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Discrete Optimization of Trusses by 
Simulated Annealing 
At present, several methods are available for optimization of structures. The application of 
such methods to real structural problems, however, has not been as intense as the 
development of the techniques themselves. One of the main reasons is that the great 
majority of the methods, based on mathematical programming, consider a continuous 
search space. This paper presents an application of the Simulated Annealing method to the 
optimization of trusses considering the cross sections of the members as discrete variables. 
The constraints imposed to the analysis were the allowable stresses and the displacements 
on nodes. Some examples are presented in order to demonstrate the effectiveness of the 
method when compared with other methods found in literature. 
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Introduction 

The analysis and design of structures usually involve both 
highly complex procedures and a great number of variables. As a 
consequence, the solution has to be found iteratively while initial 
values are set to the variables based mainly on designer’s sensitivity 
and experience. Also, the number of analysis steps is remarkably 
increased if optimum values are to be found among all possible 
alternatives. Describing, however, the physical behaviour of the 
structure through mathematical functions, extreme function values 
of such functions can be searched with the aim of optimization 
techniques. 1 

In a general way, a minimization problem can be expressed as: 
 
minimize                   f ( x i )             i = 1, n,  (1) 
 
subjected to              g j ( x i ) ≤ 0     j = 1, m, (2) 
 
                                  h k ( x i ) = 0    k = 1, l , (3) 
 

               x i 
l  ≤  x i  ≤  x i 

u  , (4) 
 

where f designates the objective function and X = ( x1 , x2 , ... xn )T 
the design variables vector. The remaining functions are constraint 
functions corresponding to inequality constraints (g), equality 
constraints (h) and side constraints with lower and upper limits 
indicated by the superscripts l and u, respectively. These functions, 
which can be solved analytically or numerically, may be linear or 
non-linear and contain the design variables in an explicit or a non-
explicit form. 

The great development of structural optimization took place in 
the early 60’s, when programming techniques were used in the 
minimization of structures weight. From then on, a great diversity of 
general techniques has been developed and adapted to structural 
optimization. However, the application of such approaches to real 
structural problems has not been verified in the same proportion. In 
their work, based on more than 500 examples taken from articles 
and books, Cohn et al. (1994) emphasize the big worry with 
mathematical aspects of optimization, although the small number of 
examples reported, mostly of purely academic interest.  

The reasons usually claimed for such limited application of 
optimization techniques to real structural problems are related to the 
inherent complexity of the generated model, described by non-linear 
functions and generating a non-convex space of solutions (multiple 
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points of optimum), problems for which the resolution by traditional 
techniques of mathematical programming has shown little 
efficiency. To the resolution of these kind of problem the heuristic 
methods have been performing an important role, since they involve 
solely function values in the analysis, with unimodality or even 
continuity in its derivatives unnecessary. On the other hand, a great 
number of function evaluations are needed. This apparent 
shortcoming, however, has been questioned by some researchers 
like Powell (1998), who argues that, instead of performing 
additional calculations to numerically determinate the gradient in 
mathematical programming, the effort should be used to exploit 
more intensely the space of solutions. 

Among the main heuristic methods, it can be verified the 
growing application of Simulated Annealing method, which is an 
approach of global optimization developed in analogy upon the 
mechanical procedure of annealing of metals. Although only a few 
applications of Simulated Annealing in structural optimization have 
been reported, the method can be easily implemented into 
computers, dealing with few control parameters regarding the 
Genetic Algorithms. 

The present work shows an application of Simulated Annealing 
to the optimization of trusses, considering the cross sections as 
discrete variables and generating an optimal solution which is 
feasible not only from a mathematical but also from a practical point 
of view. Even if due to economic and aesthetic limitations only a 
reduced number of distinct cross sections are considered, the 
number of possible combinations is high enough. In addition, if the 
structure has some degree of indeterminacy, the stresses might be 
redistributed by varying the relative stiffness of the elements as the 
cross sections of a single element is changed. 

Nomenclature 

A = cross-sectional area, m2 
E = elastic modulus, kN/m2 
F = penalized objective function, kN 
f = objective function, kN 
g = inequality contraint  
h = equality constraint 
K = Boltzmann's constant 
L = length of element, m 
P = penalization 
p = probability function 
T = temperature of the body 
u = nodal dispacement, m 
W = weight, kN  
Greek Symbols 
∆E = energy variation 
σ = stress, MPa 
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ρ  = specific weight, kN/m3 
Subscripts 
i = relative to the number of design variables 
j = relative to the number of inequality constraints 
k = relative to the number of equality constraints  
l = relative to lower limit  

