximationsemad
here are invalid for the flow region where the feeface profile changing the variable of integration fromto Y, we will have
changes sharply. The body boundary condition isosed at the

instantaneous position of the body. Since the Bieic boundary Y (t) 3

condition ¢ =0 is applied on the free surface =n(y), ¢ is H)= | v_li(l,o,r),u(Y ydY (15)
considered symmetric with respect ro=7(y) plane. Therefore, 0 0z’

the hydrodynamic images method can be used. Assaltrehe

linearized boundary value problem can be considas@ closed -1 09

body moving in an infinite fluid with a constantwioward velocity, ! vo(l,Y)=v =—(1,0,7), Eq. (15) becomes

V. This fictitious closed body is made of the imnegkrsegment of 0z

the real body and its image about the horizontah@lz = 77(y) . |

Therefore, the geometry of this shape depend¥ ¢t) . It should H()=Jval,y)u )dyY. 16}
be noted that the position of the intersectiorhefttody and the free 0 0

surface,Y (t), is a priori unknown, which must simultaneously be

vdr
By introducing the variableu(Y ) =—— into Eq. (14) and
dy
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In order to perform the integration, the dependentdhe wherec,, are the known coefficients of the Chebyshev patyiad

kernelv onY (7) = | must be known. For arbitrary bodies, theTn (Y ). To determine the unknown coefficienss, Eq. (17) is
substituted into Eq. (16) as in
dependence m?o onl is complicated and a closed-form solution

I N-1
H()= T,(Y) dY. 19
for p(l) from Eq. (16) cannot be obtained. For bodies with M (I)VO néoa” n() (19)

smooth surfaces, the intersection point moves shipatith time

and hence varies smoothly within such cases, we can write anif the influence coefficienB, (Y) is introduced as
expansion for y(l) based on Chebyshev polynomial. The

polynomial expansion of Chebyshev is applied tofttet N terms

I
to describeu(Y ) as follows: Bn() = éV0(| YITp(r)dy n=012..N-1 (20)
N 5 then, Eq. (19) becomes
uY )= nz:(;anTn(Y) = HZ;) Y'Y OOY ] an + =0
N-1
wherea, are the unknown coefficients,, represents the-th order H()= nEO anfn(l) (21)

Chebyshev polynomial of the first kind,,, is the maximum

horizontal coordinate of the intersection pointtie impact and,, is In the case of a circular cylinder, Eq. (21) mustdetermined

numerically. By applying this equation [dt+ 1 discrete points on the
body surface, a linear system of equation is fornTdte resulting
system of equation must be solveddgwheren =0, 1, ... NN can
be chosen to be 10, in order to acquire a bettamracy for a circular
cylinder (Table 1). In the next section, the watepact of a circular
cylinder will be analyzed.

n
bn :kZzoak Ckn n=012,..N (18)

Table 1. Coefficients a, for the circular cylinder section.

2] a 2 3 & 3 % & g 2]
0.717311| 1.05285 0.50685 0.252121  0.08144

1
0.745768| 1.10790¢ 0.583992 0.327875 0.155867 00815
0.767847| 1.160124 0.638363 0.395079 0.216P11 9049 0.031859
3
3
4

0.788787| 1.20109¢ 0.6883 0.446078 0.272286 83616 0.063983| 0.020378
0.806371| 1.224012 0.72851 0.493316 0.318191 0OeaMd| 0.10013| 0.041778 0.013433
10| 0.822802| 1.27239]1 0.76566 0.531383 0.369[154 29635 | 0.134027) 0.068333 0.027384 0.008%49

| |([N[fo|lo |2

Impact of thecircular cylinder which moves by constant velocity in the oppositection of z-axis.

The closed body is obtained by imaging the immegsad of body
Consider the circular cylinder with radius R. A#nigths are '

normalized with respect to the radius and thenR Enhe lower part toward thez =7(y) or z =0. Therefore, the velocity potential

of the circle can be defined bi(l) =1-V1-I 2 as shown in  #(Y .z ,t) atany instant describes the vertical uniform flow past

Fig. 2,Y (t) is the horizontal coordinate of the intersectianinp ~(doubly convex) lens of widt2Y(t) and thicknes2h(Y) Finally,
between the body and the free surface. closed form solution forp can be obtained by conformal mapping.

