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Introduction

Despite the well known fact that the usual Lagraageations
of motion can be directly applied to mechanicateys with mass
varying explicitly with time, being invariant wittespect to that sort
of possibility, this is not true if the mass vaioat is an explicit
function of position. This subtle distinction haseb discussed in
Pesce (2003), where the Lagrange equations of motere
obtained in an extended fotmTwo perspectives were there
followed: systems with a material type of sourc#tached to
particles continuously gaining or loosing mass aydtems for
which the variation of mass is of a "nonlinear cohvolume type",
mass trespassing a control surface. This wouldhbecase if, for
some theoretical or practical reason, partition® isub-systems
were considered. In Pesce (2003), some intereséireas of
application have been cited, as those relatedetbeted satellite
systems and lifting-crane problems, all of them aswning the
deploying or the retrieving of cables. The textiidustry has also
been mentioned as an important source of varialalgsnsystems
problems in mechanics.

Two problems were there chosen to exemplify thdiegjon of
the extended Lagrange equations. The first onedéipdboyment of a
heavy cable from a reel. The second one: the impatilem of a
rigid body against a liquid free surface. In thagtér example, the
hydrodynamic impact force may be written as a fiomctof the
added-mass of the body entering the liquid. Theedddass, in this
case, is an explicit function of position and tlaiation is related to
the changing in the size (and form) of the wetiadiase.

The present paper re-addresses both problems ioftsieore
engineering context, presenting some numerical Igitons and
assessing the discrepancies that might be prodificthe system
were not properly modeled. Additionally, anothedigrmechanical
problem is treated: the dynamics of a water columside a pipe as
an approximate model for the moon-pool problem,tipaarly
relevant for mono-column oil production platforms.

Nomenclature
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IThis extended form also comprises the (hypothdticate of an explicit
variation with respect to velocity.
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motions which lack (or exceed) terms of the form 1/2(ony
coordinate. This paper intends to discuss the issue a little further, by treating some
applicationsin offshore engineering under the analytic mechanics point of view.

Keywords. Lagrange eguation, variable mass with position, offshore engineering

with Mass Varying Explicitly with
Position: Some Applications to
Offshore Engineering

The usual Lagrange eguations of motion cannot be directly applied to systems with mass

varying explicitly with position. In this particular context, a naive application, without any

special consideration on non-conservative generali(zed afo;c%s, leads to equations of
q/q

, Where g is a generalized

A= sectional area of a pipe or cable

C; = friction coefficient

D = diameter of a pipe

F = force

Fr= Froude number

f = activeforce

g = acceleration of gravity

H= pipedraught

h = reactive force

L = total length of cable; also used for Lagrangean function
M= mass

M,= added massin the vertical direction
m = mass

m = massflow rate

p = momentum

p = pressure

Q= generalized force

;= generalized coordinate

g = momentum flux through the mouth of a pipe
R= sphereradiusor reel radius

S= surface

T = kinetic energy

t =time

t = dimensiolesstime

v =velocity

W = vertical impact velocity or

z = vertical coordinate

Greek Symbols

a =instantaneous angle of the jets with respectedtirizontal

B = specific mass, dimensionless

0= variation

y = specific weight per unit length

® = Metchersky force

@=velocity potential

n = free surface elevation, dimensionless

M = mass density per unit length

£ = water mass density

6@ = angular displacement

{ = free surface elevation or penetration depth lmdady
entering the water

Q = fluid domain

w = natural frequency

Subscripts

B relative to buoyancy
D relative to dynamic
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relative to free surface

relative to viscous friction

relative to hydrostatic

relative to impact

relative to particle

relative to jets

relative to generalized coordingte
relative to normal

relative to control surface or to reel
relative to suspended

relative to wall

relative to vertical coordinate

NSOISTeT I

The Extended L agrange Equations

For the sake of motivation, consider for the momanvery
simple and hypothetical problem of a particle of ssan(x),

explicitly dependent on the positianacted on by a force dependent

on position, time and velocitynass being expelled at null velocity.
The equation of motion is, simply,

m(x)x2 + m(x)X = F(x, x,t) .

