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Abstract — The development of new mathematical model for guide
polarization converter with diaphragms was carried out in the
research by the method of wave matrices. In addition, numerical
modeling of the performance of a polarizer with diaphragms is
made by simulating the propagation of the fundamental modes with
perpendicular linear polarizations. The wave matrix model was
obtained by splitting the polarizer into separate structural elements.
Each element was described by its own wave transmission matrices.
As a result, a general wave scattering matrix was formed. Based on
the elements this matrix the electromagnetic characteristics of the
considered polarizer were obtained theoretically. In particular,
complex reflection and transmission coefficients were calculated.
Their modules and phases were analyzed in the frequency interval
10.7–12.8 GHz. To check the correctness of the obtained results an
independent numerical simulation was carried out applying the
finite element methodology in the frequency interval. The results of
both approaches are in good agreement. The engineered converter
of polarization with four diaphragms provides a reflection
coefficient modulus of less than 0.14 and a transfer coefficient
modulus of more than 0.99 for two orthogonal types of
polarizations. As a result, a rigorous mathematical method was
developed to analyze the elements of the scattering matrix of a
waveguide polarizer with diaphragms. It can be used for the
development of new broadband waveguide polarizers and
waveguide filters based on diaphragm elements.

Index Terms— Electromagnetic simulation, microwave passive devices,
waveguide components, polarization, waveguide polarizer, diaphragm
polarizer, wave matrix, reflection coefficient, transmission coefficient.

I. INTRODUCTION

The fast evolution of modern communication systems in the millimeter range has contributed to the

emergence and development of adaptive antenna systems with double polarization signal processing

[1], [2]. The key elements of such systems are polarization transforming passive devices including

orthomode converters, guide polarizers and microwave duplexers.

The polarizer of an antenna system converts linearly polarized input electromagnetic waves into

circularly polarized and performs the reverse transformation. Application of this waveguide

component allows to enhance the information volumes and channel’s capacity in wireless

telecommunication systems. Polarization processing devices have various designs based on the
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circular or rectangular/square waveguides. The idea of constructing of polarizers is based on the

introduction of a quasi-periodic or inhomogeneous structure into the waveguide that will implement a

phase shift of 90º between the modes with two perpendicular polarizations [3]-[8].

Historically, the first microwave devices for transformation of electromagnetic waves’ polarization

type were based on waveguides with reactive pins [9]-[13]. Guide structures with posts provide

developers with the possibility of adjustment of charactristics. On the other hand, the main

disadvantage of the polarizer designs with pins is their relatively narrow operating frequency band.

Operating range of waveguide devices can be extended using ridged structures and diaphragms.

Recently, new kinds of polarizers, which are based on coaxial and other waveguides with mentioned

discontinuities, began to appear [14]-[20]. They provide broad frequency bands, but contain a

significant number of reactive elements in the form of diaphragms. This leads to the larger overall

sizes of their designs, which is their main disadvantage. Besides, several novel designs of polarizers

based on structures with sectoral coaxial ridged waveguides are reported in [21]-[27]. The application

of coaxial guides allows to obtain dual-band operation of antenna systems based on them.

All existent types of waveguide polarizers require the utilization of complex mathematical methods

for their analysis. Among them we can highlight field-matching technique [28]-[31] and integral

equations technique [32]-[34]. Consequently, creation of new easier approaches for the analysis of

characteristics of waveguide polarizers is a state-of-the-art scientific and engineering problem.

In dual-band polarization processing units the polarizers are used in conjunction with orthomode

transducers. An orthogonal modes converter is a guide device that discriminates two orthogonal

signals with linear polarization within their common frequency range [35]-[39]. In addition, the

application of waveguide filters [40]-[46] in conjunction with polarizers improves the efficiency of

polarization processing of signals in antenna systems.

Diaphragm polarizers are broadly utilized in state-of-the-art satellite telecommunication systems

[47]-[52]. Besides, there are effective guide polarizer designs with diaphragms and pins [53]-[58].

The main advantage of a polarizer with diaphragms over guide polarizers of other types is the ability

to provide the most broadband functioning with efficient parameters, which can be upgraded by

adding additional diaphragms to the design. The disadvantage is the increase in the length of the

polarizer, which occurs in this case.