The physical flow in th&-plane is mapped onto a uniform vertical

i7 stream in théV-plane through a double conformal mapping:
—-iY -iYv
Z = , Wo=— (22)
Y tanQ singQ)
¥
where Q =¢&+i{ is as intermediate complex variable and
/ dimensionless coefficie’ which is defined as
\
. _— . : : . : Tl 2
Figure 2. Definition of the horizontal coordinate of intersection point Vv = (23)

between the body and free surface.

actan(Y / (1- (- Y2))

The boundary conditionp =0 is applied onz =7(y). This  The planesV, Z andQ are shown in Fig. 3.
implies that the problem is equivalent to the dolubf closed body,
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iz i iq
Z plane

Q plane W plane

iy

—iYv

£

Figure 3. Definition of the planes W, Zand Q.
Therefore, the velocity potential can be obtained a

#(y ,z ,t) = Re{-ivW} (24)
where Re means the real part of the expressiontledsertical
component of the velocity vector may be acquiredhgyfollowing
computations:

daw in2 cot(vQ) dQ sin2 Q

E B sin(vQ) ' E ) iy
aw _ vZsin?(Q)i vZsin?(Q)

- dz' B sin(vQ) tan(vQ) o sin(vQ)tan(vQ].

Thus, the complex velocity is

v 2 sian

singQ) tangQ )

u-iv =-iv

(25)

To determine the unknown valag, the influence coefficient
B, (I') must be determined. By substituting Eq. (26) iEtp (20),
we have

Iv smh {Th (Y)
Osmh@Z)tanhVZ)
for n=0,1,2,.N- 1

Bn () = 29)

Due to the intricacy of the dependencevaind { uponl, the
above equation may not be evaluated analyticalgrdfore, Eq. (28)

must be evaluated numerically for a given valueYgfax/ R-

Equation (21) must be evaluated\adiscrete points. To achieve fast
convergence, the discrete points must be the eutrerof the

coefficient of the Chebyshev polynomial. The cafints a,, for
different value oh are given in Table 1. It is seen that by incregsin
the coefficients, will have no effect.

The present analytical solution can be employedhat very
initial time of the impact. In this situation, imder to solve Eq. (28),
an asymptotic solution can be obtained. Whéh<<1, the
intersection point will beY <<1. Therefore, by using Taylor
expansion and very small valuesldfl <<1), the circular cylinder

2

|
may be represented hfl) = — +O(I4). Based on Eg. (23), we
2

havev =1+0O(Y ). This can lead to

The variabIeVO(y,I) at the free surface position and at the

Z = yl =1 - Q=i can be achieved as
2 .2
-10¢(,0,1 vV~ sin
Vo(y.1y =y 100D Q
0z sinf/Q) tan¢Q) (26)
_ vzsinhzi
sinh{ { ) tanhy{ )
The variables{ and! are related by
iY iY
Z =-— S|l =- =
tan(Q ) tan({ )
ot _eZ ve ¢
Y tanh¢) ¢ —e ¢
e iy =@ ey =t . @7)
Y

I +Y

The velocity potential is a function of the intesen point

between the body and the free surface. The velpcitgntial can be

calculated by solving the boundary value problenut lhe
intersection point is an unknown which must be ivtetz.
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/ | +Y
Vo(lY ) = cosh¢ )= (29)
Finally, we can arrive at
k
B k+1 12
Bn () = Z | cJ)\/7d/l[1+0(l)] (30)

which represents the influence coefficient, as gnirout earlier.

Pressuredistribution and slamming force

After obtaining the motion of the intersection gotie boundary
value solution can now be obtained and substitirieHq. (24), in
order to determine the velocity potentigl. By determining the

velocity potential ¢, the pressure at any wetted part of the body

surface can be evaluated using the Bernoulli's tegawhich in
terms of the velocity potentigh can be expressed as

P(I,t) a¢
0 ot
D¢

P(I,t)__i_
0 B Dt V92

1
(¢y )

@1

-

1 2 2
-— +
2(¢y $7)

In this equation,p is the fluid density and the effect of the
gravity is ignored. By using Eq. (9) and Eq. (1@),can be
concluded that

July-September 2012, Vol. XXXIV, No. 3 /229



¢Z(y,Z,t):¢Zv(y',Z',t)—V (32)

and

D¢ D@ Dz' D@ DH(Y)
- = - = +vVv

Dt Dt Dt Dt Dt

. (33)

Hence, after substituting (33) and (32) into (3hg pressure
can be written in terms of (the velocity potential for the uniform

flow passing a closed body) as

1

P(.t) __D¢ +7v2—71(¢2. +¢Zzl)_v
2 2

0

Dt

DH I )
Dt

(34)