However, if a somewhat naive application of thealdiagrange
equation, were made, in the form,

als

m(X)x%/2+mx)% = F (x,x,t),

d
dt

T

=F(x, Xt
™ (X x,t),

one would obtain,

in an obvious disagreement with respect to the éingl correct
equation of motion derived from Newton's Law. Tkason for such
a somewhat unexpected discrepancy could be easdgsgd: the
usual form of Lagrange Equation is not the mosteganform that
could be conceived, concerning a system presentangtion of
mass, explicitly dependent on position. In thisgamexample of a
one-degree-of-freedom system, we could infer thre torrect
‘Lagrange' equation should be written

d

)

a—T—F(x xt)———x
dt 2d

The extended Lagrange equations of motion can ab e
derived in a general case of a system of partiftesyhich mass is
explicitly dependent on position (as well as on oedl),
m =m(q;;q;;t) . Consider a system ® particles of massm .

Let P be the corresponding position in a given inertiame of
reference andp; =myv; the momentum. By extending Levi-
Civita's form of Newton’s law to cases when masgamed or lost
with no null velocity, the principle of virtual whkrapplied to
D’Alembert’s Principle can be written
D dp;
T dt

—FijuﬁPso M

where F, =f, +h,, beingf; the sum of all active forces acting on

P,andh, =mv

o’
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rate of variation of mass with respect to time tmthe velocity Vv,

of the expelled (or gained) mass. Note that thetieaforce known
as Metchersky's force, in the Russian technicalditre, is usually
written as function of relative velocities, in tfoem

@, :mi(voi _VI):hi —myv;.
Under this latter interpretation, Eq. (1), would beitten,
Cveticanin (1993)),

)

(mw (f.+¢.>juﬁp. 0 ()

The extended Lagrange equation may be derived esceP

(2003),
dorT _orT _- o
dtog, oq; Qi J=L..M

" vom, o ®
e P et
where

Vi =Vv;i(9;;G;;1);j =1...M
is the velocity of a particleq; denotes a generalized coordinate and

Q;, the respective non-conservative generalized for€his
generalized force includes all active forcgsand reactive forces
mv

ivoir

due to addition or expelling of mass, with ‘ahsgel
velocity v . Equation (3) recovers the derivation provided in

Cveticanin (1993), which is valid for the simplexrse of mass only
explicitly dependent on position, not on velocity.

Three cases in offshore engineering where the preselysis
might be relevant are exemplified. The first casan approximate
dynamic model tahe moon-pool problem. The second one is an
important problem in hydromechanidbe impact of a rigid body
against the water free surface. The third one is thdeployment of a
submarine cable from a laying-reel barge. The second and third
problems were already treated in Pesce (2003) enceaaddressed
in the offshore engineering context, presenting es@imulations
and additional discussion.

The Dynamics of the Water Column inside M oon-Pools and
Free-Surface Piercing Pipes

Moon-pools are commonly found in many floating bffse
structures as in pipe-laying and work barges. Edurpresents a
mono-column oil production platform, with a cylinckl moon-
pool. Pipes and umbilical cables are suspendedighréhe moon-
pool to the sea bottom. The main purpose is to igeowsafer
operational conditions, regarding the action of @awWevertheless,
the water column inside the moon-pool may resodaie to the
wave action and to the motions of the floating folah. Resonance
in this case should be avoided. Another interestelgted problem
is the dynamics of free surface piercing pipes useelements of
hydro-electrical power devices driven by the actadnwaves; see
e.g., Tannuri and Pesce (1995). In this latter ,cdsmvever,
resonance tuning is the key to a good performagitker case, the
nonlinear dynamics of the water column must be rreatiproperly.

the reactive force, which is proportional to theFor the purpose of the present paper, we shallidenthe simplest

case of a free-surface piercing pipes opened tatthesphere. Only
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the unforced problem will be addressed. The fopredlem, due to
the action of ocean waves, might then be readégssed.

atform. The risers and
to the well heads are

Figure 1. A mono-column, floating oil production pl
umbilical cables that connect the production plant
suspended from the platform through the moon-pool.

z pipe
ier
] | s
__/l
0 T
H Sy

S,

R

lem. Unit normal
close the mass of

Figure 2. The free surface piercing, open pipe prob
vectors are positive outwards the surfaces which en
water inside the pipe.

