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The present paper discusses on development of fuzzy rule based modds (FRBMs) for
predicting cutting force and surface roughness in milling operation. The models use Takagi-
Sugeno-Kang-type (TSK-type) fuzzy rule to study the effect of four (input) cutting parameters
(cutting speed, feed rate, radial depth of cut and axial depth of cut) on outputs (cutting force
and surface roughness). The appropriate FRBM is arrived after a thorough investigation of
different structures of rule-consequent function. A combined approach of genetic algorithm
and multiple linear regression method is used to determine the rule-consequent parameters.
Performance analysis of models by comparing with experimental data implies its potential
towards practical application. Analysis of the influence of various input parameters on
different outputs is carried out based on FRBMs and experimental data. It suggests that the
cutting force becomes higher with increasing feed rate, axial depth of cut and radial depth of
cut and lower with increase in cutting speed, whereas surface finish is improved with
increase in cutting speed and gets poorer with increase in radial depth of cut.
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Introduction

For a long time, manufacturing engineers and rekeas have
been realizing that in order to optimize the ecoitoperformance
of metal cutting operations, efficient quantitatiead predictive
models are important. These models establishingretaionship
between independent (input) parameters and ougmighle(s), are
required for the wide spectrum of manufacturingcpsses, cutting
tools and engineering materials (Armarego and Brow869).
Furthermore, it has been observed that the imprewmésnin the
output variables, such as tool life, cutting forcasface roughness,
etc., through the optimization of controllable/ibgaarameters may
result in a significant economic performance of hiaing
operations (Armarego, 1994). The output variableg tmay have
either direct or indirect indications on the pemfiance of other
variables such as tool wear rate, machining cast ate cutting
forces and surface roughness.

Many researchers have conducted studies on preglictitting
forces produced in milling operations using theca¢tand analytical
approaches (Li et al., 1999; Li and Li, 2002; YurdaCho, 2001;
Yoon and Kim, 2004; Koenigsberger and Sabberwalf1]19
Sabberwal, 1960; Yun and Cho, 2000; Wang and CH004),
mechanistic model (Omar et al., 2007; Kang eRfl07; DeVor et al.,
1980; Sutherland and DeVor, 1986), etc. The problgith these
approaches is that they are based on a big nunfilbessamptions,
which are not included in the analysis. This majuoe the reliability
of the calculated cutting force values found byséhenethods. In
addition, these approaches may be successfullycapfd only for
certain ranges of cutting condition. On the othandy many other
researchers have followed purely experimental ambres to study
the relationship between cutting force and indepehdcutting
conditions (Li et al. (2006)). It has reflectedtbe increased total cost
of the study, as a large number of cutting expertmare required.
Furthermore, with this purely experimental approaekearchers have
investigated the effects of cutting parameters aipwd parameter(s)
using machining experiments based on a one-fat@tine design
without having any idea about the behaviour of oufparameter(s)
when two or more cutting factors varied at the séime. So, some
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researchers had adopted the RSM (response surfettedulogy)

technique, which is basically a group of matherahtimd statistical
techniques that are useful for numerical modelling relationship
between the input parameters (cutting conditions) the output
variable(s) (cutting force) (Montgomer, 2001). Altlgh RSM saves
cost and time, sometimes it becomes difficult todedidhe process
having highly complex and non-linearity among irputput

variables. For example, the 2nd order model (fetiray force in end
milling operation) derived using RSM approach eithilhigh mean
square error value as observed during ANOVA arnaly&bou-El-

Hossein et al. (2007)). There are many other appesmthat have
become of interest to researchers to adopt, falirfgh cutting force
relationship in milling operation, namely, FEM aysi$ (Lee and
Cho, 2007), Fuzzy logic (Zuperl et al., 2005), Exianary approach
(Kovacic et al., 2004), etc.

Again, in case of analysis of surface roughnesenich milling
operation, many researchers have gone through imgreal
approach and mathematical relation(s) between outprameter
(surface roughness) and cutting conditions allowisgo predict in
general form (Dewes and Aspinwall, 1997; Alauddirak, 1996;
Chang, 1992; Kline et al., 1982; Chevrier et al02, Vivancos et
al., 2004). But it has been observed that such tfpxperimental
and mathematical models result a great differene®vden real
value(s) and theoretical value(s) due to conseaqefiecnovement
error and building-ups edge as well as changeseéntdol profile
because of wear. Normally these causes are vefficuliif to
maintain under precise control to obtain reprodecitesults. In
order to overcome those difficulties, there wergows approaches
adopted concerning surface roughness in end mildipgration,
namely, Taguchi method in optimization of paranme{&@hani et al.
(2004)), Computer-aided analysis for modelling (Aldin et al.
(1995)), ANN based modelling (Tsai et al. (1998}

From the above surveys, it has been observedhbatrediction
of surface roughness and cutting force in millirgsdd on models
which are constructed using conventional methody mat be
accurate. This is so as milling process is a cormplgsical process,
where the relationships of input-output variables mon-linear. In
contrary, fuzzy logic concept is a well-establishpeniverful tool to
model physical processes, which are highly comjilerature and
where the input-output relationships represent Iirsrity,
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uncertainty and ambiguity. In the present studytiroy force and
surface roughness produced during milling operatiane

investigated using FRBM (fuzzy rule based model)icwhare

constructed using TSK-type fuzzy logic rule. A congad approach
of multiple linear regression and genetic algoritism called genetic
Linear Regression (GLR) approach is adopted to toacts
knowledge base (KB) of TSK-type FRBM. The modeldude four

cutting (controllable) parameters: feed rate, ogttispeed, axial
depth of cut and radial depth of cut.

