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Differential Kinematics of Serial 
Manipulators Using Virtual Chains 
This paper presents a new approach to calculate the direct and inverse differential 
kinematics for serial manipulators. The approach is an extension of the Davies method for 
open kinematic chains based on a virtual kinematic chain concept introduced in this paper. 
It is a systematic method that unifies the kinematics of serial manipulators considering the 
type of kinematics and the coordinate system of the operational space and constitutes an 
alternative way to solve the differential kinematics for manipulators. The usefulness of the 
method is illustrated by applying it to an industrial robot.  
Keywords: Robot analysi, differential kinematics, screw theory 
 
 
 
 
 
 
 
 
 

Introduction 

Kinematics is a branch of physics concerned with the 
geometrically possible movements of a body or a system of bodies 
without considering the forces and masses involved.  

Robot manipulator kinematics  deals with the movements of the 
robot end-effector and how the robot joints need to move, in a 
coordinate manner, to achieve the end-effector prescribed 
movement. 1 

Differential kinematics relates the velocities of the manipulator 
components. These velocities may be the velocities at the joints of 
the manipulator or the velocities of one or more links in the 
manipulator kinematic chain. The standard approach to differential 
kinematics is to relate joint and end-effector velocities through the 
Jacobian matrix, which allows the calculation of the end-effector 
velocities given the joint velocities (direct differential kinematics) 
or, to determine the joint velocities in order to move the end-effector 
with a prescribed speed (inverse differential kinematics). 

Another important feature of differential kinematics is the 
singularity analysis, commonly based on the Jacobian matrix. 

Furthermore, differential kinematics is used to define indices for 
the evaluation of the manipulator performance (Sciavicco, 1996), 
e.g. manipulability ellipsoids (Angeles, 1997). Such indices, also 
known as quality indices (Downing, 2002), may be helpful both for 
the mechanical manipulator design and for determining suitable 
manipulator configurations to execute a given task. 

In the literature, the differential kinematics of robots with serial 
kinematic chains (serial robots for short) is described using 
variations of two main approaches: the method based on Denavit-
Hartenberg parameters (Sciavicco, 1996) and the screw-based 
method (Hunt, 1987; Duffy, 1996; Davidson and Hunt, 2004). The 
latter allows the expression of the Jacobian manipulator in a greatly 
simplified manner by expressing the screws in a properly chosen 
reference frame (Tsai, 1999). 

In both descriptions the direct differential kinematics is usually 
obtained by calculating the Jacobian and, after this, the inverse 
kinematics is obtained by inverting the Jacobian matrix. 

This paper presents a new variation of the screw-based method 
that allows the determination of the direct and the inverse 
differential kinematics using a single systematic approach.   

This approach is derived from the Davies formulation of the 
Kirchhoff law, here designated as the Davies method (Davies, 1981, 
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1983). The Davies method uses the differential kinematics screw 
representation, as described below for completeness. 

The Davies method allows the calculation of the differential 
kinematics of closed kinematic chains by relating the joint rates 
along the chain. By considering that closed kinematic chains have 
actuated joints (with known velocities) and passive joints (in which 
the velocities will be calculated), it may be stated that, more 
specifically, the Davies method is a systematic way to express the 
joint rates of passive joints as functions of the joint rates of the 
actuated joints. 

The Davies method, very useful for analyzing mechanical 
networks with multi-loop kinematic chains, has, however, two 
drawbacks when applied to robot kinematics. First, it is limited to 
fully closed kinematic chains; therefore, it is not possible to apply 
this method to solve the differential kinematics of serial robots 
(open kinematic chains).  Second, the method cannot be used to 
obtain information about the rigid body movement of a specific link, 
e.g. the robot end-effector in a desired operational space (Cartesian, 
cylindrical etc.). 

This paper formalizes the concept of a virtual kinematic chain as 
suggested by Davies (Davies, 2000) and shows that by using this 
concept it is possible to overcome the Davies method drawbacks 
mentioned above and to extend the method to robot kinematics in 
order to calculate its direct and inverse differential kinematics using 
the same single systematic approach. 

Furthermore, it allows the determination of the inverse 
differential kinematics in a coordinate system (Cartesian, cylindrical 
etc.) suitable for the end-effector task, which is not so evident to be 
achieved using conventional methods. 

This paper has the following structure. Initially, the differential 
kinematics of a body is represented using screws. Next, the Davies 
method and the joint space kinematic solution are described. Then, 
the concept of a virtually modified chain and its properties are 
proposed. Following this, the joint space kinematics for a virtually 
modified chain is solved. Finally, the differential kinematics using 
virtual chains is discussed and the direct and inverse differential 
kinematics for a PUMA serial manipulator is calculated using the 
proposed method for a Cartesian and a cylindrical operational space. 

Nomenclature 

$= screw movement or twist  
h = pitch of the screw 
Vp = linear velocity of point p 
SO = position vector of any point at the screw axis 

$̂  = normalized twist: a screw   
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S = normalized vector parallel to screw axis 
N = matrix containing the normalized twists 
Fb =gross degree of freedom 
FN =net degree of freedom 
d =order of the screw system 
n =number of links of a kinematic chain 
f =degree of freedom of a kinematic pair 
m =rank of matrix containing the normalized twists 
T = transformation matrix of screw coordinates  
R = rotation matrix 
W = skew-symmetric matrix representing a vector 

Greek Symbols ω  = differential rotation about the screw axis, angular velocity τ  = differential translation along the screw axis, linear  velocity Ψ
 = twist magnitude θ

 = position angles at the rotary joints 

Subscripts 

s   relative to secondary 
p   relative to primary 
i,j   relative to link or joint  i,j 

Screw Representation of Differential  Kinematics 

The Mozzi theorem (see Ceccarelli, 2000, for the original 
quotation and historical remarks) states that the velocities of the 
points on a rigid body with respect to an inertial reference frame 
O(X,Y,Z) may be represented by a differential rotation ω  about a 
certain fixed axis and a simultaneous differential translation τ  along 
the same axis. The complete movement of the rigid body, 
combining rotation and translation, is called screw movement or 
twist $. Fig. 1 shows a body “twisting” around an axis 
instantaneously fixed with respect to the inertial reference frame. 
This axis is called the screw axis and the ratio of the linear velocity 
and the angular velocity is called the pitch of  the screw h= ||τ ||/||ω ||.  