Consider an open vertical circular pipe of intermatlius R
piercing a quiescent external free surface of aoripressible,
inviscid liquid; Figure 2. LeH be the draft of the pipe. Lgtbe the
acceleration of gravity. For simplicity, le/(t) describe the
position of the free surface of the column of Idjin the interior of
the pipe. Clearly, a simplified model with just omkegree of
freedom (one generalized coordinate) can be uééd,. Other free
surface vibration modes are not considered indiniplified model.

Before the Lagrangean approach is applied, the tiegquaf
motion is derived from the point of view of poteititheory in
hydrodynamics. This equation will serve as a bas@mparison.

The Classical Hydrodynamic Approach

Take the material sub-system as composed solethéyiquid
inside the pipe. That is, the liquid that in a giviestant fills the
volume Q bounded byQ=S=S  0S;0S,. S is the

(material and non-permeable) free surfa@es(t). S, is the

material, fixed and non-permeable surface, cormeding to the
interior wetted surface of the pipe an8; the non-material

(permeable) fixed control surface at the lower efithe pipe, given

Celso P. Pesce et al

components of the outwardly positive normal unitteearen, =1
on S and n, =-1 on Sg. Let the flow be non-rotational and

@(z) the potential velocity function. The kinematic (Nwean)
boundary condition ors; is

The velocity potential, inside the pipe, can themitten

@Ax Yy, z,t) = z .
Note that
o
L=z
ot ¢

Let the fluid be unbounded in the far field. Thendsic
pressure orS; is given by

1 .
Po (X Wlg, =-5 A"

Pressure onS; is taken as null, as usual. Therefore, from
momentum considerations, the dynamic equationf@) is readily
derived. In fact, letQ, be the linear momentum of the fluid inside

the pipe. Then, from classical potential hydrodyitamsee, e.qg.
Newman (1978),

dQ d
dtz :pafmzdS: Fu +Fp —q, 4)
S
where
FH = ‘PQAZ
Fo Z—IpD(X,y,Z,t)nZdS:_pA%ZZ (5)
Sk

are respectively the forces due to the differentigldrostatic
pressure and to the hydrodynamic pressure apptietheé water
column, on S;, and

(6)

3¢ 0 )’ -
q=pIa—(p —¢’-Un)d8=-pj(—¢] dS=-pAl?
$,0Z on S\ 0Z

is the flux of linear momentum across the fluid badary, S;. The

mass of fluid inside the pipe at a given instargrisexplicit function
of position, M = pA({ + H) . Therefore, the time rate of linear
momentum inside the pipe can be directly calculated

e = Loa¢ + H)¢)= oai ) + a2,

@)

Note that this result could also be achieved byllieg that the
derivative and integral signs are interchangeablthe fixed control
surface S, . Therefore,

by z, =-H . An exchanging flux of mass clearly exists between

the sub-system and the external fluid. Note that tlertical
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dQ,

& P I¢nzdS Py I¢nzdS P Iwzds—

jws o st ol st pj‘”’ds-

8).
- p% [ecase p] s
= oAl¢E +¢7 +HE)= A +H)E + pAS?
Collecting terms from Eqgs. (4) - (7), we obtain
PAQC +H)E + pAZT =-phgl -2 pAC2 4 pACE. (9)

This reduces to the following nonlinear homogenesysation

s+l ¢° 4

2(Z+H)+g(Z+H) (10)

Let n(t) =¢(t)/H be the dimensionless free surface position.

Defining the dimensionless time asz «t , with w=,/g/H , Eq.
(10) may be written in dimensionless form as,

(11)

’7+_(,7+1) (,7+1j

The constanta can be readily recognized as the dimensional

natural frequency of the corresponding linear &stcit /7 +7 =0,
obtained from Eq. (11) in the case of small disphaents and small
velocities. Note also that the term that is quadriatvelocity is, in
fact, conservative. This could be easily proved.

