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A Transformation of Variables
Technique Applicable to the
Boundary Element Method to
Simulate a Special Class of Diffusive-
Advective Potential Problems

This paper describes a novel Boundary Element Tigakndeveloped for application to

one-dimensional and a class of two-dimensionausiie-advective potential problems. It
is based on transformation of variable procedurestablish an integral equation inverse
sentence, dealing only with boundary variablespgss fundamental solution associated
with a diffusive problem. To apply the techniquscdi®ed here, the original differential

equation is rewritten and flow potential functioase employed to contract terms which
appear in the original equation, giving as a resait equivalent equation expressed in
terms of the derivative of the product of two fimred. This new form of the governing
equation, together with the proposed transformatibrvariables is quite convenient for
the application of the boundary element methodologyvery simple discretization

procedure arises; the resulting algorithms requoes CPU time and the numerical results

Civil Engineering Department are quite accurate.
Rio de Janeiro Keyw

21945-970 Rio de Janeiro, Brazil fluid flow modeling

I ntroduction

Despite the great amount of research work develapéue last
thirty years, there is still a wide unexplored diebf research
concerning applications of Boundary Element Met{B&M) to
Engineering. There are important classes of probletnich require
more consistent approaches; in particular, onengantion the area
of study of Transport Phenomena (White, 1986) gmecifically
diffusive-advective problems (Ramachandran, 199@)e most
consistent and elegant formulation to deal witifudize-advective
problems in two-dimensions employs a fundamentaltiem of a
similar diffusive-advective problem, with a conaated source
applied at a domain point (Honna et al., 1985, asd Wrobel and
De Figueiredo, 1991). Such formulation is capalflsaiving with
great accuracy problems where the velocity field censtant;
however, the approach is not adequate anymore if¢focity field
is dependent on spatial coordinates. Another draklcancerning
this formulation is the difficulty to apply it toinhe dependent
problems, as the fundamental solution for this c#&sequite
cumbersome.

The first BEM general formulation developed to dgfive-
advective problems was presented by Partridge. ¢ dl992. This
formulation is based on the Dual Reciprocity pragedproposed
originally by Nardine and Brebbia (1982). Utilizing diffusive
fundamental solution, the formulation presentedPaytridge et al,
overcame the restriction of the previous formulatighich could
only be applied if the velocity field was constamipwever, it
presented a serious limitation when accuracy isceared, its
application being recommended only for fluid flovitivlow Peclet
numbers (Bejan, 1993; Bennet and Myers, 1983).

Following the Dual Reciprocity Formulation (DRF)idelines,
Loeffler and Mansur (2003) proposed a novel prooedealled
Quasi-Dual Reciprocity formulation (QDR). The sture of the
QDR is similar to that of the Dual-Reciprocity, esjally when the
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ords: Boundary Element Method, potential problems, disdvective equation,

use of auxiliary interpolation radial basis funasois concerned
(Karur and Ramachandran, 1994; Partridge, 1997yveler, a
special treatment concerning the advective terms waposed
aiming at improving the accuracy of the numeriedults for high
Peclet numbers.

In the present work, a novel approach is proposedned
Harmonic Transformation Technique (HTT). This neppach
also employs a diffusive fundamental solution like DRF and the
QDR, but it employs operational procedures whiatude a special
transformation of variables that makes the compmrnat process
quicker and accurate. This transformation is basethe governing
equation equivalence between potential advectivablpms and
inhomogeneous scalar problems, that is, Laplaceblgms; this
equation can be easily written in the inverse irgedgorm if
strategic operations put it in harmonic form.