The rest of the paper is organized as follows:stneond section
describes FRBM using TSK-type fuzzy rule with comstion of its
KB based on GLR approach. Experimentation and expetal data
analysis are discussed in the following section.thdmatical
correlation models for cutting force and surfaceigfmess with
cutting parameters in milling which are determibeded on the RSM
are illustrated in the fourth section. The fifthctien describes the
training data and fitness evaluation procedure tdopn GLR
approach. Details of TSK-type FRBMs for cuttingd®rand surface
roughness in milling process, as obtained base@lLdh approach, are
shown in the sixth section. Results and discussiothe prediction
capabilities of FRBMs are discussed in the sevspttion. Finally,
concluding remarks are pointed out in eighth sactio

Nomenclature

a = function coefficient

Ay ..., A = fuzzy subsets

Aq = axial depth of cut, mm

b, by, by, bs, by = base-widths of membership function distributions

G = crossover probability

d, d, d, ds, b5 = base-widths of overlapping between two fuzzy
subsets

Fe = cutting force, N

Fq = feed rate, mm/rev

FLR = fuzzy logic rule

FRBM = fuzzy rule based model

GA = genetic algorithm

H = high

KB = knowledge base

L = low

Mp = mutation probability

MaxV = maximum value

MFDs = membership function distributions

MinV = minimum value

Ng = number of generations

P = population size

Ry = radial depth of cut, min

RB = rulebase

RCFs = rule consequent functions

S = surface roughness, micron

Ve = cutting velocity, m/min

FRBM Using TSK-Type Fuzzy Rule

TSK-type fuzzy logic rules are widely used in depéhg rule-
based systems. A fuzzy rule uses the fuzzy senthaoposed by
Zadeh (1965). The syntax of a TSK-type fuzzy roleks as follows
(Sugeno and Kang, 1988; Takagi, and Sugeno, 1985):

If x,is A, and % is A, and...and xis A, theny = f(x,..., X,)

where A, . .., A are fuzzy subsets of the input variablgs.x, X,,
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K
y =Xajf (X100 Xn)
=

whereK is the number of parameters (coefficients) assetito a
function andf; (xy,....xn) is @ sub-function of the input variables

X1, . - %. The overall output of the model can be obtainadtlie
input tuple (X, Xy, ...., %) using the following empirical expression.

R n K
> ( M uL(xv)j_z a’f [ (X1, xn)
r=1\ v=1 =1

Y = R n
p) ( My (xaom Xn)j
r=1\ v=1

@)

where n is the number of input variables that occur in thke
premise, R is the number of rules in the rule base.

ﬁu;(xl,..., Xn) =1, is the firing degree of'rrule. [ is the
v=1

K
product representing a conjunctiory, a’f " (x1...., xn) is the
=1

rule consequent function (y) of th8 rule and aj are the function

coefficients of the correspondin rule consequent function. For
a typical rule consequent function, say polynomiahy be
expressed by

y = aixtPr+ apx P2 + asxaPs + anxaPs @)
The performance of this model mainly depends onathtémal
values of the output function coefficients, (@, & and a) of the rules
for a given values of the variable’s exponentialpaeters (p P, ps
and p) and also on the choice of the type of MFDs caered for the
input variables (x Xy, X3 and x). In addition to that the issue of
having the optimized fuzzy sub-sets of each inpuiables is also an
important concern for achieving the best perforreasfca model.

M odel Construction

The main objective of constructing FRBM of a phgsiorocess
is to design its optimum KB based on the measuxeanple data.
The KB of FRBM consists of rule base (RB) and fusmp sets (or
MFDs), also called database. Several methods hen seggested
by various researchers for fuzzy rule generatiorthls connection,
work of Takagi, and Sugeno (1985), Abdelnour e{E#91), Wang
and Mendel (1992) are worth mentioning. Moreoveradgent
descent method (Nomura et al., 1992), reinforcemnleatning
technique (Fukuda et al., 1995), neural networksu@k et al.,
1993), evolutionary algorithm (Hwang and Thompsb894), etc.
are well employed to construct RB. In the preseontkywa combined
approach of multiple linear regression and GA (Na2806), so
called genetic linear regression approach is adojgteonstruct the
KB of FRBM with TSK-type FLR, as illustrated in Fidy.

In this combined approach, the values of functioefficients
are determined using linear regression method, ewhil GA is
introduced to optimise the exponential parametéisput variables
as well as optimisation of MFDs of input variablesng the same
GA. That means, once the values of exponentialnpeters of the
RCFs and the parameters associated with the mehipdumctions
are obtained, the values of coefficients of the R@fe evaluated by

respectively. The consequent function of each isiltescribed as a multiple linear regression method.

(linear) function, in the form
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Genetic Algorithn
\ \

| Selected rules and input variablg's |
exponential parameters

Linear RegressioR

Nl Input-output Rule base Not |
Training dataset | (coefficients and Accepted
power terms)

| —>‘ Knowledge base l—» Pere(if(l)"rtag

\ i | Off-line
44 Optimized MFDs of input variabl+s Accepted
Input(s): Online
;' 'C::utt(ijng tspeed Optimized KB of Output(s):
. Feed rate 3 1. Surface roughnegs
3.Radial depth of cut TSK-type FRBM 2. Cutting force
4. Axial depth of cut

Figure 1. Flow chart of Genetic Linear Regressiona  pproach for construction of TSK-type FRBM.