Equation (11) is valid for-1<77. A singular behavior, leading
to infinity acceleration, arises whem =-1, ie. {=-H
Physically, this corresponds to the water-columrfase reaching
the bottom of the pipe, the mass of the system rbewp zero.
Beyond this point, a cavity would form, and a propeodeling
should consider this other highly nonlinear phenoome

The Lagrange Equation Approach

From another point of view, the dynamics of thédflinside the
pipe may be modeled as a single degree of freedwydrd-)
mechanical system, such that

T=2 oA +H)?

is the kinetic energy. In this case, where outdknof mass and
kinetic energy do exist from the domain under asial\the fluid
inside the pipe), one must use the extended Lagrangation; see
Pesce (2003) and Casetta and Pesce (2006). Orniesobta

d aT
E&-pA(Z*'H)Z*'PAZ

LLIE SIS
a0 2"

(12)
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Note that, if the system were defined starting fribva kinetic
energy, the mass dependence on position could egiromptly
recognized. As can be clearly seen, the quantity

dorT _oT _

dta¢ 9 (13)

A{(z )G + 2 pAzj

that arises when the usual Euler-Lagrange equétiapplied, is not
the time rate of change of linear momentum indigepipe, which is
given by Eq. (13). To this quantity it should beled

1 sy
ZpAl?,
2/0(

that is exactly the quantity one would obtain frdine additional
term

that appears on the right hand side of equation (3dact,

oM, Ly 10 5 )oe
TRy _2az(izm']Z
1 o »2 _
_E'OA_Z[_LdZ]Z -—pA Z(Z+H)z = (14)
1 '2
=2

To consistently apply the extended Lagrange EqudBia), we
must consider the equivalent non-conservative gdimed force,
according to Eqg. (3b), that in this case reads,

. 1 0m
z:f+rnvo_§z 6ZI Vi2
10m

= (Fy +Fp)+riv, —Eﬁi = ’

=(—pAg(—%pAZZ}(pAZZ)—[%pAZZJ=

=-pAgl

T

(15)

Note that, in this case, the term given by Eq. (1¢})
quantitatively, half the momentum flux and exadtg same as that
corresponding to the dynamic pressure. Note alag turiously,
only the (conservative) hydrostatic term is left.

Collecting results, from Eqgs. (13) and (15), EQ.rgovers the
consistent dynamic equation, given by Egs. (10) or (11). Otherwise,
disregarding the term givenby Eq. (14) would lead to the erroneous
equation of motion,

L, N’ n__
+ + =
d i/7 +1i i/] +li (16)

Apart the conceptual correctness, from the pointviefv of
practical application, significant differences beem Eq. (11) and
Eq. (16) arise only if the motion is large enough.

Figure 3 presents a comparison between resultsnelteby
using Eqg. (11) and Eg. (16). The phase trajectosies closed
curves, since no dissipation was considered. Thelmtic terms in
velocity are conservative, as already anticipatedr all initial
displacements, the acceleration attains a maximbenwhe water
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column level reaches its minimum value (mass inside pipe is
minimum), as already mentioned. This is exactly wkaobserved
in reality.

Despite the fact that the results could be cordigteecovered,
a rigorous generalization of Eq. (3) to continuuystems is not
straightforward as it could appear through thispterexample. A
rigorous treatment of Hamilton Principles in Cootim Mechanics
can be found in Seliger and Whitham (1968). Howgever the
present date, and to the author's knowledge, raydtieal extension
has been made considering the case of continuutensgswith
variable mass as an explicit function of coordisated velocities.

15

dn(®/dt

dn(/dt

Figure 3. Phase portraits of the water column dynam
between results from the consistent (left) and the

(right). Initial conditions:

ics. Comparison
erroneous equations

TheImpact of a Rigid Body against the Water Surface

Consider a body impacting a quiescent free surfdceliquid.
In the offshore engineering context, important epkas that could
be mentioned are the deployment of lifeboats frdatfqrms, ship
slamming and wave impacts against structures. Vamidn (1929)
first addressed the simplest problem (of an impgatigid body), in
order to estimate the loading on seaplane floaherisg “landing”.