Unhappily the HTT procedure is not general, beingtéd to
one-dimensional problems and special two-dimensicases, but it
can be applied in some situations in hydraulic eegiing, such as
water seepage in regular soils and fluid transporpipes and
gutters. In addition, within the context of the Boary Element
Method approach, for some problems which the tesmigirocess is
the focus of the computational simulation, it canvery interesting
to apply the HTT together with DRF, because the HIBEs not
introduce meaningful numerical disturbance in tipatisl model
allowing a better performance of time discretizatiechniques. It is
the case of inhomogeneous heat transfer problemsqg(®ti and
Caruso, 1990; Sutradhar et al., 2002), advectiveblpms and
metallurgical problems (Spitzer et al., 1992) whareon-steady
process can occur having preponderant one-dimeaisitux or
fluid flow. Problems with circumferential symmetrgre also
accessible to HTT approach. For all these situafiche HTT
formulation shows significant advantages. It préseaccuracy
superior to the QDR and DRF, eliminates the needusihg
interpolation algorithms and, therefore, does nequire matrix
inversion. This last feature is the most importam¢cause the
reduction of CPU time is substantial.
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Nomenclature

B = constant defined by Eq. (30), kgf(s)

E, = mean error, dimensionless

E, =nodal error, dimensionless

f = natural boundary condition, °C m/s

G  =global matrix of the Boundary Element Method,
dimensionless

H = global matrix of the Boundary Element Methodn1/

K =thermal diffusivity of the medium =

L = length of the control volume, m

m = parameter of control of the fluid flow velocifg. (31),1/s

n = number of boundary elements used in the boundary
discretization, dimensionless

N¢ = total number of nodal points where the mean eiso
calculated, dimensionless

n, = cartesian coordinates of the vector normal te th
boundary, dimensionless

P =global matrix originated from harmonic transforiian
technique, dimensionless

p = Peclet number, dimensionless

Q =boundary condition prescribed at face 2, in epén®,
°c/m

g =derivative of the temperature in the directioormal to
the boundary, °C/m

g = vector containing the nodal value of the derivatof the
temperature in the direction normal to the bound&@6/m

g = vector containing the nodal value of the derivatof the
transformed variable in the direction normal to the
boundary, °C/m

v; = cartesian component of the velocity field, m/s

v, = cartesian component in the x direction of thiveiy
field, m/s

vy, = cartesian component in the y direction of thineity
field, m/s

Greek Symbols

I'  =boundary of the domain where the diffusive-advect
potential problem is defined

I'y = region of the boundary where is prescribed theunal
boundary condition

I'y, =region of the boundary where is prescribed theeesial
boundary condition

n = function of the potential of velocity used to gaation
of the governing equation, defined by Eq. (7),
dimensionless

n = vector containing the nodal value of the functign
dimensionless

0 = temperature, °C

0 = vector containing nodal value of temperature on
boundary, °C

0  =temperature prescribed at the boundary (essential
boundary condition), °C

p  =fluid density, kg/m

¥ =transformed variable defined by Egs. (14) and)(26

¥ = vector containing the nodal value of the transfied
variable in the boundary, °C

¥ =homogeneous vector containing a unique nodale/alu
the transformed variable, °C

‘Pk = nodal value of the transformed variable at nogaint k, °C

Q  =domain where the diffusive-advective potentialljem

is defined
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Basic Problem

The governing equation and boundary conditions ¢en
presented in a more simple form; as mentioned betbie core of
HTT is one-dimensional applications. On the othand) in BEM
approaches, it is very common to use two-dimensicodes to
solve also more simple situations. For this reasomathematical
model in two dimensions is presented here.

Then, here it is considered a homogeneous fluidiumgdwith
mass movement which permits characterization ofoatigcuous
flow, subjected to a temperature gradient. IK&t be an internal
region, delimited by a boundary, as shown in Fig. 1:

Figure 1. Characterization of the domain Q and boundary T .

Herein it is assumed incompressible and invisclvfland
steady state conditions (Batchelor, 1967). In ttése exists a
temperature fieldd(x,y) in Q, governed by a well-known partial

differential equation (Incropera and Witt, 1992¢sented in Eq. (1)
using Einstein’s indicial notation:

KG,“ :Viei (1)

In Eq. (1) K is the thermal diffusivity of the meah and v;,
i=1,2 represents respectively the x and y componentshef
velocity field.

