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Differential Kinematics of Serial
Manipulators Using Virtual Chains

This paper presents a new approach to calculate divect and inverse differential
kinematics for serial manipulators. The approachsextension of the Davies method for
open kinematic chains based on a virtual kinemetiain concept introduced in this paper.
It is a systematic method that unifies the kinecsatif serial manipulators considering the
type of kinematics and the coordinate system obpierational space and constitutes an
alternative way to solve the differential kinematfor manipulators. The usefulness of the
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Introduction

method is illustrated by applying it to an induatniobot.
Keywords: Robot analysi, differential kinematics, screwdte

1983). The Davies method uses the differential rhimics screw
representation, as described below for completeness
The Davies method allows the calculation of theedéntial

Kinematics is a branch of physics concerned witle thkinematics of closed kinematic chains by relatihg foint rates

geometrically possible movements of a body or aesysf bodies
without considering the forces and masses involved.

Robot manipulator kinematics deals with the moveismef the
robot end-effector and how the robot joints needrmove, in a
coordinate manner, to achieve the end-effector cpied
movement.

Differential kinematics relates the velocities b&tmanipulator
components. These velocities may be the velociiethe joints of
the manipulator or the velocities of one or monekdi in the
manipulator kinematic chain. The standard apprdactiifferential
kinematics is to relate joint and end-effector eéles through the
Jacobian matrix, which allows the calculation oé tend-effector
velocities given the joint velocities (direct diféatial kinematics)
or, to determine the joint velocities in order tova the end-effector
with a prescribed speed (inverse differential kingos).

Another important feature of differential kinematids the
singularity analysis, commonly based on the Jacoiatrix.

Furthermore, differential kinematics is used tameindices for
the evaluation of the manipulator performance (8cto, 1996),
e.g. manipulability ellipsoids (Angeles, 1997). Such ige$, also
known as quality indices (Downing, 2002), may bt both for
the mechanical manipulator design and for detenminsuitable
manipulator configurations to execute a given task.

In the literature, the differential kinematics obots with serial
kinematic chains (serial robots for short) is didmat using
variations of two main approaches: the method base®enavit-
Hartenberg parameters (Sciavicco, 1996) and thewsbased
method (Hunt, 1987; Duffy, 1996; Davidson and H®&t04). The
latter allows the expression of the Jacobian mdafpuin a greatly
simplified manner by expressing the screws in ge@ry chosen
reference frame (Tsai, 1999).

In both descriptions the direct differential kindioa is usually
obtained by calculating the Jacobian and, aftes, tthie inverse
kinematics is obtained by inverting the Jacobiatrima

This paper presents a new variation of the scresedhanethod
that allows the determination of the direct and tmwerse
differential kinematics using a single systemagipraach.

This approach is derived from the Davies formulatif the
Kirchhoff law, here designated as the Davies me{lixalies, 1981,
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along the chain. By considering that closed kinémmettains have
actuated joints (with known velocities) and pasgoists (in which

the velocities will be calculated), it may be sthtthat, more
specifically, the Davies method is a systematic wagxpress the
joint rates of passive joints as functions of tbag rates of the
actuated joints.

The Davies method, very useful for analyzing meatsn
networks with multi-loop kinematic chains, has, lwer, two
drawbacks when applied to robot kinematics. Fitsis limited to
fully closed kinematic chains; therefore, it is nuussible to apply
this method to solve the differential kinematics s#rial robots
(open kinematic chains). Second, the method caheotised to
obtain information about the rigid body movemenadapecific link,
e.g. the robot end-effector in a desired operatispace (Cartesian,
cylindrical etc.).

This paper formalizes the concept of a virtual kiaéic chain as
suggested by Davies (Davies, 2000) and shows thatsimg this
concept it is possible to overcome the Davies niktti@awbacks
mentioned above and to extend the method to rolnemnatics in
order to calculate its direct and inverse diffeia@riktinematics using
the same single systematic approach.

Furthermore, it allows the determination of the erse
differential kinematics in a coordinate system (€sian, cylindrical
etc.) suitable for the end-effector task, whiclmas so evident to be
achieved using conventional methods.

This paper has the following structure. Initialtiie differential
kinematics of a body is represented using screvest,Nhe Davies
method and the joint space kinematic solution ascdbed. Then,
the concept of a virtually modified chain and itoperties are
proposed. Following this, the joint space kinensafiwr a virtually
modified chain is solved. Finally, the differentkihematics using
virtual chains is discussed and the direct and rgevalifferential
kinematics for a PUMA serial manipulator is cald¢ath using the
proposed method for a Cartesian and a cylindrigatational space.

Nomenclature

$= screw movement or twist

h = pitch of the screw

Vp = linear velocity of point p

So = position vector of any point at the screw axis

$ = normalized twist: a screw
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S=normalized vector parallel to screw axis

N = matrix containing the normalized twists

F, =gross degree of freedom

Fn =net degree of freedom

d =order of the screw system

n =number of links of a kinematic chain

f =degree of freedom of a kinematic pair

m =rank of matrix containing the normalized twists
T = transformation matrix of screw coordinates

R = rotation matrix

W = skew-symmetric matrix representing a vector

Greek Symbols

o = differential rotation about the screw axis, amgwelocity
1 = differential translation along the screw axisghr velocity
¥ = twist magnitude

6 = position angles at the rotary joints

Subscripts

s relative to secondary
p relative to primary
i,j relative to link or jointi,j

Screw Representation of Differential Kinematics

The Mozzi theorem (see Ceccarelli, 2000, for thaiwoal
quotation and historical remarks) states that thlcities of the
points on a rigid body with respect to an inertielerence frame
O(X,Y,Z) may be represented by a differential rotatierabout a
certain fixed axis and a simultaneous differerttiahslationt along
the same axis. The complete movement of the rigulyp
combining rotation and translation, is called screwvement or
twist $. Fig. 1 shows a body “twisting” around arxisa
instantaneously fixed with respect to the inertigflerence frame.
This axis is called the screw axis and the ratitheflinear velocity
and the angular velocity is called the pitch oé sicrewh= |f||/]{]|-

Z

Figure 1. Screw movement or twist.