 

τ

ω

O
$X

Y

Z

 
Figure 1. Screw movement or twist. 

 
The twist represents the differential movement of the body with 

respect to the inertial frame and may be expressed by a pair of 
vectors, i.e. $=(ω ;Vp). The vector  ω =(L, M, N ) represents the 
angular velocity of the body with respect to the inertial frame. The 
vector Vp=(P*, Q* ,R*) represents the linear velocity of a point P 

attached to the body which is instantaneously coincident with the 
origin O of the reference frame (see Fig. 2). 

The vector Vp consists of two components: a) a velocity parallel 
to the screw axis represented by τ =h ω ; and b) a velocity normal to 
the screw axis represented by SOxω , where SO is the position vector 
of any point at the screw axis. 
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Figure 2. Twist components for a general screw kinematic pair. 

 
A twist may be decomposed into its amplitude and its 

corresponding normalized screw. The twist amplitude Ψ is either 
the magnitude of the angular velocity of the body, ||ω ||, if the 
kinematic pair is rotative or helical, or the magnitude of the linear 
velocity, ||Vp||,  if the kinematic pair is prismatic.  Consider a twist 
given by $=(ω ;Vp)

 T = (L, M, N ;P*, Q* ,R*)T. Then, the correspondent 

normalized screw is $̂ =(L, M, N; P*, Q*  ,R*  )T. This normalized 
screw is a twist in which the magnitude Ψ is factored out, i.e. 

 

 Ψ= $̂$  (1) 
 
The normalized screw coordinates (Davidson and Hunt, 2004) 

may be defined as a pair of vectors, namely, (L,M,N) and 
(P*,Q*,R*), given by, 
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where S is the normalized vector parallel to the screw axis. Notice 
that the vector (SO × S) determines the moment of the screw axis 
with respect to the origin of the reference frame.  

The movement between two adjacent links, belonging to an n-
link kinematic chain, may also be represented by a twist. In this 
case, the twist represents the movement of link i with respect to link 
(i-1).    

In Robotics, generally, the movement between a pair of bodies 
is determined by either a rotative or a prismatic kinematic pair.  

For a rotative pair the pitch of the twist is null  (h=0). In this 
case the normalized screw is expressed by 
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For a prismatic pair the pitch of the twist is infinite ( ∞=h ) and 

the normalized screw reduces to 
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Often it is useful to represent the differential movement of a 

body, expressed by a twist $, in different reference frames. In what 
follows, a 6 x 6 matrix of transformation T to serve this purpose is 
presented (Tsai,1999). 

Consider two reference frames of interest (Xi,Yi,Zi) and (Xj,Yj,Zj) 
as in Fig. 3. 
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Figure 3. Coordinate transformation of a screw. 

 
The position of origin Oj relative to the (Xi,Yi, Zi) frame is given 

by ipj=[px,py,pz]
T and the orientation of the (Xj,Yj,Zj) frame relative 

to the (Xi,Yi,Zi) frame is described by a rotation matrix iRj. A screw 
represented in the (Xi,Yi, Zi) frame is denoted by i$, and the same 
screw represented in the (Xj,Yj,Zj)  frame is denoted by j$. 

Following the normalized screw definition, we have 
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The line vectors S and the moment vectors SO of the two screws 

are related by the following transformations: 
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Hence 
 

  $̂$̂ j
j

ii T=  (8) 

 
where 
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is a 6 x 6 matrix, and 
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is a 3 x 3 skew-symmetric matrix representing the vector ipj

 

(expressed in the ith frame). 
Since iWj is skew-symmetric and iRj is orthogonal, the inverse 

transformation matrix can be written as 
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Hence, given a screw in the jth frame, we can express it in the 

ith frame by applying Eq. (9), and vice versa using Eq. (11).  

Davies Method 

The Kirchhoff circulation law states that the algebraic sum of 
potential differences along any electrical circuit is zero. Davies 
adapts the Kirchhoff law to solve the differential kinematics of 
closed chain mechanisms. 

The Kirchhoff-Davies circulation law states that "The algebraic  
sum of relative velocities of kinematic pairs along any closed 
kinematic chain is zero'' (Davies, 1981). 

Using this law the relationship between the velocities of a closed 
kinematic chain may be obtained in order to solve its differential 
kinematics, as is presented in the following example. 

Let the planar four bar mechanism of Fig. 4 be formed by links 
1, 2, 3 and 4 and by the rotative joints A, B, C and D. 

 

2
4

3 C

D

B

A

1

Circuit

 
Figure 4. Four bar mechanism. 

 
Let the twist $A represent the movement of link 2 in relation to 

link 1, $B represent the movement of link 3 in relation to link 2, $C 

represent the movement of link 4 in relation to link 3 and $D 

represent the movement of link 1 in relation to link 4. The twists $A, 
$B, $C and $D represent the kinematic pairs A, B, C and D, 
respectively. Consider that the planar mechanism lies in the XY-
plane, so the twists $A, $B, $C and $D  have only three components 
since the linear velocity Vp at any point on the mechanism does not 
have the R* component in the Z-axis direction. Additionally, the 
angular velocity ω  of any link of the mechanism does not have the L 
and M components in the XY-plane. Therefore, for the four bar 
mechanism in the XY-plane, the twist components are only N , P* 
and Q* and all the twists are spanned by three independent twists. 