It is assumed that o}, and Ig (F:FUDFq) are known
respectively the temperatur@ (essential boundary condition) or a
function f involving temperature derivative,jr; on the direction
normal to T' and the particle velocity component in the normal
direction versusd . The boundary conditions are thus described by:

=9 on Fu (essential boundary condition) 2)
f= Kg,ini +vin 6 on Fq (natural boundary condition) (3)

Governing Equation Compaction

To develop the formulation, it is convenient to riéev the
governing equation, Eqg. (1), in a compact form, hsulat the
advective and diffusive parcels can be expressetérims of the
derivative of the product of two functions, as shaw Eg. (4):
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(n8,);=0

The last expression is the inhomogeneous Laplazgiation. In
this equationm(x,y) is a function related to the velocity field

(4)

existing in theQ domain. Next it is shown the steps required to

reach the contracted form of the governing equatiiven by Eq.
(4); an expression to computg as a function of the velocity field

and the thermal diffusivity of the medium is obtdn
First, the derivative indicated in Eq. (4) is penfied:

n,; +n, 6, =0 ®)
Comparing Eqg. (5) with Eq. (1), one can see that ibbeys the

differential equation indicated by Eq. (6), Eq. (@hd Eg. (1)
become the same:

Ny =N (6)

K

The above expression represents a system of twimaoyd
equations which are used to determine the functjgrfrom where

one can conclude that Eq. (4) is equivalent to tjowerning
equation, as long as one considgrgiven by:

n = exp(-®/K) %

Thus, asCD,i =v, the scalar functiortP can be interpreted as

a velocity potential.

The transformation presented in Eq. (7) links thenegal
Laplace’s Equation for inhomogeneous medium andhthective-
Diffusive Equation. It is a sufficient conditionrfene-dimensional
cases, but for two-dimensional ones the incompuéigi and
irrotationality conditions to the fluid flow areqeired.

The Harmonic Transformation Technique

Starting from the compact form of the governing &tjon,
Eq. (4), it is possible to apply a transformatioh variables
procedure aiming at simplifying the numerical
formulation. To achieve this goal, one must introdua new
variable ¥, related to the original variablé according to:

The objective is to write the governing equatioraitnarmonic
equivalent form, suitable to a BEM approach. If B&) is
substituted into Eg. (4), one has:

\P’ii =0 &)

Thus, ¥ is governed by the Laplace equation. The classical

BEM procedure (Brebbia, 1978) leads to the follggvimatrix
equation:

HY-GG=0 (10)

Wheref] =W, n. Itis necessary now to determine the vectdts

and § . The vectorq can be determined directly from Eq. (8):
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q=mng (11)
where g in the last equation is the flux®f i.e.
gq=0,n (12)

The function¥ is also determined from Eq. (8); by application
of the chain rule:

ov _ov 00 3
ox; 00 0x

Comparing Eq. (13) and Eq. (8), it is easy to usiderd that the
function ¥ must be such that:

av

= 14
[ol§ =

n

Equation (14) cannot be solved analytically, gé9) is not

known. However, it is possible to establish a soléoncarry out the
numerical integration of this equation between twbitrary points
within the Q domain, as indicated by Eq. (15):

k
¥, -, =] ndo (15)

If k andk —1 are considered to be two consecutive nodes of a
discretized boundary, the following approximatisrvalid:

ka Dwk—1+nm(ek_ek_1) (16)

In the previous equation,, is admitted to be as an

intermediate value of the function within the integration interval,

for the sake of simplicity. The trapezoidal rulesmemployed to
perform the integration indicated in Eq. (15); tesult being that
indicated by Eq. (16). Since the equation (16) He simplest
approach to process the integration given by thaion (15), some

modelmore accurate schemes could easily be imaginednfove it,

especially considering some weighted effect of eja nodal
values. However, the most effective way to imprthe accuracy of
this integration without loss of simplicity is these of boundary
elements of the highest order, since the improveénahthe
proposed scheme would happen naturally.