The twist represents the differential movementhef body with
respect to the inertial frame and may be expretsed pair of
vectors, i.e. $=(w;V,). The vector o=(£, M, A\_) represents the
angular velocity of the body with respect to thertial frame. The
vector V=(?, Q /X)) represents the linear velocity of a poft
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attached to the body which is instantaneously ¢démt with the
origin O of the reference frame (see Fig. 2).

The vectorV, consists of two components: a) a velocity parallel
to the screw axis representedi:h o; and b) a velocity normal to
the screw axis represented yxw, whereS, is the position vector
of any point at the screw axis.

Figure 2. Twist components for a general screw kinematic pair.

A twist may be decomposed into its amplitude angl it
corresponding normalized screw. The twist amplititlas either
the magnitude of the angular velocity of the bogky||, if the
kinematic pair is rotative or helical, or the magde of the linear
velocity, |V, if the kinematic pair is prismatic. Considetwast
given by $=(;V,) T=(, M, 22", Q R)". Then, the correspondent

normalized screw iss=(L, M, N; P, @ ,R )". This normalized
screw is a twist in which the magnitudié is factored outi.e.

1)

The normalized screw coordinates (Davidson and H2®d4)
may be defined as a pair of vectors, namely,M(N) and
(P*,Q*,R*), given by,

&8>
1

| SoxS+hs @

00 T z=Zr

whereS is the normalized vector parallel to the screw .aXistice
that the vecto(Spx S) determines the moment of the screw axis
with respect to the origin of the reference frame.

The movement between two adjacent links, belongingn n-
link kinematic chain, may also be represented Kyviat. In this
case, the twist represents the movement of linkh vespect to link
(i-1).

In Robotics, generally, the movement between a glabodies
is determined by either a rotative or a prismaitieinatic pair.

For a rotative pair the pitch of the twist is nufh=0). In this
case the normalized screw is expressed by
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é{sosxS}

For a prismatic pair the pitch of the twist is imfe (h = ) and
the normalized screw reduces to

©)

4

Often it is useful to represent the differential vement of a
body, expressed by a twist $, in different refeeeframes. In what
follows, a 6 x 6 matrix of transformation T to serthis purpose is
presented (Tsai,1999).

Consider two reference frames of interegtY{,z) and &;,Y;,2)
as in Fig. 3.

Figure 3. Coordinate transformation of a screw.

‘The position of origirQ; relative to the(X;,Y;, Z) frame is given
by 'pj=[p><,py,pzlT and the orientation of the(Y;,Z) frame relative
to the(X;,Y;,Z) frame is described by a rotation matfR A screw
represented in théX,Y;, Z) frame is denoted b, and the same
screw represented in th¥(Y;,Z) frame is denoted B$.

Following the normalized screw definition, we have

$=| S
'Sox'S+h's

A ig
ig=| . ‘
$ {JSOXJS+h‘S:I

The line vectors$ and the moment vectos, of the two screws
are related by the following transformations:

®)

6

: S=‘RjjS
i i ip i (7)
So=p;+R’S,
Hence
'$='T, s (8)
where
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, R 0]
T ©
WR R
is a 6 x 6 matrix, and
. 0 -p, Py |
IWj = pz 0 - px (10)
Py Px O |

is a 3 x 3 skew-symmetric matrix representing thetar 'p,
(expressed in thieh frame). _

Since'W is skew-symmetric antR; is orthogonal, the inverse
transformation matrix can be written as

i T
T :l:- ?J T i OT:I
Wj Rj RJ-

Hence, given a screw in the jth frame, we can egiein the
ith frame by applying Eq. (9), and vice versa udig (11).

(11)

Davies M ethod

The Kirchhoff circulation law states that the algeb sum of
potential differences along any electrical circist zero. Davies
adapts the Kirchhoff law to solve the differentkdhematics of
closed chain mechanisms.

The Kirchhoff-Davies circulation law states thathéralgebraic
sum of relative velocities of kinematic pairs aloagy closed
kinematic chain is zero" (Davies, 1981).

Using this law the relationship between the velesibf a closed
kinematic chain may be obtained in order to sotgedifferential
kinematics, as is presented in the following exanpl

Let the planar four bar mechanism of Fig. 4 be fmirby links
1, 2, 3 and 4 and by the rotative joidisB, CandD.

B 3

Circuit

IS

Figure 4. Four bar mechanism.

Let the twist § represent the movement of link 2 in relation to
link 1, % represent the movement of link 3 in relation tk Iy %
represent the movement of link 4 in relation tokli®@ and $
represent the movement of link 1 in relation td h The twists §
$s, & and $ represent the kinematic pairs B, C and D,
respectively. Consider that the planar mechanig®s in theXY-
plane, so the twists,$%, & and $ have only three components
since the linear velocity, at any point on the mechanism does not
have the®’ component in theZ-axis direction. Additionally, the
angular velocity of any link of the mechanism does not haveshe
and # components in theY-plane. Therefore, for the four bar
mechanism in th&Y-plane, the twist components are omy, ?*
andQ’ and all the twists are spanned by three indepertaests.