The structure of trapezoidal MFDs as considere@ lier the GLR approach. Equation (1) may be rewritten by dego
input variables is represented in Fig. 2. Two patans, b and d are n ( )_ for simplicity. in the following form:
needed to describe the (semi) trapezoidal MFDs.sEaéng factors vr:'lpv X1,.., n)= Ny forsimplicity, in the following form:
(MaxV — MinV) of all input variables are kept asnsa during
optimization of MFDs in constructing each FRBMs feurface Y = F(x
roughness and cutting force. 1’

The optimal values of rule-consequent coefficiesntsl power R]
terms are obtained using genetic linear regresajmproach and Zl]r(alif{(xl,..,n)” aléfli(xl,...,n)"' ..... +aifi (Xl,...,n))
simultaneous optimisation of input variable’s MFDsing GA, as =1
presented in Fig. 1. The optimum values of powemseof rule Rl
consequent functions {j,, p; and p, according to Eqg. (2)) and the 20,
parameters related to MFDs (b and d, accordingitp ) are r=1
determined using GA, while the rule-consequentfdeht (a, &,

a; and a according to Eq. (2)) are determined using mudtipiear 1,1 1,1
regression method in the framework of genetic linegyression ql(alfl(xl’ ’n) ...... +akfk(x1"’n))+ ..................

approach. As the performance of a GA depends onGhe ) bt ( ) 2( )
parameters, the optimal choices of GA-parameteramgty Ny, airflir XL, Feveeeees +at}fft}r X1,..n +"+akfk X1,.n)]*
population size, crossover probability and mutagoobability) are
fixed through a parametric study (Nandi, 2006) idep to achieve +1) l(a{{ f{gl(xl n)+~~+af<{le1(x1 n)j
good results. - R T Y
10 L H nq +1]2+ ........ +1]R1
Membershi4 Let us assume we have a set of inp.ut-output tupleof S
value number of sample data where the outgxfl‘f is assigned to the
0.0 . : :
MinV u_\ MaxV/ mput(xgl),xg), ......... ,x{,?)).
b (MaxV-MinV)-b
| . D ={klt) . xft)y W) (). x2), v @) (). .. <),y )}
Input variable—=—
Figure 2. Structure of semi-trapezoidal MFDs withtw o fuzzy subsets. Now, the total quadratic error that is caused lyTtBK-type FRBM

with respect to the given data set is

Linear Regression Method with TSK-Type Fuzzy M odel s 5
(Nandi and Klawonn, 2004) E= Z( ( 1) @) --Xr(11))_ y(1)) @)

A general expression of linear regression systeth WeK-type 1=1
fuzzy model is derived here to determine the coiefits of RCFs in
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In order to minimise E, we have to choose the fuihg

parameters appropriately:

ol al ) a2 ) @R s aR )

where the paramete&}r indicates the"] coefficient of the output

function of " rule.

To determine the above parameters, we take theialpart v
derivatives ofE with respect to each parametar}f () and make them

be zero, i.e.,

% =0, wherej={12,...,k} andr={12,...,R}
aj

Now, we obtain the partial derivation of E with pest to the

parametera%r ,
)

t — t
"atf 1=1 aatf
R!
o | = aati(xd o)rerali(xn)]
:2DZ I'—l 1
1= Rl
20,
r=1
n Htr(xl )
tr t] 1, , N
Rl
21,
r=1
s Rl
lzlrglqr(ali)f{(xll,.,n)qtrftr(xll ,n) .

>0,
r=1

4
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R K S 1
r=1j=1"1=1( gl | -
X Tl Pr(x )
r=1v=1 Vil
n
ok Rt )
f%(xl, ,n X |]111Vr 1,.,n
n
s v utr(xlun)
= 3 =l tebl ) ®
1=1 1% Fl pr 1 ) ] %
r=1lv=1 V¥l n
In matrix form, Eq. (5) will be written as:
_(Xjr_]_ (15_2 aE.K __ag._ _Bg._
031 O o | @ B>
= (6)
|aki ok akk |l ak | |Bk |

S S
where qf = szg(x'l,x'z..,x'n)f{(x'l,x'z..,x'n);ﬁ: =2y'fL
=1 =1
Thus Eq. (5) provides solutions of the function flioents
(a]r ) of the TSK-type fuzzy rule consequents for givatues of the

input variable’s exponential terms.

Experimentation

For modelling cutting force in milling, modified &1 P20 tool
steel is considered as the work piece material (ABbHossein et
al., 2007). It is a chromium-molybdenum alloyed whiis
considered as high speed steel. AISI P20 defera frormal P20
steel by containing 0.015% Sulphur, because of ebett
machinability and more uniform hardness in all diwsien. Its
tensile strength is 1044 MPa and its hardness r&g80 HB to
320 HB. The cutting tool used in this study is aléad-positive
end milling cutter of 31.75 mm diameter and equippéth two
square inserts whose all four edges can be usedutfting. Here,
one insert per one experiment is mounted on thieicuthe inserts
have the following specification: square shape kbrake angle of
00, clearance angle of 110, nose radius of 0.794anchwithout
any chip breaker. These carbide inserts are KC785bilh have a
single layer of TiN. The coating is accomplishedngsPVD
techniques to a maximum of 0.004 mm thickness. Erpmts are
performed in random with different cutting conditand using a
standard coolant to find the cutting force. Eaclpezkment is
stopped after 85 mm cutting length. iB measured with the aid of

Thus, Eq. (3) provides the following system of Ane 5 piezoelectric cutting force dynamometer provided Kistler.

equations from which we can compute the coeffigent

{(a% Jeaeey all(), (a% P al%), ...... , (alf Jeaeey aE)}:

52 / Vol. XXXIV, No. 1, January-March 2012

Each experiment is repeated three times using acuting edge
every time and the average of these values is deri.

On the other hand, for surface roughness modelfiregmaterial
of workpiece used is W-Nr. 1.2344, hardened st86+%4 HRC)
(Vivancos et al., 2004). A cutting tool of KOBELCGeries
MIRACLE: (Al, Ti) N-coated micro grain carbide, twiute ball
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end mill VC2SBRO0300, diameter 6 mm is used. Effext§ is
measured with a Taylor-Hobson form Taylsurf ser2egprofile
rugosimeter in every experiment conducted withedéht cutting
conditions.