The planar four bar mechanism forms a closed kinematic chain.  
The movement of link 2 in relation to link 1 is represented by $A. 
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The movement of link 3 in relation to link 1 is expressed by $A+$B. 
The movement of link 4 in relation to link 1 is given by $A+$B+$C 
and the movement of link 1 in relation to itself is $A+$B+$C+$D. 

The kinematic pairs connecting link 1 to itself form a closed 
kinematic chain and, for this closed chain, the Kirchhoff-Davies 
circulation law, regarding the circuit direction indicated in Fig. 4, is 
given by 

 
0 $  $ $ $ =+++ DCBA  (12) 

 
where 0 is a zero vector whose dimension (3x1) corresponds to the 
dimension of twists A, B, C and D. 

According to Eq. (1) this equation may be rewritten as 
 

0   $̂  $̂  $̂   $̂ =Ψ+Ψ+Ψ+Ψ DDCCBBAA   (13) 
 

where A$̂  represents the normalized screw of twist $A and AΨ  

represents the velocity (angular in this case) magnitude of twist A, 
with the same applying to the kinematic pairs B, C and D. 

Equation (13) is referred to as the constraint equation of the four 
bar mechanism and, in matrix form, is given by 
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The considered four bar mechanism is planar and, as explained 

above, all the twists are spanned by three independent twists. In this 
case all the normalized screws belong to a third order screw system 
(Hunt, 1978).  Additionally, it may be observed that the four bar 
mechanism has only one independent circuit or loop in its closed 
kinematic chain. 

In general the constraint equation of a mechanism with 
movements in a d-th order screw system is given by 

 

)1()1()( 0
Ψ

××× = dFFd bb
N  (15) 

 
where N is the network matrix containing the normalized screws 
whose signs depend on the circuit direction, Ψ is the magnitude 
vector and Fb is the gross degree of freedom i.e. the sum of the 
degrees of freedom of all mechanism joints ( ∑= ib fF ), with fi 

being the degree of freedom of the ith joint.  

Joint Space Kinematic Solution  

Closed kinematic chains, unlike open kinematic chains, contain 
passive kinematic pairs, in addition to active kinematic pairs. The 
velocity of an active kinematic pair is given by an external actuator, 
e.g. a servomotor. The velocities of the passive kinematic pairs are 
functions of the velocities of the active kinematic pairs due to the 
closure of the kinematic chain. 

The use of the constraint equation, Eq. (15), allows the 
calculation of the passive joint velocities as functions of the active 
joint velocities. This procedure is referred to as the joint space 
kinematic solution (Davies, 1981). 

To achieve this solution, the constraint equation needs to be 
rearranged, highlighting the actuated and the passive pair velocities. 

To this end, one may consider that Eq. (15) establishes d 
constraints for a kinematic chain with Fb ≥ d variables. This means 
that there are only FN ≤  Fb independent variables in the constraint 
equation, being 

dFF bN −=  (16) 
 

where FN is the net degree of freedom or the mobility of the 
kinematic chain, which is also the number of variables necessary to 
describe all the mechanism movements considering all kinematic 
pairs. 

To obtain the joint space kinematics we rewrite the magnitude 
vector Ψ rearranging it in d secondary or unknown magnitudes 

sΨ and FN primary or known magnitudes pΨ , i.e. 

[ ]Tps ΨΨ=Ψ M . Rearranging the network matrix 

[ ] ( )bFdN × coherently with the magnitude division, we get 

[ ]( ) ][ )()( Nb FdpddsFd NNN ××× = M , where the secondary network 

sub-matrix Ns corresponds to the secondary joints and the primary 
network sub-matrix Np  corresponds to the primary joints. This 
results in 
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This equation may be rewritten as 
 

 ppss NN Ψ−=Ψ  (18) 

 
and the joint space kinematic solution is given by 

 

 ppss NN ΨΨ 1−−=  (19) 

 
The four bar mechanism (Fig. 4) is planar (d=3) and has four 

joints, with one degree of freedom (fi=1) each. The sum of the 
degrees of freedom of all mechanism joints results in (Fb=4). The 
net degree of freedom of a four bar mechanism is FN=Fb-d=4-3=1. 
Consider that A is an actuated  (primary) kinematic pair and that B, 
C and D are non actuated or passive (secondary) pairs. In this case, 
the velocity magnitude A

Ψ
of pair A is determined by an external 

actuator and the velocity magnitudes of the passive kinematic pairs, 

B

Ψ
, C

Ψ
and D

Ψ
, are functions of the magnitude A

Ψ
. 

Rearranging Eq. (14), the network primary sub-matrix results 

]$̂[ ApN =  and the network secondary sub-matrix is 

]$̂$̂$̂[ DCBsN = . If Ns is invertible, the velocity magnitudes 

of secondary pairs s
Ψ

 are calculated by 
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which is the joint space kinematic solution for the four bar 
mechanism. 

This shows that the approach of combining the screw 
representation of the movements, the Davies method and the joint 
space kinematic solution presented above, provides a systematic 
way to relate the joint velocities in closed kinematic chains. This 
useful systematic approach may be extended to obtain the 
differential kinematics of serial manipulators (open kinematic 
chains) using the virtual kinematic chain concept introduced below. 
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The Virtual Kinematic Chain Concept  

The virtual kinematic chain, virtual chain for short, is essentially 
a tool to obtain information about the movement of a kinematic 
chain or to impose movements on a kinematic chain.  