The planar four bar mechanism forms a closed kitienchain.
The movement of link 2 in relation to link 1 is repented by $
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The movement of link 3 in relation to link 1 is e®psed by $%s.
The movement of link 4 in relation to link 1 is giv by $+$s+%
and the movement of link 1 in relation to itselfis-$g+$c+5p.

The kinematic pairs connecting link 1 to itself rfora closed
kinematic chain and, for this closed chain, theckioff-Davies
circulation law, regarding the circuit directiordinated in Fig. 4, is
given by

$p+85 +$: +$, =0 (12)
whereO is a zero vector whose dimension (3x1) correspoodke
dimension of twist#\, B, CandD.

According to Eq. (1) this equation may be rewritéasn

$, W, + 8 Wy + 8 We +$, Wp =0 (13)

where éA represents the normalized screw of twigtahd wp

represents the velocity (angular in this case) ntade of twistA,
with the same applying to the kinematic p&rCandD.

Equation (13) is referred to as the constraint 8gnaf the four
bar mechanism and, in matrix form, is given by

W

A K
$, S5 S $p LPB 0 (14)
C

¥p

The considered four bar mechanism is planar anéxpkined
above, all the twists are spanned by three indegrgndists. In this
case all the normalized screws belong to a thid&moscrew system
(Hunt, 1978). Additionally, it may be observed ttlilae four bar
mechanism has only one independent circuit or loofis closed
kinematic chain.

In general the constraint equation of a mechanisith w
movements in d-th order screw system is given by

Niaxry) ¥y ) = O (15)
where N is the network matrix containing the normalizedescs
whose signs depend on the circuit directidh,js the magnitude
vector andFy is the gross degree of freeddra. the sum of the
degrees of freedom of all mechanism jointg, €3 f; ), with f;

being the degree of freedom of fttejoint.

Joint Space Kinematic Solution

Closed kinematic chains, unlike open kinematic mhacontain
passive kinematic pairs, in addition to active kiagic pairs. The
velocity of an active kinematic pair is given by external actuator,
e.g.a servomotor. The velocities of the passive kirtenmaairs are
functions of the velocities of the active kinemapiirs due to the
closure of the kinematic chain.

The use of the constraint equation, Eq. (15), adlothe
calculation of the passive joint velocities as fiimres of the active
joint velocities. This procedure is referred to the joint space
kinematic solution (Davies, 1981).

To achieve this solution, the constraint equatieeds to be
rearranged, highlighting the actuated and the pagsiir velocities.

To this end, one may consider that Eq. (15) estabdd
constraints for a kinematic chain wikly = d variables. This means
that there are onlffy <
equation, being
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Fy =R —d (16)
where Fy is the net degree of freedom or the mobility oé th
kinematic chain, which is also the number of vdeatmecessary to
describe all the mechanism movements consideringirématic
pairs.

To obtain the joint space kinematics we rewrite ithagnitude
vector ¥ rearranging it ind secondary or unknown magnitudes
Wsand Fy primary or known magnitudes W,, ie.

W =[w, wpr : the
[N] (dxF, )coherently with the magnitude division, we get
[N]gx, ) = [Ns(axay
sub-matrixNg corresponds to the secondary joints and the pyimar

network sub-matrixN, corresponds to the primary joints. This
results in

Rearranging network matrix

Np(dxF,)] - where the secondary network

[ws](d x1)
|:[NS](d><d) :[N p](dxFN )} [ ] =[0)gs) @D
¥ PI(Fy x1)
This equation may be rewritten as
NeWs = =N, W, (18)
and the joint space kinematic solution is given by
P =-NINY, (19)

The four bar mechanism (Fig. 4) is plandr3) and has four
joints, with one degree of freedofi=(l) each. The sum of the
degrees of freedom of all mechanism joints resultg~,=4). The
net degree of freedom of a four bar mechanisifisF,-d=4-3=1.
Consider thaf is an actuated (primary) kinematic pair and Bat
C andD are non actuated or passive (secondary) paithidrcase,
the velocity magnitude¥, of pair A is determined by an external

actuator and the velocity magnitudes of the padsivematic pairs,
¥y, Ycand ¥y , are functions of the magnitudg, .

Rearranging Eq. (14), the network primary sub-matmésults
N, =[$,] and the network secondary sub-matrix is
N,=[$; $. $,].If Nsisinvertible, the velocity magnitudes
of secondary pair®, are calculated by

Yy
Ve |= _ks $c $p
Yo

-1

(20)

AN

which is the joint space kinematic solution for tfieur bar
mechanism.

This shows that the approach of combining the screw
representation of the movements, the Davies meématthe joint
space kinematic solution presented above, provaesystematic
way to relate the joint velocities in closed kingimahains. This
useful systematic approach may be extended to robtae
differential kinematics of serial manipulators (op&inematic

Fy independent variables in the constraintchains) using the virtual kinematic chain conceprioiduced below.

ABCM



Differential Kinematics of Serial Manipulators Using Virtual Chains

The Virtual Kinematic Chain Concept

The virtual kinematic chain, virtual chain for shas essentially
a tool to obtain information about the movementaokinematic
chain or to impose movements on a kinematic chain.

In this paper we define a virtual chain as a kinnehain
composed of links (virtual links) and joints (viajoints) satisfying
the following three properties: a) the virtual e¢h& open; b) it has
joints whose normalized screws are linearly indejgety and c) it
does not change the mobility of the real kinemettiain.

Either to obtain information about the movementaofreal)
chain or to change its movement, we apply virtdadiics to close
open real chains.