Now, the data collected based on experimentatienaaalyzed
in the following sub-section to reveal the preliany information
underlying in the relationship between input-outpatiables. This
information is used in the GLR approach to constthe KB of
FRBMs.

Experimental Data Analysis

Surfaceroughness

In order to understand the relationship of surfacghness with
cutting parameters (feed rate, radial depth of awigal depth of cut
and cutting speed), it is essential to analysevération of surface
roughness with respect to each of the individu#tiroy parameter as
well as when more than one parameter are changimgtaneously.
After analysing the experimental data, as showrrigs. 3(i)-(iv)
which describe the variation of surface roughneis feed rate, the
following points are revealed:

i) Surface roughness is deteriorated with increased fate at
a) any value of Aand \; but lower value of R(0.1 mm)
b) lower value of A (0.1 mm) but higher value of \and
R4 (250 m/min and 0.1 mm, respectively), Fig. 3(iv)
ii) Surface roughness improves with increase in fatzlat
a) any value of A, lower value of ¥ (150 m/min) and
higher value of R(0.3 mm), according to Fig. 3(iii)
b) higher values of A(0.3 mm), \{ (250 m/min) and R
(0.3 mm), according to Fig. 3(iv)

Figures 4(i)-(iv) describe the variation of surfaceghness with
respect to radial depth of cut. After analysing dlaa as shown in
Figs. 4(i)-(iv), it has been revealed that surfemeghness get worse
by increasing the value ofjRat any values of axial depth of cut,
feed rate and cutting speed, and the rate detgdoréonsiderably
high) is almost the same for all values gf By and Vc.

The variations of surface roughness with respectxial depth
of cut are illustrated in Figs. 5(i)-(iv). Analysi$ data as presented
in Figs. 5(i)-(iv) implies the following points:

i) Surface roughness is deteriorated (in differertesja with
increasing axial depth of cut at
a. lower value of R (0.1), any values of J/and \,, Figs.
5(i)-(ii)
b. higher values of R(0.3) and ¥V (250), and lower value
of F4 (0.02), Fig. 5(iv)
ii) Surface roughness is improved with increasinglaeéath of
cut only at
a. higher value of R(0.3), any value of fand lower value
of V. (150), Fig. 5(iii)

After analysing the data as shown in Figs. 6(i);(which
describe the variation of surface roughness wittirayspeed, the
following points are revealed:

i) Surface roughness is deteriorated with increasiting speed at
a. any value of A, higher value of R(0.3) and any value
of Fy, Fig. 6(iv)
b. higher value of A (0.3), lower value of R(0.1) and
higher value of f(0.06), Fig. 6(ii)
ii) Surface roughness is improved with increasingrogigpeed at
a. lower value of 4 (0.1), lower value of R(0.1) and any
value of R, Figs. 6(i), (ii) and (iii).

From the above analyses, it is stated that changadial
depth of cut influences much on surface roughnkas bther
cutting parameters, namely axial depth of cut,icgtivelocity
and feed rate.
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experimental data. This underlying information e tcutting force
relation with cutting parameters extracted fromeskpental data is
later utilized during learning of FRBM for constting cutting force
model.

Figures 7(i)-(iii) show the graphs representing #agiation of
cutting force with axial depth of cut. It is obsedvthat cutting force
increases with increasing axial depth of cut ataalirequal rate at
any values of ¥, Fy and R. Again it is observed in Fig. 7(iii) that,
when cutting velocity is decreased, the amount wttirg force
value is comparatively higher for the constant ealof i and R.

Figures 8(i)-(iii) represent the variation cuttifiyce with feed
rate. It is found that cutting force increases viittrease in feed rate
for any values of ¥, Ay and R, but the increasing rate varies in
different cases. Again in Fig. 8(i), wheny Bhanges the value from
1 mm to 2 mm, with increase in feed rate, the ngtforce increases
but it starts from a high value as well as withh@grate.

In Figs. 9(i)-(ii), the graphs are drawn showing trariation of
cutting force with radial depth of cut. It is obged that cutting
force increases with increase in radial depth df tiuis observed
that, if the value of Achanges from 1 mm to 2 mm (Fig. 9(i)) and
V. changes value from 180 m/min to 100 m/min (Figdi))(with
increase in R the cutting force value becomes high and it iases
with almost equal rate.

In Figs. 210(i)-(iii), the curves are drawn represeym the
variation of cutting force with cutting speed. Héres observed that
with increase in cutting speed, the cutting foreerdases for any
values of f, Ay and R, i.e. proportionally inverse. For a given
cutting speed, the cutting force value becomes Hidgty changes
from 2 mm to 5 mm and £changes from 1 mm to 2 mm, as shown
in Fig. 10(i) and Fig. 10(ii), respectively.

From the above analysis of experimental data, iclearly
observed that the outputs (surface roughness attichgcdiorce) in
milling are not linearly related with the cuttinganameters and
ambiguity is involved when more than one cuttingapaeters vary
simultaneously.

£ 400+ £ 400+
3 3
S 3007%=140. =015, g=2=" 5 3007y -140, F=0.1, R =358~
L L d
B X B
2 200 - 2 20 A
£ o = "
3 1004 3 100+
T T T 1 T T T 1
1 2 3 4 1 2 3 4

Axial Depth of Cut (mm)
0)

Axial Depth of Cut (mm)
(it)

400

300 ,

Cutting Force (N)
N
8
X
~N

100+

Axial Depth of Cut (mm)
(iii)

Figure 7. Variation of cutting force with axial dep  th of cut.
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Figure 10. Variation of cutting force with cutting

J. of the Braz. Soc. of Mech. Sci. & Eng.

speed.