The duration of the impact is so short that inefieces
dominate viscous ones. This makes consistent & the problem
within potential flow theory. As well known, it issual practice to
treat potential hydrodynamic problems involving mnotof solid
bodies within the frame of system dynamics. Thiddee whenever
a finite number of generalized coordinates can sexllas a proper
representation for the motion of the whole fluiderfiing this

500 / Vol. XXVIII, No. 4, October-December 2006
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approach as ‘hydro mechanical' the impact forcen@gatpon the
body, for a purely vertical impact, may be written see, e.g.,
Faltinsen (1990), chapter 9 -,

F, =—d(M,W)/dt ;

being W the (positively) downward vertical velocity andl ,, the

corresponding added mass.

Note that in this case the added mass may be wréte an
explicit function of the position of the body andishto be
determined at each instant of time, during the ichjpdienomenon.
This is not an easy task, as the hydrodynamic probls
geometrically nonlinear due to the presence offitbe surface and
the due to the motion of the body. Usually, the eadthassis
defined only in the bulk of fluid, excluding the jets. In this case, an
out-flux of kinetic energy does exist from the damander analysis
(the bulk of fluid) to the jets. In other word, theis an ‘effective
loss of added mass’ through the jets; see Caseittd®asce (2006).
In this case the extended Lagrange equation isrtkehat should be
used. Otherwise, if the added mass is defined derisg the whole
liquid, including the bulk and the jets, such thta system under
analysis turns to be conservative, i.e., thereadslass of kinetic
energy, or equivalently, ‘no loss of added-mag¢®, usual Lagrange
equation must be used instead; see Casetta anel R666).

jet

et

o

e —"

free surface

Figure 4. A rigid body impacting a quiescent free surface of a liquid.

The formulation of the impact problem under the laagean
formalism, should recall the explicit added magsetelence on the
position of the body. Howevergstraining the analysis to the bulk
of the fluid, an erroneous result would be obtained if the dage
equation were not properly applied, namely, theemoteéd form
given by Eq. (3); Pesce, (2003). Taking, for sikipli the purely
vertical impact case of an axi-symmetric rigid bahainst a free
surface, let{ be defined as the (positive downward) vertical
displacement of the body into the water, measunedn fthe
quiescent free surface. L¥éi(t) be the downward vertical velocity.
The kinetic energy in the bulk of the liquid maywsetten as

=M w2
2
Mz =Mz({). an
(=j\/\/dt

o*

The added mass, consistently defiiethe bulk of the liquid, at
each instant of time, takes into account the skedalvetted
correction, due to the marching of the jet root.this case, as
already observed, the correct Lagrange equationoapp is to use
Eqg. (3), such that the total vertical force applmBdthe body (and
the jets) on the bulk of the fluid is given by

o dfoT)or 1M,
dt\ow) 9 2 d¢

2-2rv, sing (18)
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The fourth terrh corresponds to the reactive force applied by thplate’. In other words, the interaction problemtisated as the

jets, due to the momentum rate, where is the effective flux of

‘continuous impact of a floating plate’ whose aohanges in time.

mass through the jets and, the absolute velocity of the fluid The usual free-surface condition is replaced byegnipotential

particles at the jet rooty is the instantaneous angle of the jets wit

respect to the horizontal. The force applied bykhb of fluid on
the body is then, simply,

F, :_i o +6_T_£dl\/I_ZZW2. (19)
dt\ow ) o 2 d¢
Equation (19) transforms, as expected, into
F, =—£(M Zzw).;.lv\/? dM_Zz_ldM_ZZWZ =
dt 2 df 2 d¢
q (20).
=——(M_W
o (MW)

The third term appearing on the right hand sid&gf (20), if
not considered, would lead to aroneous assertive, according to
which,

dw

S 1My W
dt

21
R (21)

z

As mentioned, Eq. (19) recovers the expected reNite that
in the present case the changing in the added madse to an
actual changing of size and shape of the body maob with the
liquid. The computation of the functioll ,,({) is not an easy task,

as the wetted surface of the body is not knowriaipr
Equation (21) would be correct in form, howevethi analysis
had considered the whole fluid domain, including oily the bulk

but also the jets. In that case the added nvigs=M @ should be

interpreted as a measure of kinetic energy of thwlev fluid

domain; see Casetta and Pesce (2006). Obvioudlyatrcase, there
would be no out-flux of kinetic energy — neither aut-flux of

added mass'. In other words, there would be nodbsmergy from
the system and this is the key point. The extentagdrange
equation, for systems with mass explicitly depemndan position
would be no longer applicable. One should then yapipé usual
form® of the Lagrange equation, as in Lamb (1932),1&. In this
latter case the computation of the added masssmoneling to the

whole fluid domain, M ¥ (t) , would be even more difficult than

that corresponding to the bulk of the fluid.