In this paper we define a virtual chain as a kinematic chain 
composed of links (virtual links) and joints (virtual joints) satisfying 
the following three properties: a) the virtual chain is open; b) it has 
joints whose normalized screws are linearly independent; and c) it 
does not change the mobility of the real kinematic chain.   

Either to obtain information about the movement of a (real) 
chain or to change its movement, we apply virtual chains to close 
open real chains. 

A serial manipulator is an open kinematic chain and so, to 
obtain its differential kinematics using the Davies method, a virtual 
chain needs to be added in order to close the chain and to obtain the 
constraint equation and the joint space kinematic solution. 

In this paper we present  two useful virtual chains to obtain and 
impose movement in Robotics: the orthogonal PPPS chain and the 
RPPS chain. For these virtual  chains, consider the movements in 
the space described by a inertial reference frame named B-system 
(X,Y,Z).  

Orthogonal PPPS Virtual Chain (Cartesian  System) 

A virtual chain useful to describe movements in three-
dimensional space is the PPPS orthogonal chain with three 
prismatic joints whose movements are in the X, Y and Z orthogonal 
directions and a spherical joint which is instantaneously substituted 
by three serial orthogonal rotative joints in the X, Y and Z directions, 
see Fig. 5.  The prismatic joints are called px, py and pz, and the 
rotative joints are called rx, ry and rz. 
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Figure 5. PPPS virtual chain. 

 
The first prismatic joint (px) and the last rotative joint (rz) are 

attached to the real chain (kinematic chain to be analyzed). Joint px 
connects real link R1 with virtual link C1, joint py connects virtual 
link C1 with virtual link C2, joint pz connects virtual link C2 with 
virtual link C3 and joint S connects virtual link C3 with real link R2 
(see Fig. 5). 

Let the twist $px represent the movement of link C1 in relation to 
link R1, twist $py represent the movement of link C2 in relation to 
link C1,  twist $pz represent the movement of link C3 in relation to 
link C2,  twist $rx+$ry+$rz represent the movement of link R2 in 
relation to link C3. Therefore, the movement of real link  R2 in 
relation to real link R1 may be expressed by  
$px+$py+$pz+$rx+$ry+$rz. 

Consider the C-reference system (C-system) attached to the 
virtual link C3 at the spherical joint. Therefore, there is no rotation 
between the C-system and B-system and the three orthogonal 
rotative joints are aligned, respectively, with the X, Y and Z axes. So, 
the normalized screws corresponding to the virtual joints 
represented in the C-system are 
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It may be observed that the orthogonal PPPS virtual chain 

represents the movements in a spatial Cartesian system. 

RPPS Virtual Chain (Cylindrical System) 

Another useful virtual chain to describe movements in the three-
dimensional space is the RPPS kinematic chain composed of a 
rotative joint (rz) aligned with the Z axis, a prismatic joint (pz) in the 
Z axis direction, a prismatic joint (pr) in a direction orthogonal to 
the Z axis direction (named radial direction) and a spherical joint 
(S), see Fig. 6. It should be highlighted that when the spherical joint 
is along the Z axis, the normalized screws corresponding to the rz 
and S joints are linearly dependent and the RPPS kinematic chain is 
in  a singularity, and cannot be used as a virtual chain.    
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Figure 6. RPPS virtual chain. 

 
In this virtual chain the first three joints (rz, pz and pr) move 

into a cylinder. The spherical joint may be instantaneously 
substituted by three serial orthogonal revolute joints with 
movements in the normal (rn), tangential (rt) and binormal (rb) 
cylinder directions. 

The joints rz and rb are attached to the real chain:  joint rz 
connects real link R1 with virtual link P1, joint pz connects virtual 
link P1 with virtual link P2, joint pr connects virtual link P2 with 
virtual link P3 and joint S connects virtual link P3 with real link R2 
(see Fig. 6). 

Let twist $rz represent the movement of link P1 in relation to 
link R1, twist $pz represent the movement of link P2 in relation to 
link P1, twist $pr represent the movement of link P3 in relation to 
link P2, and twist $rn+$rt+$rb represent the movement of link R2 in 
relation to link P3. Then, the movement of real link  R2 in relation 
to real link R1 may be expressed by  $rz+$pz+$pr+$rn+$rt+$rb. 

Consider that the Ĉ -system at the spherical joint is fixed to the 
virtual link P3 and that the three orthogonal rotative joints are 
aligned, respectively, with the 

C
X ˆ , 

C
Yˆ  and 

C
Z ˆ axes. Thus, the 
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normalized screws corresponding to the virtual joints represented in 

the Ĉ -system are 
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where r is the ray distance, i.e. the instantaneous distance from the 

cylindrical axis to the Ĉ -system origin.  
It may be observed that the RPPS virtual chain represents a 

cylindrical coordinate system. 

Modified Kinematic Chain  

The modified kinematic chain is the closed chain  obtained by 
adding one or more virtual chains to the real chain. The virtual chain 
selection depends on the information to be obtained or imposed  
between the real links jointed by the virtual chain.  

In this section we describe the modified kinematic chain 
obtained by adding a virtual chain to a n-link serial manipulator 
whose movements belong to a d order screw system. 

Consider that the manipulator chain has n links (Fig. 7), 
numbered from zero (link at the base) to n (end-effector). The 
movement of link (i) in relation to link (i-1) is defined by the 
kinematic pair Ai, and it is represented by the twist 

iA$ . 

Additionally, iA$̂  represents its corresponding normalized screw. 
 

 

A

2

1

0

n

A

A -1n

-1nA

An

3

2

1

 
Figure 7. Real n-link manipulator kinematic chain. 