A serial manipulator is an open kinematic chain aod to
obtain its differential kinematics using the Daviaesthod, a virtual
chain needs to be added in order to close the @mairto obtain the
constraint equation and the joint space kinematiati®on.

In this paper we present two useful virtual chamsbtain and
impose movement in Robotics: the orthogoRRPSchain and the
RPPSchain. For these virtual chains, consider the muerds in
the space described by a inertial reference fraareed B-system
(X,Y,2)

Orthogonal PPPS Virtual Chain (Cartesian System)

A virtual chain useful to describe movements ine#ir
dimensional space is th®PPS orthogonal chain with three
prismatic joints whose movements are in ¥jeY andZ orthogonal
directions and a spherical joint which is instaetamsly substituted
by three serial orthogonal rotative joints in ¥eYandZ directions,
see Fig. 5. The prismatic joints are calfed pyandpz and the
rotative joints are callerk, ry andrz,

Zc
z B-system C-system
Ye
Y
S——(x1y.r2)
Real links

virtual
links

Figure 5. PPPS virtual chain.

The first prismatic jointf§x) and the last rotative jointZ) are
attached to the real chain (kinematic chain tormyaed). Joinpx
connects real linlR1 with virtual link C1, joint py connects virtual
link C1 with virtual link C2, joint pz connects virtual linkC2 with
virtual link C3 and jointS connects virtual linlC3 with real linkR2
(see Fig. 5).

Let the twist §,represent the movement of lid in relation to
link R1, twist $, represent the movement of lif®2 in relation to

link C1, twist $,represent the movement of link C3 in relation to

link C2, twist $+$,+%, represent the movement of lifk2 in
relation to link C3. Therefore, the movement of real link R2 in
relation to real link R1 may be expressed

$oct Byt Bt Bt By +$2.
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Consider theC-reference systemCf{system) attached to the
virtual link C3 at the spherical joinTherefore, there is no rotation
between theC-system andB-system and the three orthogonal
rotative joints are aligned, respectively, with ¥evyandZ axes. So,
the normalized screws corresponding to the virtgaints
represented in th8-system are

©$, = (L00000)", °$, = (010000)", °$, = (001000)"
€$, = (000100)7, °$,, = (000010)", °$,, = (000001)"

It may be observed that the orthogomPPS virtual chain
represents the movements in a spatial Cartesidensys

RPPS Virtual Chain (Cylindrical System)

Another useful virtual chain to describe movemeéntdhe three-
dimensional space is thRPPS kinematic chain composed of a
rotative joint (z) aligned with theZ axis, a prismatic joint@ in the
Z axis direction, a prismatic joinpf) in a direction orthogonal to
the Z axis direction (named radial direction) and a siché joint
(S), see Fig. 6. It should be highlighted that wttenspherical joint
is along theZ axis, the normalized screws corresponding torthe
andSjoints are linearly dependent and REBPSkinematic chains
in a singularity, and cannot be used as a vitbaln.

é-system
Z¢& (binormal)

Y¢ (tangential)

B-system

Figure 6. RPPS virtual chain.

In this virtual chain the first three jointsz( pzand pr) move
into a cylinder. The spherical joint may be inst@ously
substituted by three serial orthogonal revolutentgi with
movements in the normatn), tangential it) and binormal rp)
cylinder directions.

The jointsrz andrb are attached to the real chain: jorat
connects real linlR1 with virtual link P1, joint pz connects virtual
link P1 with virtual link P2, joint pr connects virtual linkP2 with
virtual link P3 and jointS connects virtual link3 with real linkR2
(see Fig. 6).

Let twist $, represent the movement of lifkL in relation to
link R1, twist $, represent the movement of lifR in relation to
link P1, twist $, represent the movement of link P3 in relation to
link P2, and twist $+%$+$ represent the movement of lif2 in
relation to linkP3. Then, the movement of real link R2 in relation
to real link R1 may be expressed by+$,+$,+$n+$:+$s.

Consider that theé-system at the spherical joint is fixed to the
virtual link P3 and that the three orthogonal rotative joints are

b)pligned, respectively, with theX., Y; and Z;axes. Thus, the
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normalized screws corresponding to the virtualtpiepresented in
the C -system are

°$,, =(100000)"; ¢, =( 010000)T; $,, =( 002000)"

. . o (22)
°$,, =( 000200)"; °$,, =( 000001)"; ©$,, =( 0010, 0)f

where r is the ray distancie. the instantaneous distance from the

cylindrical axis to theé-system origin.
It may be observed that tHePPSvirtual chain represents a
cylindrical coordinate system.

M odified Kinematic Chain

The modified kinematic chain is the closed chaibtamed by
adding one or more virtual chains to the real chalre virtual chain
selection depends on the information to be obtaioedmposed
between the real links jointed by the virtual chain

In this section we describe the modified kinematitain
obtained by adding a virtual chain tondink serial manipulator
whose movements belong ta arder screw system.

Consider that the manipulator chain haslinks (Fig. 7),
numbered from zero (link at the base) rio(end-effector). The
movement of link i) in relation to link {-1) is defined by the
kinematic pair A, and it is represented by the twistpi.

Additionally, $,, represents its corresponding normalized screw.

An—l
A n-1 n
2 A 4
- N
A,

1
B |
A

04

Figure 7. Real n-link manipulator kinematic chain.

Consider that it is necessary to acquire infornmatan or
impose movement between the base and the endesffettthe
serial manipulator. To achieve this end a suitalieial chain is
added between these two links. A general virtuairchused to
modify the open chain is shown in Fig. 8 in thinliees.