Details of the relation may be found in Mei et(4D099).
Numerical M ethod

Governing equations

The governing equations for the fluid flow are motoen and
continuity, which are as follows:

ou; oy, 1 ap dzq
— Y =T Vo4, (35)
ot 0X ; p OX: oX; X

] I 177
oy;
—=0 (36)
ox

In order to capture the sharp interface in hydreayic two-
phase flow problems, the volume of fluid methocisployed. The
VOF technique uses a color function named Volunetion (a ).
A transport equation (37) is then solved for theeation of this
scalar, using the velocity field calculated frone teolution of the
Navier-Stokes equations at the last time step.

Jda
— +0.(au)=0
ot

37

Numerical solution of Eq. (37) gives the volumecfran of each
phase (i.e. Air and Water) in all computationaledDistribution of
the volume fraction & ) is as follows:

1 for cells including fluid 1
a=10 for cells including fluid 2 (38)
O0<a<1 forcells including the interfas

Using the volume fraction, an effective fluid withe variable
physical properties is introduced:

Pass =ap +(1-a)p
eff 1 2 (39)
Upfp = QUL+ 1- a')u2

230 / Vol. XXXIV, No. 3, July-September 2012

Ghadimi et al.

where subscripts 1 and 2 represent two phasesjiaigr and Air.

For rigid body motion simulation, a body fitted rheis used
which will follow the body motion over time. Thidsrategy is
called the moving grid technique in which the gridocity will be
integrated into the surface fluxes calculated orhe&ontrol
volume face.

The confluence of boundary condition can causeusamigies in
the free surface displacement and velocities, &isipated by the
linear theory. These singularities appear to bdadaebin the real
fluid by the formation of jets which quickly brealp into sprays
under the action of surface tension. Therefore, ifteluding
nonlinearity effect in the water impact problem af circular
cylinder, a commercial VOF solver, i.e. FLOW-3D @®W-3D
Manual, 2009), is employed. The FLOW-3D code aspiiee FVM
(finite volume method) in combination with the voie of fluid
solution for free surface flow. VOF is an excellanbl for the
simulation of two phase flow which includes watedaair in this
study. In this numerical scheme, an additionaldgpant equation is
solved for the volume percentage of air in each bdre details of
FVM and VOF solution can be found in many referehoeks and
articles (Versteeg and Malalasekera (1995), JasaR96),
Kleefsman et al. (2005), Rhee et al. (2005), 2iil(1990), Hirt
(2004), and Barkhudarov (2004)).

A circular cylinder of arbitrary radius R and caardt falling
velocity is considered. The computational domainsidered is a
semi-circular lower region with radius 8 times krghan the body,
and an upper rectangular region extending 3 titegddius of the
body, as shown in Fig. 4.

Figure 4. Computational domain and structured grid.

Region surrounding the body is discretized withefirmnesh
resulting in approximately 75,000 cells. For th&esaf boundary
conditions, the side walls are treated as plansymimetry. Vertical
velocities are prescribed at the lower inlet impgyiconstant flux
and forcing the water rise at the same velocitthefwater entry. At
the upper outlet, pressure is assumed to be zéite @ no-slip wall
condition is imposed on the body surface. The Gaized
Minimum Residual (GMRES) pressure-velocity solverd athe
second order momentum advection scheme are usedthéor
descritization and numerical solution of the gowuggnequations.
The initial free-surface level is set in a way tthe interface touches
the lowest point of the semi-cylinder at t = 0.8D @ time step size
of 0.01 s is used to catch all detailed informatainthe solution
process. The size of the time step can be contraled adapted
using the stability and convergence criteria dutimg solution. The
dimension of the computational domain is set ash stnat will
significantly decrease the dependency of the gwilutto the
boundary condition. Grid independence studies yerthat
resolution and lateral extension of the grid arffigant to make
grid errors insignificant.

ABCM
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Results and Comparisons

The vertical water entry of a two-dimensional clesicylinder
at constant velocity is computed using both lire@alytical solution
and fully nonlinear numerical method. Various aspeaf water
impact of circular section are studied and linead anonlinear
solutions are compared with each other and ag#mestesults of
previous works. Pressure coefficie@p), impact force coefficient
(Cy), free surface profile, contours of pressure avalution of the
intersection point are presented with special csrstions given to
the motion of the intersection point.