M athematical M odel

The mathematical model between cutting parametaunttirig
velocity, feed rate, axial depth of cut and radigpth of cut) and the
cutting force in milling operation (with workpiegeaterial of AISI
P20) was derived by using Box-Behnken design (gpe bf RSM)
and it is defined by:

F. =330.66 —3.09V, +292.30F, —~166.07A ; +2.57R 4 +

0.0089V? -307.67F,% +48.15A% +2.02R% -0.0417V_ R, (7)
+600F;A 4 +33.33F Ry +14.05A R

The regression model of surface roughness withingutt
parameters for (climb) milling (with workpiece mags of W-Nr) is
derived by Vivancos et al. (2004), as follows:

S, =0.683042 - 1.34515A d - 2.49037R a” 3.4081Fc1 -

0.00250345 V , +0.00672575 A 4V . +14.6044R d2 - (8)
17.0406R clFcl + 0.0057915R clVC

Training Data and Fitness Evaluation of GA

Training data

In order to determine the rule consequent functioefficients
and power terms of a TSK-type FRBM, a huge numibexample
data are required. In the present study, 81 numifetsita (Fig. 11
and Fig. 12 related to cutting force and surfaceghmess,
respectively) are considered for constructing KBF&BMs. These
data are obtained through real experimentation elsag based on
empirical correlation models (as stated in theisectMathematical
Model”). However, those empirical models are natumate. Hence,
the results obtained using the empirical modelsndbfollow the
real characteristics of the relationships amongtigqutput variables
in milling process. For this reason, it is requitedmodify the data
obtained using mathematical models to suit thegs®énput-output
relationship as discussed in experimental datayaisal(in sub-
section “Experimental Data Analysis”).

500 7
450 T
400
350
300
250

200

Cutting force (N)

150
100 -3
50

T T T T T T T T T T T T T T T T
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

No of cases
Figure 11. Training data: Cutting force.
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Figure 12. Training data: Surface roughness.

Fitness Evaluation of GA

During the iteration process of genetic algoriththe GA
population (individuals/chromosomes) having lowéndss value
(for error minimization) is chosen in order to reguce the child
chromosomes in the next iteration using the thrée Gperators,
namely selection, cross-over and mutation. On tterohand, to
have a better reliability of FRBM, the performarafeFRBM is to
be uniform throughout the entire input space. Tbia® such
consistent result of an FRBM, in every region af thput space the
errors of all training data samples that are cared to be
uniformly distributed over the whole range of thput variable’s
space should be equally important for minimizatianfinding a
lower fitness value. Thus, the fithess value of A &blution is
estimated based on the percentage error (insteannpie error) of
each training data sample. The error of each s#étaofing data is
the deviation of the result (surface roughnessjhef FRBM from
that of the desired one. Since the error may béipeor negative,
absolute value of the error is considered in ddténg average
percentage error as a fithess value of GA-solution.

For cutting force, the fitness value of GA-solutiduring model
construction is calculated in the same way as dis above for
surface roughness.

TSK-Type FRBM for Milling Process

In order to develop a suitable model for millingecgtion in the
present work, four input process variables (cuttpged, feed rate,
axial depth of cut and radial depth of cut) aresidered. For each of
the output variables (cutting force and surfaceghmess), the model
is constructed based on the training data as @ebiot Fig. 11, and
Fig. 12, respectively. Each of the four input vialés are considered
to have semi-trapezoidal MFDs with two differemigiuistic values (L
and H) (as shown in Fig. 2) and the correspondaadjrey factors are
80, 0.1, 1.0 and 3.0, respectively, for all the Hi$e FRBMs
corresponding to different outputs. Since each tivawmiable has two
linguistic terms within its range, there could benmmximum of
2x2x2x2 =16 rulesin the RB of FRBM.

Model of Cutting Force

In order to develop a FRBM for cutting force in lmi¢y process,
the structure of rule consequent function (as shdmwrkEq. (9))
considered here has four coefficients and four pderens. Thus the
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RB, with a maximum of 16 rules in the rule premiaseuld have a
total of 64 (16x4) coefficients and 64 power terms.

A GA-string of 720-bits long is considered for find the RCFs
parameters using GLR approach as well as optinoizatf MFDs of
input variables. First 80 bits (10 bits for eachiafle) of the GA-
string carry information of the eight continuousrighles (two
variables related to MFDs, b and d for each offthe inputs). The
remaining 640 bits (10 bits for each variable) ased to obtain the
values of 64 power terms. It is noted that durimgiroization of
MFDs of input variables, the scaling factors (léngf input range)
of all input variables are not changed.

During GA-based optimization, the parameters rdlaeMFDs
— by and d (for cutting speed); band ¢ (for feed rate); pand ¢
(axial depth of cut) andstand d (radial depth of cut), as shown in
Fig. 2, are varied in the range{¢20, 60) and (0, 2){(0.02, 0.05)
and (0, 0.02) {(0.2, 0.8) and (0, 0.2)and {(1, 2) and (O, 3)
respectively. The values of power terms lie in taege of 0.0 to
3.0. The fithess values of GA solution are caladausing the
procedure as discussed in sub-section “Fitnessugtiah of GA”.
The optimal choices of GA-parameters (namely pdmnasize,
crossover probability and mutation probability) &iseed through a
parametric study in order to achieve good results.

After a parametric study of GA, the following GArpaneters
are selected for the best optimization during trejrof FRBM for
cutting force prediction:

P =100; G = 0.87; M, = 0.011; j = 125.

F =V +6,F}? + ;AR +¢,RE! ©)

The optimized data base and rule base of FRBM &dting
force in milling obtained using Eq. (9) are shownHRig. 13 and
Table 1, respectively.