To finalize the present analysis, an analyticaultesvill be
shown, applying a still very useful approximate r@agh due to
Wagner (1931). In this approach the added masefisadl in the
bulk of the fluid only and the flux of kinetic erggrto the jets must
be properly considered. Under Wagner's approachirigact is
modeled as a mathematical impulse idealizationplerg a time
jump in velocity potential to occur. The impactisgrface of the
body is taken as the equivalent surface of a ‘tiagsng floating

2 This term is small. In fact, in the particular antportant case of a circular
cylinder of radiusR, e.g., it can be proved, from the asymptotic asialpy
Molin et al. (1996), that the vertical force, paitdength, applied by the jets

on the bulk of fluid due to effective mass fluxoisorder Ole7pRW? sina |,
where & =J\/T/t/R is a small parameter measuring a short scalent. ti

Contrarily, the energy flux is of orderG:O(maR\N3) and
d(MZW)/dt =O(£_27117RW2) .
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}Poundary conditiong =0, that corresponds to the limit of infinity

frequency in the sense of the wave radiation prable
At the very start stage, the conditidp/dt =0is valid on an

equipotential control surface that replaces theiactree surface,
except at the surface-body intersection, where gats formed.

Actually, to impose such a condition at the bodterisection is

equivalent to disregard the flux of kinetic enetigyough the jets. A
more detailed analysis is presented in CasettePasde (2005) and
in Pesce (2005).

Under Wagner's approximation, the equivalent fiogtplate of
varying size has to be determined. For bodies gifilee shape, as
edges, cylinders and spheres, asymptotic technigodssingular
perturbation methods can be applied successfulbe, s.g.,
Faltinsen and Zhao (1997) or Pesce et al (2008)a forief review
on this subject. For generic geometric forms howewemerical
schemes have to be used to solve the nonlinearotlydamic
problem.

As a simple example, we take the case of a spHe@dusR
and massn, reaching the free surface with initial velochy, . Let

the dimensionless time be defined as

t=Wyt/R, (22)

such that the dimensionless position, velocity andeleration are
given by

Asymptotic techniques and similarity theory, apglito the
impacting sphere problem to calculate the addedsnfasction
under Wagner's approach, together with the genenalid Eg.
(19), leads to the following consistent dimensisalequation of
motion, (Casetta (2004)),

93 Y22
——n"n
2

33

L —0)
3

B+==np¥?
m

i+ (24)

where
B=m/my
is the dimensionless mass ratio coefficient or ifjgemass, with

mp =4,onR3/3 the displaced mass of a totally immersed sphere.

Note that this is the only parameter in Eq. (24).
However, if Eq. (21) were supposed to hold, theatiqn of
motion would read,

93

12,2
—_nn
.1
”+52HT:0' (25)
e

8 Recall that the usual form of Lagrange equatidanvariant with respect to
systems with mass varying as a function of time isethe case if the whole
fluid is taken as the domain; see, e.g., Pesce3j2@d) a detailed discussion
on this subject.
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This would not be consistent with Wagner’'s appration that
considers the added mass defined in the bulk didh& and not in
the whole fluid domain.

The dimensional impacting force is then given by

mW,? d2p

: 26
R d (26)

F.(t) =

Or else, if written in terms of the body weighs, i$ given by

d?p
F ()= (FRZ dt—zjmg : (27)
where
Fr =W, /y/oR (28)

is the ‘impact Froude number’.