 
Consider that it is necessary to acquire information on or  

impose movement between the base and the end-effector of the 
serial manipulator. To achieve this end a suitable virtual chain is 
added between these two links. A general virtual chain used to 
modify the open chain is shown in Fig. 8 in thinner lines.  

As the manipulator movements belong to a d order screw 
system, this virtual chain should have d joints with linearly 
independent normalized screws in order not to change the mobility 
of the real kinematic chain. 

Thus, the virtual chain has d links numbered from (n+1) (link 
jointed to the base) to (n+d) (link jointed to the end-effector). The 
relative movement between two adjacent virtual links is defined by 
the corresponding virtual kinematic pair. The movement of the 
virtual link (n+1) with respect to the base (link 0) is defined by the 
kinematic pair B1 and is represented by the twist 

1
$B . The 

movement of the virtual link (n+2) with respect to the virtual link 
(n+1) is given by the kinematic pair B2 and is represented by the 
twist 

2
$B , and so on. 
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Figure 8. Modified (n+d)-link manipulator kinematic chains. 

 
In general, each virtual kinematic pair has only one degree of 

freedom (f=1). If a pair of the virtual chain has more degrees of 
freedom (f >1), it could be instantaneously substituted by f serial 
virtual pairs with one degree of freedom (e.g. spherical pair).  

Adding this virtual chain to the manipulator converts the real 
open chain in a modified closed kinematic chain with (n+d) links. 

The kinematic pairs of this modified chain may be divided into 
actuated (primary) pairs and passive (secondary) pairs like parallel 
manipulators. 

For a serial manipulator in the 3D operational space the order of 
the screw system is six and the virtual chain has six virtual pairs. 
These six pairs are represented by  six mutually independent twists.  

The constraint equation for the modified kinematic chain is 
obtained by applying the Kirchhoff-Davies circulation law to the 
modified kinematic chain, considering the circuit direction indicated 
in Fig. 8, and is given by 

 
0=−−−−+++

d)(d-n BBBAAA $$$$$$
1121

LL  (23) 

 
Notice that virtual twists are negative because they represent the 

velocity of the base in relation to the end-effector, in the opposite 
direction of the circuit, while the real twists represent the velocity of 
the end-effector in relation to the base. 

The network matrix results in: 
 

 [ ]
dB)(d-BBnAAA

ˆˆˆˆˆˆN $$$$$$
1121

−−−= LL  (24) 

 
and the velocity magnitude vector is 

 

 [ ]
dB)(d-BBnAAA ΨΨΨΨΨΨ=Ψ

1121
LL  (25) 

 
The network matrix (24) and the velocity magnitude vector (25) 

define the modified kinematic chain constraint equation which 
allows the calculation of the differential kinematics as is described 
below. 

Differential Kinematics Using Virtual Chains 

Differential Kinematics using virtual chains relates the link 
movements of a kinematic chain applying the Davies method to a 
virtually modified kinematic chain. Due to the freedom to select  the 
primary kinematic pairs, it is possible to solve different kinematic 
problems, employing the same method. 

The solutions to different kinematic problems are obtained by 
choosing different groups of primary/secondary variables for the 
constraint equation Eq.(19). In order to illustrate this, the direct and 
inverse kinematics of the serial manipulators are found below by 
solving the constraint equation. Both direct and inverse differential 
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kinematics consider the velocity of the end-effector in relation to the 
base. For this purpose, we add a virtual chain between the base and 
the end-effector of the serial manipulator as shown in Fig. 8. 

Direct Kinematics.  

In direct kinematics the objective is to determine the velocity of 
the end-effector in the operational space as a function of the 
velocities of the actuated kinematic pairs in the joint space. 

To this end the magnitudes of the real kinematic pairs (joint 
space) are selected as the primary vector components ( p

Ψ
) and the 

magnitudes of the virtual kinematic pairs (operational space) are 
selected as the secondary vector components (s

Ψ
). Thus, Eq.(19) 

becomes 
 

[ ] [ ]




















−−−−=





















−

n

nd)(d-

d

)(d-

A

A

A

AAABBB

B

B

B ΨΨ Ψ
$̂$̂$̂$̂$̂$̂ΨΨ Ψ

2

1

2111
1

1

1

M
LL

M
 (26) 

 
This highlights that using the virtual kinematic chain concept 

the Davies method should be extended to calculate the direct 
differential kinematics of serial manipulators. 

Inverse Kinematics.  

The inverse kinematics maps end-effector velocities (operational 
space) into joint velocities (joint space). 

To solve the inverse kinematics we select the components of the 
vector p

Ψ
 as the magnitudes of the virtual kinematic pairs 

(operational space) and the components of the vector s

Ψ
 as the 

magnitudes of the real kinematic pairs (joint space) of the modified 
kinematic chain, then Eq.(19) results in 
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It could be remarked that, using the virtual kinematic chain 

concept integrated with the Davies method, the direct and inverse 
differential kinematics of serial manipulators may be obtained 
employing the same method, simply by selecting the primary and 
secondary kinematic pairs according to the desired result. 

In the following, the method presented is applied to an industrial 
robot manipulator. 

Differential Kinematics of the PUMA Robot  

The direct and inverse differential kinematics of the PUMA 
robot, considering a Cartesian and a cylindrical operational space, is 
presented in this section in order to illustrate the approach presented.  

The PUMA robot and its variants have widespread use as 
industrial robots. It is also one of the most studied configurations 
found in research papers on Robotics. For these reasons, this robot 
was chosen as an example of differential kinematics using the 
virtual chains proposed in this work.  

The PUMA robot is a serial manipulator with six degrees of 
freedom. All joints are rotative kinematic pairs. The last three joint 
axes intersect at a single point forming a so-called spherical wrist. 