L H L H

3.0 >< 3.0 ><
0.0 0.0

100 140 160 180 01 013 015 0.2

Cutting speed (m/min) Feed rate (mm/rev)

L H L H

3.0 >< 3.0 ><
0.0 0.0

1 16 18 2 2 3 4 5

Axial depth of cut (mm) Radial depth of cut (mm)

Figure 13. Optimized semi-trapezoidal MFDs of TSK-t
cutting force.

ype FRBM for

Modél of Surface Roughness

Like cutting force, the structure of rule conseduemction for
surface roughness (as shown in Eq. (10)) has foefficients and
four power terms. Since the rule base consistsmod@mum 16 rule
in the rule premise, there would be a total of 5@x4) coefficients
and 64 power terms in the RB. A GA-string of 726shbliong is
considered here for the GLR technique as well asoftimization
of MFDs of input variables. The first 80 bits (1@sbfor each
variable) are used to carry information of the eigbntinuous
variables related MFDs of input variables. The rieimg 640 bits
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(10 bits for each variable) are used to obtainvéilaes of 64 power
terms. It is noted that during optimization of MFR$ input
variables, the scaling factors are not changed.

During GA-based optimization, the parameters relateMFDs
— by and d (for cutting speed), band d (for feed rate), pand 4
(for axial depth of cut), andskand d (for radial depth of cut), as
shown in Fig. 2, are varied in the range of {(523505.359) and
(0, 55.359)}, {(0.012, 0.052) and (0, 0.012)}, {11, 0.211) and
(0, 0.111)}, and {(0.111, 0.211) and (0, 0.111Bspectively. In this
case, the values of power terms are kept in thgeraf 0.0 to 2.0.
The fitness values of GA solution are calculatethgighe same
procedure as used in case of cutting force. Aftpatametric study

Table 1. Values of coefficients and power terms of

TSK-type rules in optimized rule base of FRBM cutti

of GA, the following GA parameters are selected foest
optimization during tuning of FRBM used for poweregiction in
milling:

P = 50; Cp = 0.98; Mp = 0.011; Ng = 125.
S, = c VP +cyfyP + ¢ A P2+ R (10)

The optimized data base and rule base of the TBEBRBM for
surface roughness obtained using Eq. (10) are shovig. 14 and
Table 2, respectively.

ng force [(a) coefficient, (b) power terms].

(a) Coefficient

RuleNo. | Rule Antecedent Cutting Force

1 L L L L -0.258446 -454.6900 -20.94110 567.5480

2 L L L H 0.50203: -4586.57! 21.8705! 36.9286!

3 L L H L -0.000921 565305000 -420648.0 7.54343(

4 L L H H 0.04215( -16225.2! 385.028 -48.2639!

5 L H L L -0.322918 4358.690 195.8770 1.73854Q

6 L H L H -11.6545! 1961.36! 13059.1 2262.63!

7 L H H L 0.00598 1565.37! -113.28( 11.3131

8 L H H H -10.20730 2541.820 1671170 -341836.0

9 H L L L -0.00115: 964.600! 45.181( 81.6292(

10 H L L H 0.000432 -1100.050 61.04240 -2.226270

11 H L H L -5.28452| -2690830! 15328.6! 20.6384!

12 H L H H 279.560( -100179( 568.415( 475.006!

13 H H L L -1.440340 2516.390 134.7630 209.588(

14 H H L H -2.69642! 2835.47! 22.0308! 38286.11

15 H H H L 0.043724 1538.670 -702.4380 560.9770

1€ H H H H -0.06750:t 3940.30( -59498.01 19939.91 |
(b) Power terms

RuleNo. | Rule Antecedent Cutting Force

V. Fq Ag Ry P, P, P, P,

1 L L L L 1.2346( 0.0322! 0.5571¢ 0.1348¢

2 L L L H 1.3988! 0.6041( 0.7683: 1.9296:.

3 L L H L 2.74194 2.98240 0.48387 1.87097

4 L L H H 1.90909 2.38710 2.23460 2.30205

5 L H L L 1.23754 2.34604 0.50146 2.81232

6 L H L H 1.91789 2.10264 0.17008 2.10557

7 L H H L 2.07038 0.38709 2.49853 1.87390

8 L H H H 1.24633 1.69795 1.48387 1.62463

9 H L L L 2.3167: 0.8709¢€ 1.7126: 0.2873¢

10 H L L H 2.14370 1.42815 2.24633 1.78299

11 H L H L 1.61584 2.89443 1.91202 0.79472

12 H L H H 0.53958 2.19062 1.16716 0.24633

13 H H L L 1.04985 2.11144 0.82991 0.27272

14 H H L H 2.6627¢ 1.6041: 1.8533 2.6510¢

15 H H H L 2.24047 1.10850 2.98240 0.17008

16 H H H H 2.63930 1.91202 1.94428 1.66276
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Table 2. Values of coefficients and power terms of

L H L H
1.0 >< 1.0 ><
0.0 0.0
119.641 169.641 225 280.359  0.008 0.048 0.06 0.072
Cutting speed (m/min) Feed rate (mm/rev)
L H L H
X X
0.0 0.0

0.039 0.139 0.25 0.361

Axial depth of cut (mm)

Figure 14. Optimized semi-trapezoidal MFDs of TSK-ty

(a) Coefficient

0.039 0.139 0.25 0.361

Radial depth of cut (mm)

pe FRBM for surface roughness.