Considering now the boundary being discretized ugho n
constant boundary elements (Brebbia and Walker,0)Y%nd
applying Eq. (16) between the first and last nodgeis, possible to
write the following expression:

W Ow +n.,(6,-6) 17)
For the next interval, one can write:

Y, 0w, +n,(6,-6) (18)
Substituting Eqg. (17) into Eqg. (18), one has

W, 0¥ +n.,06,-6)+n,(6,-96) (19)

January-March 2012, Vol. XXXIV, No. 1 /11
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When this procedure is repeated to all boundangsodne obtains the following equations:

Y ow, +r]n1(61_en)
W, ow, +r|n1(61_en)+r|12(e 2—9)
L|J3 DqJn +nn1(el_en)+n12(ez_e)+n 2&9 3—9 )

W, Dlin+nn1(61—6n)+r]12(62—61)+r] 2&6 3_e )+I’] sge 4_6)3

¥, Mo 0 0 0

Y, Mo ~ M2 LIEP

¥, | M TN Mz MNas N 23

¥, Mot ™Mz M2"Mas Mz MNas M s
_\Pn_ Moy "Mz M2 Moz Mas™Nae Ma™ M oss

Equation (21) is rewritten in compact notation:

¥ =Po+¥ (22)
Substituting Eq. (22) and Eq. (11) into Eq. (1®iites:
HPO-Gnq = -H'Y (23)

As ¥ isa homogeneous vector, having in mind that time ef
all terms of a row of matrikl is null (Brebbia, 1978) one has:

H¥Y =0 (24)
Thus, Eq. (23) becomes:
HPO-Gng=0 (25)

This last equation can be easily solved by the luswehods
employed to solve linear algebraic system of eguati Although
the set of equations above refer to a boundaryretigzed into
constant elements, it's easy to establish new fdaortbe equations
above when higher-order elements are used. In tdse,
considering the potential functiofi written in terms of the local
coordinates (Brebbia, Telles and Wrobel, 1984) antleing a
known function, the integral in the right-hand-siofeEq. (15) can
be performed using standard Gauss quadrature Irukhis way, a
new set of equations related to a more precisgraten scheme
can be obtained.

Applications

This topic discussion concerns three test-casesevhnalytical
solutions are known, thereby used to evaluate #réopnance of
the formulation proposed. In the three applicationgs shown the

12 / Vol. XXXIV, No. 1, January-March 2012

(20)
(0 78) .t 16, -6,)
Ll ] _91 | _\Pn |
M. 0, ¥,
N 0, ¥,
+
N 0, ¥, (1)
: : an
T] G 1)n_r| nj _en_ _\Pn_

behavior of the numerical solution for differentsheefinement and
Peclet numbers. Another important point to be hgted

concerning the numerical simulations carried outeisited to the
need for poles (internal nodes, basis for glob&drpolation). It is
well known in the literature, e.g., Loeffler and Mar (1987), that
the DRF requires the use of poles to improve tipeesentation of
domain known or unknown functions; in the preseasec the
advective term. However, the approach proposed ({fd) does
not require poles. The DRF employed sixteen poteadgeneously
distributed within the control volume, whereas €T and QDR
did not use any.

One-Dimensional Fluid Flow with a Constant Velocity Field

The first example consists of a heat transfer mmoblvith a
one—dimensional constant velocity field, subjediedhe following
boundary conditions: null diffusive flux on the lmntal edges, and
prescribed temperatures on the vertical ones,@srsin Fig. 2.

o
(A YA ST /////
\
06=0°C 6=1°C
3 — p= YL
& —_— K B
Q
8
facel
y N N N
NN \\ DOENRNNNR
| L |
X
Figure 2. Physical and geometrical characteristics of example 1.
ABCM
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The analytical solution of this problem is given by

0= e -1
= epL 1 (26)
__pe”

q= P (27)

In the previous equationsf
derivative in the direction of the normal to theubdary of a control
volume whose boundary coincides with that showthéFig. 2 and
p is the Peclet number. The results obtained frben tumerical
simulations are described by graphs which illusttae behavior of
the numerical solution through values of the meaaredescribed
in percentage with respect to the analytical valhe, following
expression being used in the computations:

2E,
Epn=—" (28)
N
f
where:
analyt. value- numer. valu
Ep =ab 29
analyt' value at considered point ( )
In Eq. (28) N,

the temperature or its derivative is computed. Hqug28) will be
employed for all examples shown here.

Figures 3 and 4 show graphs of numerical resuttsrnversus
number of boundary elements, for a fixed Peclet memequal 2.
These figures show the good convergence rate oHE whose
performance is much superior to that of the DRF.

In Fig. 3 it is shown the variation of the perceeerror of the
numerical results on face 1 versus mesh refinement.