In Fig. 9, i

θ
 (i=1,…, 6) are the position angles at the rotary 

joints. The twists $i corresponding to joint movements are aligned 
with the joint axes and are shown in the figures as conical arrows.  
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Figure 9. The Puma robot. 

 
In this paper the PUMA robot differential kinematics is 

described using screws to represent the movement of the kinematic 
pairs. The reference frame in which the screws are expressed could 
be suitably chosen in order to get screws with simple components. 

To this end several authors (Hunt, 1987; Martins and Guenther, 
2003) use a system fixed to link 4 (X4,Y4,Z4 ) at the center of the 
spherical wrist to describe the screws corresponding to the 
kinematic pairs of the manipulator.  

In this work, the reference system fixed to link 1 (base) is named 
the B-system  and the reference system fixed to link 4 is named the 
R-system, see Fig. 9. The normalized screws of the PUMA robot, 
represented in the R-system, see Appendix A for details, are (Hunt, 
1987) 

 

( )
( )
( )
( )

( )TR

TR

TR

TR

TR

TR

ssscc

cs

xs

sxccs

0,0,0;,,$̂

)0,0,0;,,0($̂

0,0,0;0,0,1$̂

h,0,0;0,1,0$̂

,0,g;0,1,0$̂

f,,f;,0,$̂

545456

445

4

3

14232

23142323231

=

−=

=

−=

′=

−−−=

  (28) 

 
where, si=sin(θ i); sik=sin(θ i+ θ k); ci=cos(θ i); cik=cos(θ i+ θ k); etc... 

23214 hg ccx += ; ( )h314 +−=′ gcx ; and f, g and h are the distances 

shown in Fig. 9.  

Cartesian Operational Space 

The Cartesian operational space corresponds to a screw system 
with d=6. To obtain the differential kinematics in the Cartesian 
operational space, we chose the PPPS virtual chain presented in Fig. 
5 to be added between the base and the end-effector.   

In this case, the modified kinematic chain corresponds to the 
closed chain  shown in Fig. 10.  
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Figure 10. Schematic of modified kinematic chain for Puma robot in 
Cartesian operational space. 

 
According to the Kirchhoff-Davies circulation law the network 

matrix N  of this closed kinematic chain is 
 

[ ]pzpypxrzryrxN $̂$̂$̂$̂$̂$̂$̂$̂$̂$̂$̂$̂ 654321 −−−−−−=  (29) 

 
where all the normalized screws  are represented in the same 
coordinate system  and  the normalized screw signs depend on the 
circuit direction shown in Fig. 10. The corresponding velocity 
magnitude vector is 

 

  [ ]Tpzpypxrzryrx

ΨΨΨΨΨΨΨΨΨΨΨΨΨ
654321=  (30) 

Direct Kinematics in the Cartesian Operational Space 

The direct kinematics is obtained by calculating the virtual chain 
twist magnitudes, which are chosen as the secondary magnitude 
vector components, i.e., 

 

[ ]Tpzpypxrzryrxs

ΨΨΨΨΨΨΨ
=  (31) 

 
Consequently, the network secondary sub-matrix is given by 
 

  [ ]pzpypxrzryrxsN $̂$̂$̂$̂$̂$̂ −−−−−−=  (32) 

 
The primary magnitude vector has the input as components, i.e., 

the magnitudes of the actuated pairs: 
 

[ ]Tp 654321

ΨΨΨΨΨΨΨ
=  (33) 

 
Therefore, the network primary sub-matrix is  
 

  [ ]654321 $̂$̂$̂$̂$̂$̂=pN  (34) 

 
The secondary magnitude vector is calculated  using Eq.(19). In 

order to simplify the inversion of matrix Ns we choose the C-system 
to represent the normalized screws and, thus, Eq.(19) is given by  

  

  pp
C

s
C

s NN
ΨΨ 1−=−  (35) 

From Eq.(21) it is observed that INs
C −= , where I  is the 

( 66× ) identity matrix and employing Eq.(8)  
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where from Eq.(28) 
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Thus, the direct kinematics (Eq.(35)) is given by  
 

pp
R

R
C

s NT ΨΨ =  (38) 

 
where CTR  is the transformation matrix of screw coordinates 
calculated using the rotation matrix CRR  and the position vector CpR 
(see Eq.(9)). 

There is no rotation between the C-system and the B-system so 
the C-system is always parallel to the B-system and thus, we have,  

 

 R
B

R
C RR =  (39) 

 
The matrix CRR  is obtained through a matrix product, see (Hunt, 

1987) for details, as 
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Taking into account that the movements of the spherical wrist 

do not affect the end-effector translation, the R-system origin may 
represent the position of the PUMA end-effector.  The C-system 
origin and the R-system origin may then be considered coincident. 
So the vector CpR is null. 

Therefore, using Eq.(9), the transformation matrix of screws 
coordinates may be expressed by 

 

[ ] [ ]
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where [ ]0  is the (3 x3 ) zero matrix. 