Diaphragm polarizers can be realized in the form of separate plates, which are placed at a certain

distance from each other. They can also be realized with one specially shaped plate. Such devices are

called septum polarizers [59]-[66]. The septum divides the waveguide into two rectangular

waveguides. These waveguides form ports that are used to transmit or receive linearly polarized or

circularly polarized waves. Such polarizers are broadly applied in state-of-the-art 5G

telecommunication systems of the millimeter wavelength range [67]-[75]. The disadvantage of such

guide polarizers is complex mathematical methods of their analysis.
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Therefore, the development of new mathematical model of a waveguide polarizer with diaphragms,

which will allow to carry out fast analysis and optimization of its characteristics, including

magnitudes and phases of the transmission and reflection coefficients, is a relevant scientific problem.

II. THEORETICAL ANALYSIS OF WAVEGUIDE POLARIZER WITH FOUR DIAPHRAGMS

The inner structure and overall dimensions of an investigated polarizer based on a waveguide with

diaphragms are demonstrated in Fig. 1.

Fig. 1. The general view of a waveguide polarizer with four diaphragms.

The design of shown square guide polarizer contains four conducting diaphragms. The outer

diaphragms are located symmetrically with respect to the inner diaphragms, which are located in the

center of the waveguide.

For the theoretical analysis of the device we will use a single-wave approximation and the

techniques of wave matrix theory [76]-[80]. The equivalent circuits of a waveguide polarizer for the

case of inductive and capacitive diaphragms are given in Fig. 2.

Fig. 2. Equivalent network of a waveguide polarizer with four diaphragms.

The conductivity of inductance diaphragm in the square waveguide is determined by the formula

[81]
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The conductivity of capacity diaphragm in the square waveguide is determined by the formula [81]
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Where a is the size of waveguide’s cross section; d is the width of the gap or diaphragm window;

wl is the wavelength in a considered square guide.

Two circuits have regulatory sections of the transmission line with electrical length θ, which is

calculated by the formula [82]
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where l is the length of transmission line segment.

The guide wavelength is determined as follows [83]
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where 0l is the wavelength in vacuum, cl is critical wavelength in the rectangular waveguide.

The equivalent circuit of a square waveguide can be divided into seven simple two-port circuits

(Fig. 2). They include two circuits equivalent to outer diaphragms, two circuits equivalent to central

diaphragms, two circuits of regular transmission line segments of length l1 and circuit of a regular

transmission line of length l2. These circuits are described by transfer matrices [84]:
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Where 1Y and 2Y are conductivity of outer and middle diaphragms; 1q and 2q are electric length of

the transmission lines.

The wave transfer matrix of the waveguide polarizer is calculated as follows [85]
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Relations between the total wave transfer and scattering matrices are determined by the known
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expressions [86], [87]
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From (10) we obtain expressions for the reflection coefficient [88]
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From (10) we obtain expressions for the transmission coefficient [89]
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Therefore, we will further analyze the obtained coefficients.

III. RESULTS OF MATHEMATICAL MODELING

The section presents the electromagnetic characteristics of the polarizer calculated using the

developed model of the polarizer. The developed guide device with four diaphragms was designed for

the operating frequency range from 10.7 to 12.8 GHz.

The dimensions of the optimal waveguide convertor of polarization calculated using the proposed

matrix technique and the method of finite integration are as follows. The wall size of the square

waveguide is 21.6 mm. The height of the outer diaphragm is 3.91 mm, height of the central diaphragm

is 2.38 mm. The distance between the central diaphragm is 7.38 mm, the distance between the outer

diaphragms is 7.38 mm. The thickness of the optimal diaphragms is 1 mm.

Frequency dependences of the module and phase of the reflection coefficients for both polarizations

are presented in Fig 3a, 3b, respectively.

(a) (b)

Fig. 3. Dependences of reflection coefficient on frequency for both polarizations calculated by mathematical model:

(a) module; (b) phase.

In Fig. 3a a typical behavior of the reflection of electromagnetic waves propagating inside a
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polarizer’s structure versus frequency is observed for both polarizations. Namely, the module of the

reflection coefficient for the horizontal polarization decreases with the increment of the frequency. On

the contrary, the module of the reflection coefficient of the mode with vertical polarization creases

with the increase of frequency of the fundamental electromagnetic mode.

In Fig. 3b it is possible to see that the phase of reflection coefficient for the vertical polarization is

less -65º at a frequency of 10.7 GHz and for the horizontal polarization it is less than -150º at the

lowest frequency of 10.7 GHz.