For a coarse mesh, the effect of the approximastoown by
Eq. (16) is quite significant, so that the accuraéythe HTT is
worse than that of the QDR and DRF. This behawaredited to
the low order interpolation used in Eqg. (16). Hoeewas the mesh
becomes finer, the accuracy of HTT becomes clas¢hdt of the
QDR; in fact, the difference of the two formulatgfor more than
eighty boundary elements is meaningless. Both, Hifid QDR
approaches are superior to the DRF, even for tkésnele with
low Peclet Number.

6,00
<
4,50 .
—~~ \\\
S
S \ —o—HTT
S 3,00 —A— DRF
w —%— QDR
1,50 Jass
0,00 ‘ ‘ . . ‘ ‘ . ;
0 20 40 60 80 100 120 140 160

Number of Boundary Elements

Figure 3. Temperature percentage mean error on face
refinement for Peclet number equal to 2, for exampl e 1.

1, versus mesh

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright

is the temperature, q is the

0 2012 by ABCM

In what boundary fluxes on the input and outputefaare
concerned, the results of HTT and QDR approachesrbe closer
than that of temperature results described prelyioddthough for
coarse meshes the HTT have a poor performanceacitsracy
improves substantially with mesh refinement; reswit HTT and
QDR shown in Fig. 4 are coincident for a numberbotindary
elements higher than eighty. Still better resutis HTT may be
expected if higher order interpolation is used @n @6), even when
a coarse mesh is considered.

10,00

8,00

6,00 \A\&\

Error (%)

A
—O0—HTT
4,00 —aA— DRF
0\ —%— QDR
2,00 X\
0,00 T T T T T T T T
0 20 40 60 80 100 120 140 160

Number of Boundary Elements

Figure 4. Normal flux percentage mean error on face
refinement for Peclet number equal to 2, for exampl e 1.

4 versus mesh

Figures 5 and 6 illustrate the performance of theppsed
formulation for different Peclet numbers, for a ik boundary
element mesh refinement; one hundred and sixty esitsnwere
employed. The solution of diffusive-advective peabk is quite

is the number of nodal points on the face wherggnsitive to the variations of the Peclet numbéis Thbecomes a

serious difficulty to the approaches examined hereich model
together the diffusive and the advective phenomevithout
considering in their mathematical structure theprelerance of one
of the processes over the other.

Figure 5 depicts the values of the mean percentmer
concerning the computation of the temperatures ame f1. This
figure shows that for Peclet Numbers over 4, thé=[plResents high
errors. It can also be noted that QDR resultsst@eteriorating for
the Peclet Number about 10; as the Peclet numhbmmies bigger
than 10 one can notice a quick increase of theepéage mean
error. Errors of the HTT formulation increase slpwhith the
increase of the Peclet number. Results accuraagdsptable (error
less than 3%) for the range of variation depicteHig. 5.

22,00

16,50 /(
g /A —o—HTT
S 11,00 —a&— DRF
w —%— QDR
5,50
/ 4\71074/0/0
/
/
/
000 I R : ‘ : : :
0 2 4 6 8 10 12 14

Peclet Number

Figure 5. Temperature percentage mean error on face
number, for a boundary element mesh with one hundre
elements, for example 1.

1 versus Peclet
d and sixty

It is important to notice that the HTT and QDR ammhes
presented a good performance for average Pecldbergrhowever,
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this is not the case of the DRF, whose resultsridested quickly ~ One-Dimensional Fluid Flow with Variable Ve ocity Field

for Peclet numbers higher than two. For Peclet rermbigher than ) )