u = relative to upper limit 

Simulated Annealing Method 

The optimization approaches normally employed are based on 
descending strategies. In these, from an initial solution, a new 
function value is generated and compared to the initial one. If a 
reduction in the function value is verified, the new value is adopted 
as the current solution and the procedure is repeated until any better 
value is achieved. The final result obtained, depending on the 
characteristics of the functions involved, might be the best solution 
in the vicinity of the initial solution, but not necessarily the best in 
the whole search space. A strategy usually used to improve the 
solution consists in analyzing the problem from several initial 
solutions. Following an alternative strategy, the Simulated 
Annealing method tries to avoid convergence to a local minimum by 
accepting also, according to a specific criterion, solutions that 
increase the value of the function. The method is recognized as a 
procedure for optimization problems of anticipated difficult 
solution, and is developed in analogy upon the process of annealing 
of a solid, when a state of minimum energy is searched. The 
denomination annealing is given to the process of heating of a solid 
to its point of fusion followed by a slow cooling. In this process, 
slow cooling is essential to maintain a thermal equilibrium in which 
the atoms are able to reorganize themselves in a structure with 
minimum energy. If the solid is cooled abruptly, the atoms will form 
an irregular and weak structure, with high energy as a consequence 
of the internal effort spent. In computational terms, the annealing 
can be seen as a stochastic procedure for the determination of the 
atomic organization with minimum energy. At high temperatures, 
the atoms move freely being able to achieve, with high probability, 
positions that increase the energy of the system. When temperature 
is reduced, the atoms move gradually to form a regular structure, 
reducing the probability of energy increase.  

According to Metropolis et al. (1953), the probability of a 
change in the energy of the system is given by  

 

⎟
⎠

⎞
⎜
⎝

⎛ ∆−
=∆

T
K.Eexp)E(p , (5) 

 
where T is the body temperature and K, the Boltzmann constant. 

The simulation of annealing as an optimization technique was 
originally presented by Kirkpatrick et al. (1983), with the objective 
function corresponding to the energy of the solid. Similarly to the 
annealing in thermodynamics, the process initiates with a high value 
of T, from which a new solution is generated. This new solution is 
automatically accepted if it generates a decrease in the function 
value. Otherwise, if the new value is greater than the previous one, 
the acceptance is given according to a probabilistic criterion, being 
the acceptance function: 

 

⎟
⎠
⎞

⎜
⎝
⎛ ∆−

=
T

fexpp . (6) 

 
The new solution is accepted if p is larger than a randomly 

generated number between zero and one. Once T is high, the 

majority of the solutions are accepted, being T reduced gradually at 
each trial series in the vicinity of the current solution. 

Examples 

The effectiveness of Simulated Annealing is illustrated in this 
work by two classical examples, taken from Rajeev and 
Krishnamoorthy (1992). 

In these problems, the objective functions are set to minimize 
the weight of the structure, W, composed by n elements:  

 

   ∑
=
ρ==

n

1i
iLiAW)x(f , (7) 

 
where Ai and Li are, respectively, the cross-sectional area and the 
length of the ith member. In addition, both problems are subjected to 
the following constraints, expressed in the normalized form as: 

 

01
a
i ≤−

σ
σ

   and   01
au
iu

≤− , (8) 

 
where iσ is the stress in member i, aσ is the allowable stress for all 
members, ui is the displacement of each node (vertical and 
horizontal) and ua the allowable displacement for all nodes.  

Aiming at the computational implementation, the constraints 
were considered by using a dynamic penalty technique, known as 
annealing penalty (Michalewicz and Schoennauer, 1996). Similarly 
to the optimization technique, a penalty factor has an initial value 
relatively low, which is gradually increased as the temperature 
reduces. The penalized function F(x) can be written as: 

 
F (x) = f(x)+P(x). (9) 

 
Being 
 

2)x(g
T2
1)x(P ⎟
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⎞
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∑= , (10) 

 
where P(X) is the function that represents the assembly of the 
penalized constraints. In this way, even if the problem starts from 
unfeasible solutions, small violations of constraints are initially 
allowed. 