As the manipulator movements belong todaorder screw
system, this virtual chain should hawe joints with linearly
independent normalized screws in order not to chahg mobility
of the real kinematic chain.

Thus, the virtual chain has links numbered fromn{1) (link
jointed to the base) tatd) (link jointed to the end-effector). The
relative movement between two adjacent virtualdink defined by
the corresponding virtual kinematic pair. The moeemof the
virtual link (n+1) with respect to the base (link 0) is definedtly
kinematic pairB; and is represented by the twisi; . The

movement of the virtual linkng-2) with respect to the virtual link
(n+1) is given by the kinematic paB, and is represented by the
twist $5, , and so on.
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Qvirtual pair

@ Serial manipulator pair

Figure 8. Modified (n+d)-link manipulator kinematic chains.

In general, each virtual kinematic pair has onlg ategree of
freedom {=1). If a pair of the virtual chain has more degref
freedom { >1), it could be instantaneously substitutedfbserial
virtual pairs with one degree of freedoend.spherical pair).

Adding this virtual chain to the manipulator cortgethe real
open chain in a modified closed kinematic chairhwit-d) links.

The kinematic pairs of this modified chain may lédkd into
actuated (primary) pairs and passive (secondaiy} pke parallel
manipulators.

For a serial manipulator in the 3D operational sphe order of
the screw system is six and the virtual chain hasistual pairs.
These six pairs are represented by six mutuatlgpendent twists.

The constraint equation for the modified kinematitain is
obtained by applying the Kirchhoff-Davies circutati law to the
modified kinematic chain, considering the circuiedtion indicated
in Fig. 8, and is given by
=0

d

$A1+$AQ+.”+$An_$Bl_”._$B(d-1)_$B (23)
Notice that virtual twists are negative becausg tepresent the
velocity of the base in relation to the end-effectn the opposite
direction of the circuit, while the real twists repent the velocity of
the end-effector in relation to the base.
The network matrix results in:

N=($,8, %, _$81"‘_$B<"'1’ _$Bd] (24)
and the velocity magnitude vector is
W= [wﬁw/*z W qJBlmLPB(d-anBd] (25)

The network matrix (24) and the velocity magnitweetor (25)
define the modified kinematic chain constraint dium which
allows the calculation of the differential kineneatias is described
below.

Differential Kinematics Using Virtual Chains

Differential Kinematics using virtual chaineelates the link
movements of a kinematic chain applying the Daviethod to a
virtually modified kinematic chain. Due to the fdesn to select the
primary kinematic pairs, it is possible to solvéfetient kinematic
problems, employing the same method.

The solutions to different kinematic problems abtamed by
choosing different groups of primary/secondary atales for the
constraint equation Eq.(19). In order to illustrttis, the direct and
inverse kinematics of the serial manipulators anenél below by
solving the constraint equation. Both direct anekise differential
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kinematics consider the velocity of the end-effeatorelation to the
base. For this purpose, we add a virtual chain éatwhe base and
the end-effector of the serial manipulator as shiowfig. 8.

Direct Kinematics.

In direct kinematics the objective is to determihe velocity of
the end-effector in the operational space as atifumoof the
velocities of the actuated kinematic pairs in thiatjspace.

To this end the magnitudes of the real kinematicspgoint
space) are selected as the primary vector compoifef) and the

magnitudes of the virtual kinematic pairs (opersdiospace) are
selected as the secondary vector componeft3. (Thus, Eq.(19)

becomes

\P.Bl \PAl

R TR N W) i TN o B
7] B, B(d-1) Bd AR An

B1)

Py, N

This highlights that using the virtual kinematicagh concept
the Davies method should be extended to calculage direct
differential kinematics of serial manipulators.

Inver se Kinematics.

The inverse kinematics maps end-effector veloc{tgerational
space) into joint velocities (joint space).
To solve the inverse kinematics we select the corapts of the

In Fig. 9, 6; (i=1,..., 6) are the position angles at the rotary

joints. The twists $corresponding to joint movements are aligned
with the joint axes and are shown in the figuresascal arrows.

Figure 9. The Pumarobot.

In this paper the PUMA robot differential kinematids
described using screws to represent the movemettiedfinematic
pairs. The reference frame in which the screwseapessed could
be suitably chosen in order to get screws with Brapmponents.

To this end several authors (Hunt, 1987; Marting @uenther,
2003) use a system fixed to link %4(Y;,Z4 ) at the center of the
spherical wrist to describe the screws correspandia the

vector ¥, as the magnitudes of the virtual kinematic pairkinematic pairs of the manipulator.

(operational space) and the components of the vegtoas the

magnitudes of the real kinematic pairs (joint spafehe modified
kinematic chain, then Eq.(19) results in

Y Y,

A B
vy P O 1 A A - :
AQ = _[$A1$A2 $’°h] [_ $B1 _$B(d—1) _$Bd N7 (27)
B1)
\P/'\w \PBd

It could be remarked that, using the virtual kinemahain
concept integrated with the Davies method, thectliemd inverse
differential kinematics of serial manipulators még obtained
employing the same method, simply by selecting gtimary and
secondary kinematic pairs according to the desiedlt.

In the following, the method presented is appleedrn industrial
robot manipulator.

Differential Kinematics of the PUM A Robot

The direct and inverse differential kinematics be tPUMA
robot, considering a Cartesian and a cylindricarafional space, is
presented in this section in order to illustrae dpproach presented.

The PUMA robot and its variants have widespread ase
industrial robots. It is also one of the most séddconfigurations
found in research papers on Robotics. For thesonsathis robot
was chosen as an example of differential kinematissg the
virtual chains proposed in this work.