10 the QDR approach also lost accuracy and onlyHE yielded This example consists of a heat transfer probleneravtthe

acceptable results. It should be noticed that thesor velocity field varies with the x coordinate andnslependent of the
performance of the HTT approach rests on the fat it does not Y coordinate. The fluid flow is in the opposite serof the flux of
require the use of standard radial non-compactshiasérpolation heat, and varies linearly in the x direction alahg control volume.
functions (Buhmann, 2003; Goldberg and Chen, 19@djch do The boundary conditions for this problem are: Hieat null on the

not represent accurately responses whose gradientsigh, quite a horizontal edges, diffusive heat flux prescribedtioa right vertical

usual situation for problems with high Peclet nursbe edge and temperature prescribed on the left vegibge, as shown
in Fig. 7.
60,00 Under these circumstances, the flow is necesseoitypressible
and it is usually modeled by equations which areeno@mplex than
ﬁ o that represented by the Diffusion-Advection Equatidowever, for
45.00 one-dimensional flux and for a certain particutaini of the thermal
9 —O—HTT conductivity distribution, it is possible to dedmeithis problem by
S 3000 —a— DRF the Diffusion-Advection Equation, as long as an cpdde
5 QoR transformation of variables is performed (Loefferd Dan, 2004).
00 >
® A DT T T
B=0°C u
0,00 - % B —O——-3 . -— . -
0 2 4 6 8 10 12 14 -— Q = é8fén=10°C/m

Peclet Number
Figure 6. Normal flux percentage mean error on face 4 versus Peclet
number, for a boundary element mesh with one hundre d and sixty
elements, for example 1. -—

face4

Il
.

-— facel

Fortunately, particular analysis of all nodal résukveals that Y TR LA

the high values of temperature present lower ertioas the low
values. So, graphs similar to those shown in Figvten only the
nodes with highest temperature values are considgoeesent
results with more reduced percentage error; howetler same
tendency of degeneration with increase of Peclehbar is still
present. One of these conditions concern the deng(t) is such that it

Figure 6 shows the variation of the mean percentager for obeys the conservation equation being given by:
normal flux on face 4, versus Peclet number. Thmesgattern

Figure 7. Physical and geometrical characteristics of example 2.

previously observed for the temperature occurreet lier normal pu=B (30)
fluxes. Again, it must be highlighted that the H&frors were small
for the range of Peclet number shown in Fig. 6, trad no abrupt In Eq. (30), B is a constant. The fluid velocitysiconsidered to

error increase occurs with the increase of theePetimber. Higher 4y jinearly along the x direction, according to:
Peclet numbers are allowed for the QDR formulatibthe mesh is

refined. u=-mx (31)
Another meaningful feature of HTT formulation iss ifow
computational cost. The absence of matrix inversand the The analytical solution for temperatures alongtheoordinate

simplicity of the employed integration scheme whieth to Eq. (17) considering adapted Diffusion-Advection Equatiogiigen by:
reduces substantially the CPU time of HTT compuatate. For all

simulations presented here it was used a PENTHIVMdmputer L(1+ L+
with 3.06 GH of processing velocity and 500 Mb N2 memory. 0= QL( m) In mx (32)
Table 1 shows a comparison among the three bouridianylations m L

experimented, considering the CPU time spent toesthe first

example. It must to be noticed that this proportimes not change
for other kind of boundary conditions, such as ¢hekown in the
second and third examples.

The normal derivative on the vertical edges is gilvg:

@_ QLA +m)

33
Table 1. Comparison of Costs of the Three BEM Formul  ations — CPU time oX (L + mx) 33)
in seconds.
Mesh Size HTT QDR DRF In the numerical computations L was taken as un@nly
results concerning the HTT and the DRF will be présd, as the
20 BE 0.015625 0.015625 0.01525| QDR cannot be applied to this problem, becausevéhecity field
prescribed does not obey the incompressibility d¢@rd required
40 BE 0.031250 0.078125 0.62360| by the QDR formulation.
The curves showed in Fig. (8) and Fig. (9) illustneespectively
80 BE 0.140625 0.531250 0.40265| the behavior of the numerical solution for the tenapure along the
horizontal axis and for the thermal flux along tb# vertical edge,
160 BE 0.625000 3.656250 2.57400  versus mesh refinement, considering m equal ta thdse graphs it

14 / Vol. XXXIV, No. 1, January-March 2012 ABCM
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can be seen that both formulations (HTT and DRRrawe their