TSK-type rules in optimized rule base of FRBM: Surf

Arup Kumar Nandi

Rule No. | Rule Antecedent Surface Roughness

Ve Fa Ad Rq G G G G
1 L L L L 0.027802 51.07870 0.054873 -1.363000
2 L L L H 0.00000: -0.36€01¢€ 0.05285: 10.8983!
3 L L H L 0.056442 6.056330 1.163300 -80.0000D
4 L L H H -0.11872: 0.35380: -0.92673: 4.70870!
5 L H L L 0.01165! 0.69778: -0.22179: 2.20215!
6 L H L H -0.000188 83.26960 -0.311935 7.62701(
7 L H H L -0.00200! -116.898! 4.83019( 0.00000!
8 L H H H -2.695120 -155.1670 360.7270 6.01347(
9 H L L L -0.01856' 0.76331: 0.33310° 0.74877:
10 H L L H -0.000006 -1.843820 0.154931 9.45550(
11 H L H L -0.000018 1.928620 0.427665 0.08216]
12 H L H H -0.00000: -15.4488! -0.03593! 8.41927I
13 H H L L 0.020635 -8.261550 0.635194 27.0111(
14 H H L H -0.00000° -2.86902! -0.10151 5.97260I
15 H H H L 0.687483 -27.87730 3.052320 -8.210840
16 H H H H -0.000158 -7.426170 -88.00250 17.59480

(b) Power terms

Rule No. | Rule Antecedent Surface Roughness

Ve Faq Aq Rq Py P, Py Py
1 L L L L 0.4770: 1.9452¢ 1.9139¢ 1.1652(
2 L L L H 2.00000 0.70576 0.25219 2.00000
3 L L H L 0.4437¢ 1.3567¢ 0.1837° 1.8103¢
4 L L H H 0.38123 0.37536 0.45747 0.62952
5 L H L L 0.6764- 0.9442¢ 0.4887: 1.8377:
6 L H L H 1.46628 1.74976 0.18377 1.79277
7 L H H L 0.99120 1.83187 1.08504 0.59628
8 L H H H 0.3714¢ 0.4261¢ 1.4310¢ 1.9100°
9 H L L L 0.36950 0.93841 1.99413 0.37536
1C H L L H 1.6246: 1.3235¢ 0.4828¢ 1.8377:
11 H L H L 1.17693 1.43109 0.84262 0.18181
12 H L H H 1.61877 1.97654 0.26197 1.63832
13 H H L L 0.0977¢ 1.4389: 1.9921¢ 1.8885¢
14 H H L H 1.75171 0.81524 1.70674 1.18084
15 H H H L 0.1700¢ 1.3001( 0.7526¢ 0.6373:
16 H H H H 1.71261 0.32258 1.82991 0.08797
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Results and Discussions

Cutting force

The developed FRBM will be used for prediction mgtforce
and parameter optimization to achieve a desiredodive in milling
operation. In order to demonstrate the predicti@pability of
FRBM, both the results of FRBM and mathematicalrelation
model (available in the literature) are comparedthwithe
experimental data. For this comparative study, @@lers of cases
are considered at random and the results of FRBRthematical
model and experimentation for the 22 cases arstedlin Table 3.
In Table 3, Error | is the deviation (in percentp@é the result
obtained using FRBM from that of the experimentlle. Whereas,
Error Il is the percentage deviation of the reslitained using
mathematical correlation model (Eqg. (7), as showrthie section
“Mathematical model”) from that of the experimentalue.

In Table 3, it is observed that for almost all teses, FRBM
outperforms over the mathematical correlation moBet 11 cases
(caseno 1, 2,7,9, 10, 12, 14, 16, 17, 20 andi2®)found that the

interaction effect(s) of the four cutting paramsten the rule
consequent functions. But, in such cases, the ctatipoal
complexity during model construction will be highdror this
reason, it is important to investigate the levelcohtribution(s) of
the independent parameter’'s interactions towardingutforce,
which may be achieved using statistical approach sis analysis of
variance (ANOVA).

Surface roughness

The developed FRBM for surface roughness will bedufor
prediction and parameter optimization to achiev#esired surface
roughness in milling operation. The prediction daifiy of FRBM
is verified by comparing the results of FRBM andtimesnatical
correlation model with the experimental results. r Fthis
comparative study, 25 cases are considered at maratod the
results of FRBM, mathematical model and that ofezipentation
for the 25 cases are enlisted in Table 4. In Tdbl&rror | is the
deviation (in percentage) of the result obtaineshqu$RBM from
that of the experimental value. Whereas, Erroslthe percentage

results obtained by the FRBM are much better thae t deviation of the result obtained using mathematiedel (Eq. (8),

corresponding mathematical correlation results. édger, it is
observed that RMS (root mean square) value (4.@®7&rror |
(evaluated in TSK-type FRBM model) is less than RS value
(4.248) of Error-1l (evaluated in mathematical mipde

Thus, the developed FRBM may be adopted for prietiobf
cutting force to achieve a desired objective inllidg. The
performance of FRBM may be improved by consideritig

Table 3. Comparative results of FRBM and mathematica

as shown in the section “Mathematical model”) frohat of the
experimental value.

In Table 4, it can be seen that in most of the £aSBBM gives
better results than mathematical correlation moeletept in cases
no. 5 and 9. Moreover, it is observed that RMS &a(3.410)
exhibited by the TSK-type FRBM model is less thhattfound by
mathematical correlation model (RMS value = 11.68473).

| model: Cutting force.

. Mathematical

-Crtisste V. Fq Aqg Ry \IE/);ﬁJeenmental SIFEEMBased Error | E:A%rcgg:ation Error 1l