 
Example 1: 10-bar truss 

 
The geometry of the 10-bar truss structure employed in the first 

example is shown in Fig.1.  
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Figure 1. Example 1: 10-bar plane truss geometry. 
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The assumed data are: modulus of elasticity E = 104 ksi (6.89 x 
104 MPa), weight density of the material ρ = 0.10 lb/in3 (2,770 
kg/m3) and vertical downward loads of 100 kips (445.374 kN) at 
joints 2 and 4. The allowable stresses are limited to ± 25 ksi (175.25 
MPa) and displacement to 2 in (50.8 mm). The 42 available sections 
assumed for the design variables, given in the list S, were taken 
from the American Institute of Steel Construction Manual (Rajeev 
and Krishnamoorthy, 1992). S = { 1.62, 1.80 , 1.99 , 2.13 , 2.38 , 
2.62 , 2.63 , 2.88 , 2.93 , 3.09 , 3.13 , 3.38 , 3.47 , 3.55 , 3.63 , 3.84 , 
3.87 , 3.88 , 4.18 , 4.22 , 4.49 , 4.59 , 4.80 , 4.97 , 5.12 , 5.74 , 7.22 , 
7.97 , 11.5 , 13.5 , 13.9 , 14.2 , 15.5 , 16.0 , 16.9 , 18.8 , 19.9 , 22.0 , 
22.9 , 26.5 , 30.0 , 33.5 } (in2). Since each bar can take any of the 
available sections, the number of combinations is 1042 (aprox. 
1.7x1016). 

Due to its heuristic nature, the starting point is less important in 
Simulated Annealing than in methods based on mathematical 
programming. The results obtained in the present work along with 
data for comparison reported by several authors are given in Table 
1. The methods used to obtain each result are given immediately 
below Table 1. By comparing the results, it can be readily observed 
a significant reduction in the final weight of the structure obtained in 
the present work relatively to the results obtained by the other 

heuristic methods (Genetic Algorithms). Also, the results obtained 
by applying Simulated Annealing are the best among those others 
found in literature. 

Example 2: 25-bar truss 
Fig. 2 shows the geometry of the Example 2, a 25-bar space 

truss. The members are divided into eight groups, according to 
Table 2. The assumed data are: E = 104 ksi (6.89 x 104 MPa) and   ρ 
= 0.10 lb/in3 (2,770 kg/m3), with the applied loads listed in Table 3. 

Again, the objective function of the problem is set to minimize 
the weight of the structure W. The stress is constrained to ± 40 ksi 
(257.6 MPa) and only the displacements at joints 1 and 2 are 
restricted, both to less than ± 0.35 in (8.89 mm) in the x and y 
directions. 

In this example, the available discrete values of the variables 
(in2) are S = { 0.1 , 0.2 , 0.3 ,..., 2.6 , 2.8 , 3.0 , 3.2 , 3.4 }, a set of 30 
values (Rajeev and Krishnamoorthy, 1992). 

Table 4 presents the results obtained for the example, comparing 
the values obtained in present work with others found in literature. 
Again, the best result is given by Simulated Annealing. 

 

Table 1. 10-bar plane truss results summary. 

Method W (lb) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 
1 5491.71 33.50 1.62 22.90 15.50 1.62 1.62 7.97 22.00 22.00 1.62 
2 5613.84 33.50 1.62 22.00 15.50 1.62 1.62 14.20 19.90 19.90 2.62 
3 5491.71 33.50 1.62 22.90 15.50 1.62 1.62 7.97 22.00 22.00 1.62 
4 5586.59 30.00 1.62 22.90 13.50 1.62 1.62 13.90 22.00 22.00 1.62 
5 5490.74 33.50 1.62 22.90 14.20 1.62 1.62 7.97 22.90 22.00 1.62 

1-Improved Penalty Function Method (Cai and Thiereu, 1993) 
2-Genetic Algorithms (Rajeev and Krishnamoorthy, 1992) 

3-Difference Quotient Method (Thong and Liu, 2001) 
4-Genetic Algorithms (Coello, 1994) 

5-Simulated Annealing (present work) 
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Figure 2. Example 2: 25-bar space truss geometry. 

 
Table 2. Group membership. 

Group Number Members 
1 1-2 
2 1-4, 2-3, 1-5, 2-6 
3 2-5, 2-4, 1-3, 1-6 
4 3-6, 4-5 
5 3-4, 5-6 
6 3-10, 6-7, 4-9, 5-8 
7 3-8, 4-7, 6-9, 5-10 
8 3-7, 4-8, 5-9, 6-10 

Table 3. Loading conditions. 

Node Number Fx (N) Fy (N) Fz (N) 
1 4,453.74 -44,537.40 -44,537.40 
2 0.0 -44,537.40 -44,537.40 
3 2,226.87 0.0 0.0 
6 2,672.24 0.0 0.0 

 

Table 4. 25-bar space truss results summary. 