Equation (38) establishes the relation between the real joint 
velocity magnitudes p

Ψ
 ( 1

Ψ
,…, 6

Ψ
) and the virtual joint velocity 

magnitudes s

Ψ
 ( rx

Ψ
,…, pzΨ ) which, considering the special 

configuration of the virtual chain,  represent the Cartesian velocity 
of the end-effector with respect to the base represented in the C-
system. The former three components of the velocity state 
( rx

Ψ
, ryΨ , rz

Ψ
) are the angular velocities of the end-effector with 

respect to the base, represented in the C-system, and the latter three 
components ( px

Ψ
, py

Ψ
, pz

Ψ
) are the linear velocities of a point on 

the end-effector, instantaneously at the C-system origin, with 
respect to the base, represented in the C-system. Therefore, using 
the twist definition, we may express the velocity of the end-effector 
with respect to the base, represented in the C-system, by 
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[ ]TpzpypxrzryrxEE
C ΨΨΨΨΨΨ$ =  (42) 

Inverse Kinematics in the Cartesian Operational Space 

The inverse kinematics is obtained by calculating the real chain 
twist magnitudes which, in this case, are chosen as the secondary 
magnitude vector components,  

 

[ ]Ts 654321

ΨΨΨΨΨΨΨ
=  (43) 

 
Accordingly, the network secondary sub-matrix is 
 

 [ ]654321 $̂$̂$̂$̂$̂$̂=sN  (44) 
 
The primary magnitude vector has the input as components, i.e., 

the magnitudes of the virtual pairs: 
 

  [ ]Tpzpypxrzryrxp

ΨΨΨΨΨΨΨ
=  (45) 

 
Thus, the network primary sub-matrix is given by 
 

    [ ]pzpypxrzryrxpN $̂$̂$̂$̂$̂$̂ −−−−−−=  (46) 

 
The secondary magnitude vector is calculated using Eq.(19), 

which, aiming at simplifying the inversion of the network secondary 
sub-matrix (Ns,), R-system is represented as 
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where, using Eq.(28), 
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and employing Eq.(8)  

 

p
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C
R

p
R NTN =  (49) 

 
where from Eq.(21) it could be observed that CNp=-I. 

 
Thus, replacing Eq.(48) and Eq.(49) into Eq.(47), the inverse 

kinematics becomes  
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s
R
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Note that the transformation of the screw matrix, according to 

Eq.(11) and Eq.(41) may be written as 
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Equation (50) establishes the inverse differential kinematics of 

the PUMA robot where the end-effector velocity is given in the  
Cartesian system described by the virtual chain. 

Matrix RNs in Eq.(50) is the Jacobian of the PUMA manipulator 
when it is calculated throughout the screw theory (Hunt, 1987), i.e. 
the screw based Jacobian. The method presented in this paper, like 
the screw based Jacobian method, allows the selection of a suitable 
coordinate system (R-system) aiming at obtaining a sparser Jacobian 
matrix. 

Cylindrical Operational Space 

For certain tasks, the description of the movements in 
operational spaces other than the Cartesian could be useful. For 
instance to represent a radial or tangential velocity of the end-
effector to weld a pipe, the cylindrical operational space may be 
more suitable than the Cartesian space. 

In order to illustrate the flexibility of the approach presented in 
this paper, the direct and inverse differential kinematics of the 
PUMA robot using a general cylindrical operational space is 
presented below. 

Consider a robot welding around a pipe whose axis coincides 
with the Z axis of the B´-system shown in Fig. 11. 
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Figure 11. Schematic of Puma robot welding a pipe. 

 
The cylindrical operational space corresponds to a screw system 

in which d=6. To obtain the differential kinematics in the cylindrical 
operational space, we chose the virtual chain RPPS presented in Fig. 
6 to be added between the base and the end-effector. 

For this case the modified kinematic chain is shown in Fig. 12. 
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Figure 12. Schematic of modified kinematic chain for PUMA robot  in  
cylindrical operational space. 
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Applying the Kirchhoff-Davies circulation law, regarding the 
circuit direction indicated in Fig. 12, the network matrix  N  results 
in 

 

[ ]rzpzprrbrtrnN $̂$̂$̂$̂$̂$̂$̂$̂$̂$̂$̂$̂ 654321 −−−−−−=  (52) 

 
and the corresponding velocity magnitudes vector is 

 

 [ ]Trzpzprrbrtrn

ΨΨΨΨΨΨΨΨΨΨΨΨΨ
654321=  (53) 

Direct Kinematics in the Cylindrical Operational Space 

The direct kinematics is obtained by calculating the virtual chain 
screw magnitudes which are chosen as the secondary magnitude 
vector components,  

 

[ ]Trzpzpxrbrtrns

ΨΨΨΨΨΨΨ
=  (54) 

 
Consequently, the network secondary sub-matrix is given by 
 

   [ ]rzpzpxrbrtrnsN $̂$̂$̂$̂$̂$̂ −−−−−−=  (55) 

 
The primary magnitude vector has the input as components, i.e., 

the magnitudes of the actuated pairs: 
 

[ ]Tp 654321

ΨΨΨΨΨΨΨ
=  (56) 

 
Therefore, the network primary sub-matrix is  
 

  [ ]654321 $̂$̂$̂$̂$̂$̂=pN  (57) 

 
The secondary magnitude vector is calculated using the 

constraint equation shown in Eq.(19). To simplify the inversion of 

matrix Ns we chose the Ĉ -system to represent the normalized 
screws and thus Eq.(19) is given by  
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where, using Eq.(22), 
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and employing Eq.(8) 
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The screw coordinates matrix transformationR
CT
ˆ

 is calculated 

using the rotation matrix R
CR
ˆ

 and the position vector R
C p
ˆ

. 

Considering that the origins of the Ĉ -system and R-system 

coincide, the vector R
C p
ˆ

 is null. The rotation matrix R
CR
ˆ

 may be 

obtained by the matrix product 

R
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where BRR  is described in  Eq.(40-41) and  
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where c(rz) and s(rz) represent the cosine and sine, respectively, of the 
instantaneous angular position rz

θ
of the virtual rotative pair $rz. It 

could be observed that the anglerz

θ
is null when the Ĉ -system and 

the B-system are parallel. 