The PUMA robot is a serial manipulator with six dsgs of
freedom. All joints are rotative kinematic paird€Tlast three joint
axes intersect at a single point forming a so-dalgherical wrist.

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright O 2005

In this work, the reference system fixed to linfbase) is named
the B-system and the reference system fixed todiis named the
R-system, see Fig. 9. The normalized screws ofPii®A robot,
represented in the R-system, see Appendix A faildetare (Hunt,
1987)

] S e W

Réz = (0,1,0;9323 0, Xi4)T

R§3 =(01000-h) 28)
R$, = (100000)

R$, = (0,-5,.C, 000)"

R$s = (Co:Css, 5485 1000)

where, ssin@i); s=sin@+ 0,); ¢=cos@;); ci=cosP;+ 0,); etc...
%4 =0C +heys; %, =—(gc;+h); and f, g and h are the distances
shown in Fig. 9.

Cartesian Operational Space

The Cartesian operational space corresponds toew |ystem
with d=6. To obtain the differential kinematics in the r@aian
operational space, we chose BiePSvirtual chain presented in Fig.
5 to be added between the base and the end-effector

In this case, the modified kinematic chain corresjsoto the
closed chain shown in Fig. 10.

by ABCM October-December 2005, Vol. XXVII, No. 4 / 351
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From Eq.(21) it is observed th&tN, =-I, wherel is the
(6x%6) identity matrix and employing Eq.(8)

“N,="T:N, (36)
where from Eq.(28)

[-s,, 0 010 ¢ |
0 1 10-s5¢s
RN = C; 0 00¢ 5 37)
P |-fciygs; 00 0 O
s 0 000 O

|- 3 %, —h0 0 0 |

Thus, the direct kinematics (Eq.(35)) is given by

P =TR"N,Y, (38)
Figure 10. Schematic of modified kinematic chain for Puma robot in c . . . .
Cartesian operational space. where “Tg is the transformation matrix of screw coordinates
calculated using the rotation matfiRz and the position vect&ipg
According to the Kirchhoff-Davies circulation lalug network (see Eq.(9_)). .
matrixN_of this closed kinematic chain is There is no rotation between tB8esystem and thB-system so
theC-system is always parallel to tBesystem and thus, we have,

N:él é2 éB éél é5 éG_érx _éry _érz _épx _épy _épz (29) CRR:BRR (39)

where all the normalized screws are representethén same The matrix°Rg is obtained through a matrix product, see (Hunt,
coordinate system and the normalized screw digpend on the 1987) for details, as

circuit direction shown in Fig. 10. The corresporglivelocity

magnitude vector is
GC3~SGS3

“Re = 40
N R A R A R T R A (30) Re %Zs % Sizs (40)
23 3

Direct Kinematicsin the Cartesian Operational Space Taking into account that the movements of the sphlewrist

The direct kinematics is obtained by calculating virtual chain 0 not affect the end-effector translation, Rsystem origin may

twist magnitudes, which are chosen as the seconsagnitude '€Present the position of the PUMA end-effectorhe T-system
vector componentge. origin and theR-system origin may then be considered coincident.

So the vectofpgis null.

_ Therefore, using Eq.(9), the transformation matifxscrews
¥s = [\{JFXWWlyfzlylox\ypy\yloz}r (31) coordinates may be expressed by
Consequently, the network secondary sub-matrikvisngby . |:[CRR] [0] ﬂ 41)
Ts =
Ll R
Ns = _$rx _$ry _$rz _$px _$py _$pz (32)

where [O] is the (3 x3 ) zero matrix.
Equation (38) establishes the relation between rda joint
velocity magnitudes¥, (¥, ,...,¥s) and the virtual joint velocity

The primary magnitude vector has the input as corepts,.e.,
the magnitudes of the actuated pairs:

¥, z[%%%%l{,s%]T (33) magnitudes ¥, (¥, ,...,¥,,) which, considering the special
configuration of the virtual chain, represent @artesian velocity

Therefore, the network primary sub-matrix is of the end-effector with respect to the base remtesl in theC-
system. The former three components of the velodtste

N, = 5.5, §;3 8, 5%5 §56 (34) (¥ . ¥y, ¥,) are the angular v§I00|t|es of the end-effectothwi
respect to the base, represented inGtsystem, and the latter three
The secondary magnitude vector is calculated usSmgl9). In components ¥, ¥, ,'¥;,) are the linear velocities of a point on

order to simplify the inversion of matri¥; we choose th€-system the end-effector, instantaneously at tfesystem origin, with

to represent the normalized screws and, thus, Edgkiven by respect to the base, represented inGksystem. Therefore, using
the twist definition, we may express the velocifytree end-effector
Y, =-°N." °N oY, (35) with respect to the base, represented irCisgstem, by
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C$EE = ‘{jrx lIlry lIlrz ‘{jpx ley ‘{jpz]T (42)

Inverse Kinematicsin the Cartesian Operational Space

The inverse kinematics is obtained by calculatimg rieal chain
twist magnitudes which, in this case, are chosethassecondary
magnitude vector components,

Y = ['“Pl‘yz‘ys‘yfysq}s ]T (43)
Accordingly, the network secondary sub-matrix is
N,=[58,5,6,8.8) (44)

The primary magnitude vector has the input as corepts,.e.,
the magnitudes of the virtual pairs:

Y, = [\P,X\Pry‘l’rz‘l’px‘l’py‘{’pzr (45)
Thus, the network primary sub-matrix is given by
N, :[_ érx _éry _érz _épx _épy _ém] (46)