Note that Eq. (24) was asymptotically derived asagnsmall

submergence, say < 0.2. In this stage the impacting force reaches

its maximum value. Moreover, the impacting forceually
dominates the buoyancy force and that is the reaggnbuoyancy
has not been considered.

As can be easily inspected from Eq. (24), the itipgdforce
peak decreases with the mass ratio and increasieshgi square of
the Froude number. In fact, from Eq. (22), the iotjpey force peak
is of order

F, =O(B*Fz’mg) = O(F’my, ) .

On the other hand, the maximum buoyancy force I{yota
immersed sphere) is given by

Fg =myg = ﬁ_ln'g-
Therefore,
F /Fg = O(FRZ) >>1,

for high-speed impacts. As a figure, if the sphisrelropped (in
vacuum) to the free surface, from a heightve obtain

Fr” =2H/R.

Equation (24) is to be integrated under initial ditions

Celso P. Pesce et al

—— B=0.1

d2n/di?

-0.5RQ\

-1.5F

d2n/dt?

—— B=0.1
2L - - p=0.2
— B=0.5

-25F

-3.5

0.15 0.2
t

o1

ng sphere of radius R

of dimensionless time.
tent (upper) and the

Figure 5. Dimensionless acceleration, of an impacti
vertically striking the water surface, as function
Comparison between results obtained with the consis
erroneous equations (lower).

Legend: S=nm/mp ; t =W,t/R.

The Deployment of a Submarine Cable from a Reel-Laying
Barge

A common task in ocean and offshore engineeringhis
deployment of cables to the sea bottom. Power Igupables,
umbilicals, telecommunication cables are just fesaneples of such
systems to be mentioned. Usually, the cable isogegl from a reel,
installed on the deck of a launching-vessel, samesithrough a
moon-pool, as schematically illustrated in Figure 6

This example will show how partition into sub-syste might
lead to an erroneous use of the Lagrange equadfioe.cable is
supposed to be acted on by the vessel, ocean tusem waves,

n7(0) =0and7(0) =1. Figure 5 exemplifies the large discrepanciespuoyancy and gravity. Initially, and for simplicitgonsider only
existing between the results obtained from bothatiqns: the buoyancy and gravity actions, according to the sehehown in
consistent equation, Eq. (24) and the erroneous Bnpe(25). Note Figure 7. Also for simplicity, the suspended paiittiie cable is
also that, for usual offshore and naval engineedpglications, considered fully immersed into the water.
practical relevance exists for mass ratio valuesllemthan 1. The reel has radiuR® and moment of inertid , around the axis
of rotation. Let 4 be the mass per unit of length of the cable,
supposed non-extensible and infinitely flexible. tNdut loss of
generality let & be the generalized coordinate, measured from
horizontal, such that at a given instdnthe suspended length is
() =RA. Let alsoL be the total length of the cable such that

M =L is the total cable mass. For simplicity we take table

diameter very small compared to the radius of && such that the
winding pitch is also small and that all turns dEnaccommodated
into a single winding layer. Let also
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ms (6) = (A(8) = 1RO d(aTj oT oV _
— | = |-—=+===F
and dt\gg) 06 080
Mg (6) =m-mg () = u(L - R) leads to the consistent equation of motion
be, respectively, the suspended and the wound mafsee cable. (I +mR?)6 - (1- B)1.gR?6 = F; (6, 9). (29)

reel
Suppose now that, for some practical reason, talystrdecides

] :

BN a0
to take a sub-system composed by the reel andeowdind part of
j@m the cable, considering the suspended part of thie @s a second
sub-system. Note that the suspended part of thée czdn be

moon-pool . X . .
Teflovtiie considered as a material point gaining mass at rate

cable )
mS (H) = /RH ’

with velocity

v=R4.

The resultant of the active forces applied to trepsnded part is

f(6) =(my(6) - PARE)g - 17(6) , (30)

Figure 6. Cable being deployed from a barge, throug  h a moon-pool.