Based on Egs. (22)-(25) and Eq. (34), the presdistebution
on the wetted body surface can be derived anallytidehe obtained
analytical expression for pressure should be eteduaumerically
to gain the pressure distribution on the wetted pérthe body
surface. Figure 5 shows the pressure distributiodiféerent time
instants during the impact, based on both analytieaults and
numerical solution. It can be seen that the maxinpressure is
initially located near the intersection point anetrtually moves to
the keel point.

For validation, the impact force on the cylinderiethis directly
related with pressure distribution is compared ragjaithe
experimental results of Campbell and Weynberg ()1980d
potential flow results based on a finite differenoethod (Arai,
1995). In the experiment, the cylinder is forcetbithe water with
constant velocities. The comparisons are shown ign 6. The
present predictions based on analytical solutiencloser to the
experimental results, but the best agreement isewa®th by the
current numerical findings which agree very welltlwithe
experiments. The three-dimensional effects in thk@eements
produce this small inconsistency.
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Figure 5. Pressure distribution at different time instants during the impact.
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Figure 7. Free surface profile at four different time instants: a) t = 0.01,
b)t=0.05c)t=0.1and d)t =0.15.

Figure 8. Contours of pressure at four different time instants: a) t = 0.01,
b) t=0.05¢c)t=0.1andd)t=0.15.

Snapshots of four configurations at different stagd the
penetration are illustrated in Fig. 7. The correspog pressure
contours are also presented in Fig. 8.

From Fig. 5, it is obviously clear that the pressyreak
gradually decreases and its effective area incsed&sgure 8 shows
that the maximum pressure gradient and maximunspresappear
at the spray root. This remains so until the spietaches.

The obtained free-surface profiles show that thekitess of the
jet grows with the local deadrise angle of the iotjpey body and
that, due to the rise up of the water, the wettad @f the cylinder is
larger than the penetration measured at the sttiewlevel. The
numerical simulation is in fact quite similar toathof Greenhow
(1988). But all these are not the main concern,hesehe purpose
of this paper is to provide some understanding afmimovement
and characteristic of the flow near the intersectmoint and a
comparison between linear and nonlinear solutiorhis
information can contribute to the physical underdiag of the
problem, which in turn can play an important role the
development of the numerical codes.

Figure 9 shows position of the intersection pointained using
both analytical solution and numerical method. Eomparison,
Wagner's solution corresponding to Eq. (30) is aiotted. As
expected, the two solutions agree well for a venals period of
time, compared to the Wagner's solution, but diffagnificantly
beyond the initial stage of the impact. In parteculWagner’'s
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solution provides much higher speed for motionhef intersection
point compared to the results of the two modelsrefi here.

wWagner [2]
—e— Analytical Solution
—Numerical Solution

I I
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Figure 9. Evolution of the intersection points.

In the problem considered, based on the linear riheine
assumption of the linear free surface boundary itiemdeads to an
unrealistic conclusion that the displacement dfitioparticles at the
intersection points are unbounded. This implie$ tha assumption
is not valid near the intersection points, wherpasation of the
liquid particles from the cylinder surface occurke position of the
separation points have to be determined togeth#r thie liquid
flow and the pressure distribution.

The obtained free surface profile using the VOReaotonfirms
that the liquid flow near the intersection poirggifferent from that
in the main region. Thus, separation effects ad aslthe gravity
must be taken into account. Liquid particles on lloely surface,
which are initially close to the separation poimn leave the body
surface after the motion starts.

Conclusion

The present study focuses on the derivation of yénal
formulas for a water entry problem and conductsompmarison
between the linear and nonlinear solutions. Accwlyi, a
numerical solution is also obtained by the FLOW-8@ftware, a
commercial VOF solver. Some attention is also giteethe point of
intersection between the free surface and the bedgre the
confluence of boundary condition can cause singidarin the free
surface deformation and velocities, as predictethbylinear theory.
These singularities appear to be avoided in thé fle@ by the
formation of jets which quickly break up into spsaynder the
action of surface tension. It is also understoad the gravity is of
major importance near the intersection point. Rmesslistribution,
slamming force, free surface profile, contours ofssure and the
evolution of intersection point are presented. Bymparisons
between analytical solutions, numerical results exidting previous
studies, one can conclude that the numerical fggliare more
favorable, which is consistent with the expectatibat a fully
nonlinear model should behave in such a way. Orother hand, a
less complicated analytical solution has also shtwbhe relatively
close to the experimental results which may becwearg useful in
some practical situations. Numerical investigataingeneral bow
section may be considered as a future study.
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