Therefore, the transformation matrix R
CT
ˆ

 is given by 
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The calculation of the direct kinematics is obtained using 

Eq.(58) 
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Equation (64) describes the relation between the real joint 

velocity magnitudes p

Ψ
 ( 1Ψ ,…, 6Ψ ) and the virtual joint velocity 

magnitudes sΨ  ( rxΨ ,…, azΨ ) which, considering the special 

configuration of the virtual chain,  represent the cylindrical velocity 

of the end-effector  with respect to the base represented in the Ĉ -
system. The former three terms (rnΨ , rtΨ , rbΨ ) of the end-effector 

velocity state  represent the angular velocity (normal, tangential and 
binormal) of  the end-effector with respect to the base, represented 

in the Ĉ -system. The latter three (pxΨ , pzΨ , rzΨ .) indicate, 

respectively,  the radial linear velocity  px

Ψ
, the axis linear velocity 

pz

Ψ
and the azimuthal angular velocity rzΨ of a point on the end-

effector, instantaneously at the Ĉ -system origin, with respect to the 

base, represented at the Ĉ -system.  

Inverse Kinematics in the Cylindrical Operational Space 

The inverse kinematics is obtained by calculating the real chain 
screw magnitudes which are the secondary magnitude vector 
components, i.e., 

 

 [ ]Ts 654321

ΨΨΨΨΨΨΨ
=  (65) 

 
Then, the network secondary sub-matrix is 
 

  [ ]654321 $̂$̂$̂$̂$̂$̂=sN  (66) 
 
The primary magnitude vector contains the magnitudes of the 

virtual pairs: 
 

[ ]Trzpzprrbrtrnp

ΨΨΨΨΨΨΨ
=  (67) 

 
Thus, the network primary sub-matrix is given by 
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[ ]rzpzprrbrtrnpN $̂$̂$̂$̂$̂$̂ −−−−−−=  (68) 

 
The secondary magnitude vector is calculated  using the 

constraint equation (Eq.(19)), which, aiming to simplify the 
inversion of the matrix, is represented in the R-system, as shown in 
Eq.(47), here repeated  
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and employing Eq.(8)  
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where the transformation of the screw coordinate matrix, using 
Eq.(11), is 

 

[ ] [ ]
[ ] [ ] 









== −

T

R
B

B
C

T

R
B

B
C

R
C

C

R

RR

RR
TT

ˆ

ˆ
1ˆ

ˆ

0

0  (71) 

 
So, the inverse kinematics, using Eq.(69), is given by  
 

pp
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It should be remarked that the inverse differential kinematics is 

obtained by inverting the matrix corresponding to the manipulator 
joint screws represented in the R-system, the same matrix is inverted 
to obtain the inverse kinematics in the Cartesian operational space. 

Similarly, by adding a suitable virtual chain, between the base 
and end-effector, it is to possible calculate the inverse differential 
kinematics based on the end-effector velocity given in a spherical 
coordinate system. 

This example shows that the proposed method allows the 
determination of the inverse differential kinematics in a coordinate 
system (Cartesian, cylindrical etc.) suitable for the end-effector task. 
This is not so evident achieved using conventional methods (e.g. 
Denavit-Hartemberg based method and screw based method). 

Conclusions  

This paper presents a simple, systematic and unified approach to 
obtain the differential kinematics of serial manipulators using the 
screw representation. 

By introducing a virtual chain concept in order to close open 
kinematic chains it is shown that the differential kinematics of serial 
manipulators can be calculated using the Davies method, a simple 
and systematic way to relate the joint velocities in closed kinematic 
chains. 

The proposed approach results unified because the direct and the 
inverse kinematics are obtained in a similar way, by selecting 
variables according the desired result. 

Furthermore, the approach allows the determination of the 
inverse differential kinematics in a coordinate system (Cartesian, 
cylindrical, etc.) suitable for the end-effector task, which could be 
very useful, and this is not trivially achieved using conventional 
methods.    

Like the screw based Jacobian method, the presented approach 
allows the selection of a suitable coordinate system aiming at a 
sparser Jacobian matrix. 
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Appendix A 

In this appendix a method to calculate the normalized screws 
correponding to the joint movements of  the PUMA robot is 
presented. 

Aiming to find the screws corresponding to the PUMA joints, 
we first define a reference (home) configuration for the manipulator 
and a coordinate system fixed to each link, namely 1,2, ... and 6. 
Although the reference position can be chosen arbitrarily, it is 
usually chosen at a location where, if possible,  all the joint axes are 
parallel or orthogonal. The reference configuration for PUMA and 
the coordinate systems 1,2,... and 6 fixed to the respective links are 
showed in Fig. A1 where all the joint angles (i

θ
) are null and the 

coordinate systems are parallel.  
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Figure A1. The Puma robot  reference configuration. 

 
According to Eq.(3) the normalized screws of joints 1,2,.. and 6 

expressed, respectively, at the coordinate system 1,2,… and 6 are 
easily  identified as 
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 (A1) 

 
where the subindex represents the joint and the superindex 
represents the coordinate system where the normalized screws are 
described. 

Considering the coordinate systems of Fig. A1, the rotation 

matrices i
i R1−  and the vectors i

i p1− between adjacent coordinate 

systems are 
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where, si=sin( θ i) and  ci=cos( θ i). 

Now it is necessary to transform screw coordinates from one 
system to another.  For this purpose, we may use the screw 
coordinates transformation,  Eq. (9) and Eq. (11). Employing these 
equations we can obtain the normalized screws of the joints of the 
PUMA in the coordinate system fixed to link 4, R-system,  by 
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where sik=sin( θ i+ θ k), cik=cos( θ i+ θ k), 23214 hg ccx +=  and 

( )h314 +−=′ gcx ; the letters f, g and h being the distances shown in 

Fig. 9.  
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