Obviously, for this particular problem, the bestiamortest way

to directly apply the Lagrange equation would bectmsider the . . . .
whole (invariant mass) system. In this case, Kindinergy is being 7(8) the traction at the upper section. Applying theeaged

simply Levi-_Civita form of Newton’s law to the suspendeaitp we easily
obtain
T =1/2(1 +mR?)§2.

d : . : :
— ORE) = (1- -7(6) +mg(B)RO+F; (6,6) . (31
Accordingly, potential energy is given by, dt (ms (O)RE) = (L= A)uREG ~7(9) + M5 (6) 1(6.9). 1)
V= —:I/Z((mS(H) —pARH)gRH) = —]/2(1—,6’),ugR2492 , Hence, the traction applied by the wound part soshspended
part of the cable is simply
where p is the density of wateA the area of the cross section of

the cable andB = pA/y is the mass density ratio. An extra non- 7(6) =,uR6((1—,8)g - Ré)+ F (0, ). (32)
conservative force has to be considered, to médehydrodynamic

friction force acting along the cable during theedfifalling Let, now,

deployment. Otherwise, no limit speed would be abd, and the

rotation speed of the reel would increase indefinit This force J=1+mg(O)R? =1 +R*(L-RH)

may be written in the form

be the moment of inertia of the first sub-systemel(r+ wound

F(6,6) =-1/2C; pD(RE)*I(6) = -}/2C pDR*60?, cable), such that the corresponding kinetic enargyven by

with the viscous friction force&C, =007 ) T, =12J6%.

Note that mass exits the wound part with velocity

J \_R v, =Ré

o

| at a rate
g (6) = ~/RE .
I(@)=RO
g If, erroneoudly, the usual Lagrange equation is applied to the
first sub-system in the form,
d(dT, oT,
—| == |-=5=Qs. (33)
dt\ 06 06
Figure 7. The simplest cable deployment problem. with
The direct application of the usual Lagrange equatp this Qy :(T(6)+mR(6)R9)R+Ff 6.6),

invariant mass system, in the form,
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the following and obviouslyincorrect equation of motion is
obtained,

(I + mR2)65+%,uR36"2 —Q-B)gR?O=F,(6,0).  (34)

Note the presence of an erroneous quadratic termelimcity,
namely,

1 302
> URO~ .

This term is quadratic in the angular velocity dfe treel.
Therefore, apart the conceptual error, it could léa significant
discrepancies in the calculated traction, if theation speed is large
enough.

However, if the correct form of the Lagrange equatigiven by
(3), is applied to this variable mass sub-system,

i[ﬂ]—ﬂ =40), (35)

dtl 00 ) 06
with
- ) . 1 dm . .
Q = [r(@)+ i (ORER-2 T R?6% +F, (6.6),

theconsistent equation of motion, Eq. (29), previously deriveden
the whole system was considered, is readily reeaer

As an example, we take the case of a multi-funefi@bectric
cable being deployed vertically, in deep water. Table has a
diameterD=100mm and a weight per unit lengtp,= 015kN/m.
The reel has radiug&=1.0m and inertia=4t.n?. The total length of
the cable i$=3000m.

Figure 8 shows the simulation of an “immersed-fiai-
deployment. The depth is supposed to be 1500mtendimulation
is carried out up to the instant the cable toucthes soil. The

solution, §(t) and 7(t), obtained from both equations,
consistent and the erroneous ones, are comparégdtrne 8. Initial
conditions were chosen a#(0) =0and (8(0)) =10m (the initial

suspended length). As can be noticed, there isansignificant
difference between both results, as the quadratio tn velocity is
not dominant for this operation. Therefore, in thirticular case,
the importance of the present analysis is, in fastich more
theoretical than practical.

—— Consistent eq. =
— — Eroneous eq. e 1

104 7 4

20

15

de/dt

100 150
Time(s)

0 1 1 1
0 50 100 150

Time(s)

Figure 8. The “free-fall” deployment of a multi-fun ctional electric cable

from a reel barge, under no current.
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Conclusions

Through simple modeling of typical problems in offse
engineering, this work exemplified how a non-propese of the
Lagrangean formalism may lead to important disanefgs in
formulating the equations of motions. This wouldabeays the case
whenever one treats mechanical systems with magdicidy
dependent on position. Despite such a strong asserthe
corresponding extended form of the Lagrange equatianot well
known, being absent in almost all textbooks ingitzd mechanics.
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