16,00
results with mesh refinement; the HTT performanemd superior,
mainly when boundary fluxes are concerned. 1200
3,20 —~ /D/
S
5 800
a &
2440 —<O— HTT
;\O\ 4,00 —0— DRF
e —o— HTT D/
S 1,60
w
o oRe 0,00 +—°— : : : ‘ —=
o\ 0 2 4 6 8 10 12 14
0.80 \0\ Flow Velocity Control Parameter
Figure 11. Normal flux percentage mean error on fac e 4 versus flow
velocity, for example 2.
0,00 : : - - - : : -
0 20 40 60 80 100 120 140 160

Number of Boundary Elements

Figure 8. Temperature percentage mean error along t
direction (face 1) versus mesh refinement, for exam  ple 2.

he horizontal

Two-Dimensional Fluid Flow with Constant Ve ocity Fied

In two-dimensional problems, the harmonic transfmtion
requires a more restrict condition than irrotatioriaid flow

400 condition. This condition appears by considering.E43) and (14),
' 1:\ that is:
3,00 < 0 00
L exp@ / K)— (34)
g 0xq 0X4
5 200 o —0O— HTT
o ™ —0O— DRF 0 00
L exp@ / K)— (35)
1,00 \ X, X5
0,00 ‘ ‘ ‘ , , , , ‘ Taking the cross derivatives of the former equatiibiis found:
0 20 40 60 80 100 120 140 160
Number of Boundary Elements 00 00
Figure 9. Normal Flux percentage mean error along t  he left vertical edge V2 - = Vli (36)
versus mesh refinement, for example 2. axl oX 2

Figures 10 and 11 depict graphs which illustrate ramerical
performance of both formulations as a functionhef low velocity,
controlled through the parameter m. First of all,Fig. 10, it is
depicted the mean percentage error related to tetyse numerical
results along the horizontal direction. The perfanece of the HTT
approach is undoubtedly superior to that of the @Rproach. HTT
errors were quite low for the velocity range copsétl.

With respect to the numerical results for the tileat on face 4,

depicted in Fig. 11, the performance of the HTTrapph was again 7(\/ XV )
superior, being practically insensitive to the atidns of the flow XTVyY

velocity intensity for the velocity range c

f=eX

It means that a very limited number of two-dimensio
problems can be solved by the proposed method. Hawe show
the good numerical performance of HTT this casdystonsiders a
two-dimensional heat transfer problem, in which tedocity field
has constant components in the x and y directidssential
boundary conditions are prescribed on the fourssaddength L of a
square control volume; the analytical solutionto$ tase-study is:

onsidiereThe mean

@37

percentage error is practically constant, aroudd D%.

8,00
6,00 /D
S —0—HTT /
S 400 —0O— DRF
]
2,00 O
0,00 5 - "
0 2 4 6 8 10 12 14

Flow Velocity Control Parameter

Figure 10. Temperature percentage mean error along
direction versus flow velocity, for example 2.
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Figure 12 shows the physical and geometrical cheriatics of
the control volume of this problem. The horizongald vertical
components of the particle velocity vector are eetipely denoted
by v e .

The evaluation of the performance of DRF, QDR anfiTH
formulations will be carried out through comparisai the
numerical results obtained for the boundary fluxéth analytical
values, the latter being given by:

00 v, ()

= XK (38)
ox K

09 \Yj —\ VXtV y

%0 _ vy Hucmy) "
dy K
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The criteria and formulas for error computation #ie same
used previously, given by Eq. (28) and (29).

face2

facel

X

AREARRRRARNARNAR

Figure 12. Physical and geometrical characteristics for example 3.

The first test carried out evaluates the behavidh® numerical
solution versus the refinement of the boundary meséd. The
results presented in Fig. 13 correspond to fluxetaoe 2, for Peclet
number equal to 2. It is important to observe thates on face two
are more significant (higher and more prone to migakerror).

The graphs of Fig. 13 show again that HTT resupgreach
the analytical solution as the mesh becomes finer ftner. The
QDR results are superior to those obtained from HET
formulation, as expected for low Peclet numberse TRsults
obtained with the DRF, shown in Fig. 13, are justeptable, the
lack of accuracy being due to the existence of bawn regions
where results are not accurate at all. This lac&kaguracy happens
mainly over regions where the flux values are nointhant, as
residuals of the interference of higher values drivhtive
elsewhere which are transmitted to other parts haf domain
through the global interpolation inherent to the DRAnyway,
results presented in Fig. 13 show the strong litisitaof the DRF
for some two-dimensional cases.