The secondary magnitude vector is calculated ugiqq19),
which, aiming at simplifying the inversion of thetwork secondary
sub-matrix Ng,), R-system is represented as

v, = N N, (47)
where, using Eq.(28),
[-s,, 0 010 ¢ |
0 1 10-s,¢5
0 00¢ s
RN, = Co3 4 1S5 (48)
-fc,305;, 00 0 O
s 0 000 O
|~ fS;3 %4 —h0 0 0O |
and employing Eq.(8)
"N, =FTCCN, (49)

where from Eq.(21) it could be observed ths=-1.
Thus, replacing Eq.(48) and Eq.(49) into Eq.(4Rg tnverse
kinematics becomes

P="NRTY, (50)

Note that the transformation of the screw matrecaading to
Eq.(11) and Eq.(41) may be written as

e

Equation (50) establishes the inverse differerkiaematics of
the PUMA robot where the end-effector velocity isen in the
Cartesian system described by the virtual chain.

(51)
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Matrix "N in Eq.(50) is the Jacobian of the PUMA manipulator
when it is calculated throughout the screw thestyrt, 1987),.e.
the screw based Jacobidrhe method presented in this paper, like
the screw based Jacobian method, allows the smiegtia suitable
coordinate systenR{system) aiming at obtaining a sparser Jacobian
matrix.

Cylindrical Operational Space

For certain tasks, the description of the movemeims
operational spaces other than the Cartesian coaldiseful. For
instance to represent a radial or tangential viloof the end-
effector to weld a pipe, the cylindrical operatibspace may be
more suitable than the Cartesian space.

In order to illustrate the flexibility of the ap@oh presented in
this paper, the direct and inverse differential ekivatics of the
PUMA robot using a general cylindrical operatiorgpace is
presented below.

Consider a robot welding around a pipe whose agisciles
with the Z axis of the B -system shown in Fig. 11.

End effectc

Cylinder axis
VA

Figure 11. Schematic of Puma robot welding a pipe.

The cylindrical operational space correspondsgoraw system
in whichd=6. To obtain the differential kinematics in thdicgrical
operational space, we chose the virtual chain RitBSented in Fig.
6 to be added between the base and the end-effector

For this case the modified kinematic chain is shawfig. 12.

End effector

$6

4

($m ,$rt ,$rb)
Sor

$s

Circuit

=

I

/777,

Figure 12. Schematic of modified kinematic chain for PUMA robot in
cylindrical operational space.

$:
7
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Applying the Kirchhoff-Davies circulation law, reghng the
circuit direction indicated in Fig. 12, the netwaratrix N results
in

N=[888,86-8,-8,-8,-8,-8,-8,] 2
and the corresponding velocity magnitudes vector is
Y= [‘111 \1}2 LIJ3 LIJ4 \1}5 \1}6 LIJrn LIJrt \yrb \ypr LIJpz LIJrz]T (53)

Direct Kinematicsin the Cylindrical Operational Space

The direct kinematics is obtained by calculating tirtual chain
screw magnitudes which are chosen as the secomdagpitude
vector components,

sz = ['{Jrnqlrt LIJrb\ypx'{lpz.{}rz]T (54)

Consequently, the network secondary sub-matrixvisngby

Ns = [_ ém _érl _$rb - ép>< - $pz - érz (55)

The primary magnitude vector has the input as corapts;.e.,
the magnitudes of the actuated pairs:

Yo = [\P1\P2\P3\P4\P5\Pe ]T (56)
Therefore, the network primary sub-matrix is
N,=[58,8,8,88, (57)

The secondary magnitude vector is calculated udimg
constraint equation shown in Eq.(19). To simplifie inversion of

matrix Ns we chose theC -system to represent the normalized.

screws and thus Eq.(19) is given by

w, =N, ONLY, (58)

where, using Eq.(22),

[-<10 00 0 0]
0-10000
¢ 00-100-1
N, =

000-100
00000T
000 0-10|

(59)

and employing Eq.(8)
°N,="T&"N, (60)

The screw coordinates matrix transformafidp is calculated

using the rotation matrixéRR and the position vector® Pr -

Considering that the origins of thé-system and R-system

coincide, the vectof pgr is null. The rotation matri>63RR may be
obtained by the matrix product
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“Re="Rs "Rq (61)
where®Ry is described in Eq.(40-41) and
N C(rz) S(rz)0
CF\)B =17 S G 0 (62)

0 01

wherec;,) andsy, represent the cosine and sine, respectively, of the
instantaneous angular positidn, of the virtual rotative pair$ It

could be observed that the anglgis null when theC -system and
theB-system are parallel.

Therefore, the transformation matl"r:)TR is given by
°Ry°R|

o o e

The calculation of the direct kinematics is obtdinesing
Eq.(58)

(63)

W, =N CTRRNLY, (64)

Equation (64) describes the relation between tred jaint
velocity magnitudes?, (¥;,...,'¥s) and the virtual joint velocity
magnitudes ¥, (¥, ,...,%¥,,) which, considering the special
configuration of the virtual chain, represent @yéindrical velocity
of the end-effector with respect to the base TEed in theC -
system. The former three term¥( , ¥, ,¥,, ) of the end-effector

velocity state represent the angular velocity ifmedr tangential and
binormal) of the end-effector with respect to Hese, represented

in the é-system. The latter three \P()X, Yors
respectively, the radial linear velocit¥,, the axis linear velocity

¥, ) indicate,

¥,,and the azimuthal angular velocity,, of a point on the end-

effector, instantaneously at tlé-system origin, with respect to the
base, represented at tﬁA?esystem.