Method W (lb) A1 A2 A3 A4 A5 A6 A7 A8 
1 487.41 0.1 0.1 3.4 0.1 2.0 1.0 0.7 3.4 
2 546.01 0.1 1.8 2.3 0.2 0.1 0.8 1.8 3.0 
3 562.93 0.1 1.8 2.6 0.1 0.1 0.8 2.1 2.6 
4 485.05 0.1 0.5 3.4 0.1 1.9 1.0 0.4 3.4 
5 539.78 1.5 0.7 3.4 0.7 0.4 0.7 1.5 3.2 
6 484.33 0.1 0.4 3.4 0.1 2.2 1.0 0.4 3.4 

1-Improved Penalty Function Method (Cai and Thiereu, 1993) 
2-Genetic Algorithms (Rajeev and Krishnamoorthy, 1992) 

3-Brach and Bound (Zhu, 1986) 
4-Difference Quotient Method (Thong and Liu, 2001) 

5-Genetic Algorithms (Coello, 1994) 
6-Simulated Annealing (present work) 

 
Regarding the number of function evaluations needed by 

Simulated Annealing, it must be emphasized that this number is 
very high when compared to those required by mathematical 
programming. Therefore, this approach is specially indicated to 
problems where usual techniques are not efficient. Nevertheless, it 
was observed that the Simulated Annealing method rapidly 
converged to the vicinity of the optimum solution. Fig. 3 presents 



Discrete Optimization of Trusses by Simulated Annealing 

J. of the Braz. Soc. of Mech. Sci. & Eng.   Copyright © 2004 by ABCM             April-June  2004, Vol. XXVI, No. 2 / 173

the results obtained for the Example 2, where one can observe that 
around 14.7 percent of the total function evaluations (39,201), the 
error was lower than 5 percent. Hence, a less rigorous definition of 
the stop criterion can drive to a significant reduction in the number 
of calculations.  
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Figure 3. Convergence of 25-bar space truss. 

 
Figure 4 presents the obtained relationship between the average 

number of function evaluations and the number of design variables. 
To construct the plot, several initial configurations (member 
grouping) were considered, starting from a unique group (all bars 
with the same section) and evolving up to 25 groups (each bar 
allowed to assume a different section). The results suggest that the 
relative efficiency of Simulated Annealing increases with the 
dimension of the problem, since the number of possible 
combinations grows exponentially.  
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Figure 4. Relationship between function evaluations and number of 
variables. 

Concluding Remarks 

This work presented an application of the Simulated Annealing 
method to the determination of the minimum weight in structures 
analyzed by the truss model. Since the determination of the elements 
cross section dimensions is based mainly on the designer’s former 
experience, optimization techniques can be a valuable tool in the 
phases of analysis and dimensioning, allowing the identification of 
the more stressed elements, as well as those that eventually could be 
deleted from the structure. 

The heuristic methods allow an easy and efficient treatment of 
discrete variables, since they do not require a continuum search 
space. Among these methods, Simulated Annealing was found to be 
very adequate, especially due to the few control parameters 
involved. 

References 
Cai, J.B. and Thiereut, G., 1993, Discrete optimization of structures 

using an improved penalty function method, Engrg. Opt. 21, 293-306. 
Coello, C.A., 1994, Discrete Optimization of Trusses using Genetic 

Algorithms, in: Expert Systems Applications and Artificial Intelligence. J.G. 
Cheng, F.G. Attia and D.L. Crabtree (Editors), (I.I.T.T. International, 
Technology Transfer Series) 331-336. 

Cohn, M.Z., Fellow and Dinovitzer, A.S., 1994, Application of 
structural optimization, Journal of Structural Engineering, ASCE,  v.120, 
n.2, 617-650. 

Kirkpatrick, S., Gelatt C.D.  and Vecchi, M.P., 1983, Optimization by 
Simulated Annealing, Science 220, 4598,  671-680. 

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, 
E., 1953, Equation of State Calculations by Fast Computing Machines, J. 
Chem. Phys. 21, 1087-1090. 

Michalewicz, Z. and Schoennauer, M., 1996, Evolutionary Algorithms 
for Constrained Parameter Optimization Problems, Evolutionary 
Computation (MIT Press), 4(1), 1-32.  

Powell, M.J.D., 1998, Direct Search Algorithms for Optimization 
Calculations, Numerical Analysis Report, DAMTP 1998/NA04, Department 
of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, 
England CB3 9EW. 

Rajeev, S. and Krishnamoorthy, C.S., 1992, Discrete Optimization of 
Structures Using Genetic Algorithms, Journal of Structural Engineering 118, 
5, 1233-1250. 

Thong, W.H.T. and Liu, G.R., 2001, An optimization procedure for truss 
structures with discrete design variables and dynamic constraints, Comput. 
Struct. 79, 155-162.  

Zhu, D.M., 1986, An improved Templeman's algorithm for the optimum 
design of trusses with discrete member sizes, Engrg . Opt. 9, 302-312. 

 
 
 
 
 
 
 
 
 
 

 
 
 