1 100 0.1 15 3.5 190 189.478 0.274736 191.1438 | 0.602000
2 100 015 | 15 2 210 206.895 1.478571 199.1439 | 5.169559
3 100 0.15 2 3.5 320 312.049 2.48468]7 323.7356 | 2.167398
4 100 0.15 1.5 5 315 328.413 4.25809b 315.4374 | 0.138865
5 10C 0.2 15 3.5 32C 302.67: 5.415000 | 312.809: 2.247125
6 14C 0.1 15 2 10C 99.912: 0.08790( | 98.5458I 1.454200
7 140 0.1 1 3.5 110 117.244 6.585454 115.2308 | 4.755272
8 140 0.1 2 3.5 200 203.076 1.538000 203.1358 | 1.567900
9 14C 0.1 1.5 5 21C 209.77¢ 0.10523:i 204.835i 2.459142
10 14C 0.1t 1 2 127.4¢ 115.98: 9.00439:. 121.345. 4.797250
11 140 0.15 2 2 210 203.237 3.220476 218.0254 | 3.821630
12 140 0.15 1.5 3.5 210 208.009 0.948095 208.7476 | 0.596345
13 140 0.15 1 5 225 205.522 8.656888 211.4099 | 10.040033
14 140 0.15 2 5 350 357.804 2.229714 350.5399 | 0.154264
15 140 0.2 15 2 200 210.038 5.019000 215.2117 | 7.605850
16 14C 0.2 1 3.5 21C 210.91: 0.43523:i 206.896. 1.478000
17 140 0.2 2 3.5 36C 366.94° 1.92972. 354.801: 1.444111
18 14C 0.2 1.5 5 32( 302.29! 5.53281; | 331.500 3.593968
19 18C 0.1 15 3.5 13C 130.56! 0.43461! | 131.627: 1.252153
20 18C 0.1f 1.5 2 14£ 153.62- 5.94758 144.631! 0.253844
21 180 015 | 1 35 140 139.679 0.22928b 146.3146 | 8.510482
22 180 015 | 2 35 270 269.233 0.28407%  264.2196 | 2.140861
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Table 4. Comparative results of FRBM and mathematica

| model: Surface roughness.
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Ezsste v, 3 Aq R, \E/;&e;mental IC:EIR;I;MBased Error | Mg:jhe?matlcal Error Il

1 15C 0.0z 0.1 0.1 0.2167: 0.23629: 9.0264! 0.2918! 34.663°

2 25( 0.0z 0.1 0.1 0.2021: 0.19546! 3.3021¢ 0.1666¢ 17.540:

3 15(C 0.06 | 0.1 0.1 0.3536¢ 0.35455:! 0.2439¢ 0.3600: 1.7895¢

4 25C 0.06 | 0.1 0.1 0.2443¢ 0.24680! 0.9885¢ 0.2348: 3.9048:

5 150 0.02 | 0.1 0.3 1.11283 1.053010 5.37548 1.06771 .05387

6 250 0.02 | 0.1 0.3 0.98330 1.030370 4.78694 1.05837 .63497

7 150 0.06 | 0.1 0.3 0.99341 0.989709 0.37255 0.99955 .61860

8 250 0.06 0.1 0.3 1.08217 1.044580 3.47357 0.99021 49788

9 200 0.04 0.2 0.2 0.48307 0.517010 7.02478 0.50011 52727

10 15(C 0.0z | 0.3 0.1 0.2476¢ 0.24596! 0.6844( 0.2245¢ 9.3114¢

11 25C 0.0z | 0.3 0.1 0.2084:« 0.20371 2.2663¢ 0.2339: 12.234!

12 15(C 0.06 | 0.3 0.1 0.3443: 0.34435! 0.0046: 0.2927¢ 14,978t

13 250 0.06 | 0.3 0.1 0.38016 0.380166 0.00157 0.30210 0.5322

14 15C 0.0z 0.3 0.3 0.9380° 0.95198 1.4835° 1.0004! 6.6508¢

15 25( 0.0z 0.3 0.3 1.1184( 1.11352! 0.4363: 1.1256: 0.6466¢

16 150 0.06 0.3 0.3 0.89143 0.890864 0.06349 0.93229 58451

17 250 0.06 0.3 0.3 1.08790 1.088140 0.02206 1.05747 79720

18 200 0.04 | 0.361 | 0.2 0.48070 0.480699 0.00020 0.50011 4.0387[7
19 200 0.04 | 0.039 | 0.2 0.47929 0.485235 1.24037 0.50011 4.34484
20 119.641| 0.04 | 0.2 0.2 0.47523 0.475034 0.04124 0500 5.23628

21 280.359| 0.04 | 0.2 0.2 0.51620 0.482322 6.56296) a500 3.11615
22 200 0.04 0.2 0.361 | 1.51547 1.485410 1.98354 1.49499 1.3511%
23 200 0.04 0.2 0.039 | 0.21347 0.213480 0.00468 0.26235 22.9008
24 20C 0.008 | 0.2 0.2 0.5705° 0.54070! 5.2335! 0.5001: 12.348:

25 20C 0.072] 0.2 0.2 0.5060¢ 0.5(608¢ 0.0007¢ 0.5001: 1.1806°

Likewise cutting force model, the performance of BRR of
surface roughness may be improved by consideriagriteraction
effect(s) of the independent input parameters énrtlie consequent
functions. However, investigation on the level ohtribution(s) of
the independent parameter’s interactions is imparta

Conclusion

In this work an attempt has been made to develdptda TSK-
type FRBMs for modelling of surface roughness auitireg force in
milling operation.

In order to carry out these objectives, the presesgarch work
is carried out in three successive stages:

1. Experimentation and data analysis

2. Use of suitable techniques for constructing FRBased
on example data

3. Validation of FRBM

From experimental study, it is found that changeaitial depth
of cut influences much on surface roughness thdwerotutting
parameters such as axial depth of cut, cuttingoityi@nd feed rate.
On the other hand, surface roughness and cuttirgg fim milling
are not linearly related to the cutting parametansl ambiguity
happens by varying multiple cutting parameters #ameously. For
constructing the TSK-type FRBM, a combined approafcimultiple
linear regression method and genetic algorithm tifzed. The
function coefficients are determined by linear esgion whereas
the optimized values of the exponential paramedegsobtained by

60 / Vol. XXXIV, No. 1, January-March 2012

using GA. In addition to that, the MFDs of inputriables (cutting
speed, feed rate, axial depth of cut and radiathde cut) are
simultaneously optimized in order to improve thef@enances of
the FRBMs. After validation of each of the modedsresponding to
different outputs (surface roughness and cuttingefp with the
experimental data, it is suggested that both thé&8MI& give
satisfactory results showing excellent trade-offd apractical
implementation.
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