5,00

S

S —<O— HTT

S 2,50 \o —A— DRF

u — % QDR
125 \o
0,00 X—x : * ‘ : : *

0 20 40 60 80 100 120 140 160

Number of Boundary Elements

Figure 13. Normal flux percentage mean error on fac e 2 versus mesh

refinement, for Peclet number equal to 2, for examp  le 3.

Next it is analyzed the performance of the thregregches (in
what accuracy is concerned) for different Peclenbers. A fixed
mesh of 160 elements is employed, and the errtieoflux on face
two versus Peclet Number is plotted in Fig. 14.

The graphs depicted in Fig. 14 show that increastiegPeclet
number a little causes complete failure of the DRFors increase
very quickly from Peclet number equal to two onveardhe QDR
approach requires mesh refinement in order to ysddeptable
accuracy for higher Peclet numbers; acceptabldtseare obtained
for Peclet numbers lower than 10. For Peclet numirethe interval
[0,10] the HTT approach presented its best perfaoeathe error
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was under 1%. In fact, numerical experiments, hows here, gave
acceptable results for the HTT approach up to Pecimbers equal
to 20, for a fixed 160 boundary element mesh. Reulenbers
higher than 20 require a finer discretization.

6,00
4,50 /<
S
S —O— HTT
S 3,00 A A— DRF
wm —%— QDR
1,50 vi
é—&—(}——%&
0,00 XK K ; - -
0 2 4 6 8 10

Peclet Number

e 2 versus Peclet
example 3.

Figure 14. Normal flux percentage mean error on fac
number, for a mesh with 160 boundary elements, for

Conclusions

The formulation presented in this paper showedesbitable
and efficient to carry out numerical modeling ofeedimensional
and of a special class of two-dimensional diffushdeective
problems. The HTT approach overcomes the difficityerent to
the Dual Reciprocity Formulation and other simiégproaches: the
use of auxiliary radial basis interpolation funaso with non-
compact support. The HTT approach does not reqdamain
interpolation, thereby, the solution algorithm ismgler to
implement than those originated from de DRF, antiush cheaper
as there is no need to invert matrices. For the chghe analysis
with one hundred and sixty elements CPU time focoanputer
program based on the Harmonic Transformation Tegen(HTT)
is about 17% of the CPU time of a similar prograssdi on Quasi-
Dual Reciprocity (QDR) and is 24% of the CPU timMiea@omputer
program based on the traditional Dual Reciprocityrniulation
(DFR). Besides, the proposed HTT approach managesptresent
with the same accuracy small and high values of hbendary
unknowns. Thus, the numerical solution is morelstabd accurate,
especially for higher Peclet numbers.

Results of the HTT approach showed to be quite go@h in
the case of a variable velocity field over the domalespite the
limited accuracy of the scheme used to integragetidgmsformation
variable; it is important to notice that other fadations usually
yield poor results in this case. Another advantfgghe HTT is that
the incompressibility condition is not required, avbdas QDR only
can be applied to potential fluid flow problems.st,ait must be
highlighted that the HTT, such as the QDR formuolatidoes not
require the use of poles to improve its accuracyeeessary and
expensive procedure required by DRF.

It is necessary to emphasize that the HTT perfoomaran still
be improved if high order boundary elements are leyeul.
Naturally, every Boundary Element formulations wbhlave better
performance by increasing elements order, but foe HTT
technique the improvement will be quite higher, daese the
accuracy of approximation scheme given by Eq. {d@lso related
to the boundary element order.

The main problem of HTT is its limitation to onessénsional
and particular two-dimensional applications. Howeveas
mentioned previously, in some transient problenis interesting
to implement simple and quick one-dimensional spathodel
coupled with a robust time integration scheme toi@ce response
estimations or benchmarks. It must be also inclustede dynamic

ABCM
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problems that have effective one dimensional wangggation.
For this purpose the HTT formulation is suitableaddition to the
high accuracy, mathematical simplicity and low cangtional
cost, the computational code requests quite shod simple
programming algorithms.
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