Inverse Kinematicsin the Cylindrical Operational Space

The inverse kinematics is obtained by calculathng teal chain
screw magnitudes which are the secondary magnituetgtor
components,e.,

W = [q}l\yqus\y4q15q16 ]T (65)
Then, the network secondary sub-matrix is
N, =[66,8,8,8 8, (66)

The primary magnitude vector contains the magngwddhe

virtual pairs:

\PP = [\Fl'n\{lrt\Ilrb\llpr\{"pz\{lrz]T (67)

Thus, the network primary sub-matrix is given by

ABCM



Differential Kinematics of Serial Manipulators Using Virtual Chains

_ém _érl _érb _épr _épz _érz (68)

The secondary magnitude vector is calculated ughng
constraint equation (EQ.(19)), which, aiming to piify the
inversion of the matrix, is represented in Beystem, as shown in
Eq.(47), here repeated

¥, =N N, (69)
and employing Eq.(8)
RN| —RT C
N,="T:°N,, (70)
where the transformation of the screw coordinateigaising
Eq.(11), is
T U RR } (72)
o [w RR]T
So, the inverse kinematics, using Eq.(69), is given
¥, =N, RTON W, (72)

It should be remarked that the inverse differerkinbmatics is
obtained by inverting the matrix corresponding te manipulator
joint screws represented in the R-system, the saatgx is inverted
to obtain the inverse kinematics in the Cartesjgerational space.

Similarly, by adding a suitable virtual chain, betm the base
and end-effector, it is to possible calculate tmeeise differential
kinematics based on the end-effector velocity giirem spherical
coordinate system.

This example shows that the proposed method alltves
determination of the inverse differential kinematin a coordinate
system (Cartesian, cylindrical etc.) suitable for end-effector task.
This is not so evident achieved using conventianathods €.g.
Denavit-Hartemberg based method and screw basdwd)et

Conclusions

This paper presents a simple, systematic and drafi@roach to
obtain the differential kinematics of serial margiars using the
screw representation.

By introducing a virtual chain concept in orderdose open
kinematic chains it is shown that the differenkimlematics of serial
manipulators can be calculated using the Daviehadeta simple
and systematic way to relate the joint velocitieglosed kinematic
chains.

The proposed approach results unified becauserbe dnd the
inverse kinematics are obtained in a similar way, delecting
variables according the desired result.

Furthermore, the approach allows the determinaténthe
inverse differential kinematics in a coordinate tegs (Cartesian,
cylindrical, etc.) suitable for the end-effectoskawhich could be
very useful, and this is not trivially achieved ngsiconventional
methods.

Like the screw based Jacobian method, the presem@wdach
allows the selection of a suitable coordinate systming at a
sparser Jacobian matrix.

J. of the Braz. Soc. of Mech. Sci. & Eng.

Copyright O 2005 by ABCM

Acknowledgments

This work was partially supported by "Fundacdo @enacgao
de Aperfeicoamento de Pessoal de Nivel SuperioPE3)', Brazil,
and by ‘Conselho Nacional de Desenvolvimento Cientie
Tecnolégico (CNPq)’, Brazil.

Appendix A

In this appendix a method to calculate the norredliscrews
correponding to the joint movements of the PUMAab is
presented.

Aiming to find the screws corresponding to the PUNbints,
we first define a reference (home) configurationtfe manipulator
and a coordinate system fixed to each link, name®y ... and 6.
Although the reference position can be chosen rariit, it is
usually chosen at a location where, if possibliétha joint axes are
parallel or orthogonal. The reference configuraion PUMA and
the coordinate systems 1,2,... and 6 fixed to éseective links are
showed in Fig. A1 where all the joint angled; () are null and the

coordinate systems are parallel.

Y1

Yz/

Figure Al. The Pumarobot reference configuration.

According to Eq.(3) the normalized screws of joihi8,.. and 6
expressed, respectively, at the coordinate syst@m..land 6 are
easily identified as

'3, =( 002000)"
010,000)"
010,000)"

%8, =(
3?53 (
, =(100000)
5=
5 =(

(A1)
001000)"
100,000)"
where the subindex represents the joint and theersuex
represents the coordinate system where the nomdazrews are

described.
Considering the coordinate systems of Fig. Al, tb&tion

matrices' *R; and the vectors™* p; between adjacent coordinate
systems are
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G -5 0 ¢ 0s G 0 s
R=lg ¢ Of R=/{0 1 0 R=[0 10
0 0 1 -s, 0 ¢ -s, 0 ¢
10 O G -5 O
A2
R=0¢ -s| R=s & O (h2)
0s ¢ 0 0 1

p=[-fs fo o p=[gg 0 -gs;
*p=lhe 0 -hs[; ‘p=[0 0 5 *p=0 o o
where,s=sin(g;) and g=cog#,).
Now it is necessary to transform screw coordindtesn one
system to another. For this purpose, we may uge stirew
coordinates transformation, Eq. (9) and Eq. (Ebyploying these

equations we can obtain the normalized screws efdimts of the
PUMA in the coordinate system fixed to linkRsystem, by

4%:41-331—221-11%1 = (_ $3.0,Co3:=FCys, X141_f523)T
“$,="T,°T,%8, = (010,gS,5.0, %)

'$,="T,%$, = (01000,-h)’

“$, = (100000)"

“$,="T,5, = (0,-s,,¢, ;000)"

4%5:4-'-55-'-663‘;6 = (05104557 S ;0,0,0)T

(A3)

wheres=sin(0i+ 6y), Gx=cod6i+ 6y), %4 =9c, + hc,; and
X4 = ‘(903 + h) ; the letters f, g and h being the distances shiown
Fig. 9.
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