Fig. 4 presents the dependence the module and argument of transmission coefficient on the

frequency for vertical and horizontal polarization the frequency interval 10.7–12.8 GHz.

In Fig. 4a it is observed that the module of transmission coefficient for the horizontal polarization is

higher than 0.990 at a frequency of 10.7 GHz and for the vertical polarization is less 0.991 at a

frequency of 12.8 GHz. In Fig. 4b it can be seen that the phase of transmission coefficient for the

vertical polarization is less -50º at a frequency of 10.7 GHz and for the horizontal polarization is less

120º at a frequency of 10.7 GHz.

(a) (b)

Fig. 4. Dependences of transmission coefficient on frequency for both polarizations calculated by mathematical model:

(a) module; (b) phase.

Consequently, in the frequency range 10.7–12.8 GHz the optimal design of a guide polarizer with

four diaphragms provides the following matching characteristics. The reflection coefficient for both

polarizations is less than 0.14. The transmission coefficient for both polarizations is greater than 0.99.

IV. NUMERICAL SIMULATION OF THE DEVELOPED WAVEGUIDE POLARIZER

This section contains the results of modeling a waveguide polarizer with four diaphragm applying

the well-known electrodynamic method. As a proposed method we used the finite element technique

in the frequency domain [90]-[92]. The electromagnetic characteristics of the polarizer were simulated

for the frequency interval from 10.7 to 12.8 GHz using the numerical method of finite elements in the

frequency domain. This technique proved its computational speed and reliability for the calculation of

the electromagnetic performance of waveguide polarizers in several recent investigations [93]-[96].
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In Fig. 5a it is possible to see that the module of the reflection coefficient of developed waveguide

polarizer with diaphragms for both fundamental modes TE01 and TE10 is less than 0.11 in the

frequency range 10.7–12.8 GHz. This result is in good agreement with the obtained before using wave

matrix method. The minimum value of the modulus of the reflection coefficient of the polarizer is 0 at

a frequency of 12.42 GHz. In Fig. 5b it can be seen that the phases of reflection coefficients of both

polarizations decrease with the increment of frequency. Their difference is close to 50° in the whole

operating frequency band 10.7–12.8 GHz.

(a)

(b)

Fig. 5. Dependences of reflection coefficient on frequency for both polarizations calculated by numerical model:

(a) module; (b) phase.

In Fig. 6a it can be seen that the transmission coefficient for the vertical polarization is less than 1,

which corresponds to its physical sense. The peak value is reached at the frequency of 12.44 GHz. For

the horizontal polarization the transmission coefficient is less than 0.997. Its maximal value is

obtained at the frequency of 11.3 GHz.
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(a)

(b)

Fig. 6. Dependences of transmission coefficient on frequency for both polarizations calculated by numerical model:

(a) module; (b) phase.

In Fig. 6b it is possible to see that the phase of transmission coefficient for the vertical polarization

is less than 10º at a frequency of 10.7 GHz and for the horizontal polarization it is less than 100º at the

frequency of 10.7 GHz.

Table I presents the characteristics of the developed polarizer, which were optimized for the Ku–

band for mathematical and numerical model. It demonstrates that the electromagnetic characteristics

obtained using both the developed mathematical model and a numerical model of a waveguide

polarizer with four diaphragms are in good agreement.

TABLE I. CHARACTERISTICS OF THE OPTIMIZED WAVEGUIDE POLARIZER

Parameters Mathematical model Numerical model
Maximal level of reflection coefficient 0.14 0.11

Maximal level of transmission coefficient 1 1

Minimum level of transmission coefficient 0.990 0.993

Minimum level of phase of reflection coefficient -250º -240º

Maximal level of phase of reflection coefficient -65º -75º

Minimum level of phase of transmission coefficient -250º -235º

Maximal level of phase of transmission coefficient 110º 100º
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Consequently, it can be seen from Table 1 that all the parameters, which were calculated using the

mathematical model and the numerical method, correlate with each other. This verifies the correctness

of the created mathematical model. It can be widely applied for fast estimation of modules and

arguments of the scattering parameters of polarizers, rotators, filters and other microwave devices

based on discontinuities located in waveguides.

V. CONCLUSIONS

In this article we have developed a model of a microwave square polarizer with four diaphragms.

Using the proposed model the electromagnetic parameters of a polarizer were optimized in the

frequency range 10.7–12.8 GHz. The developed device ensures a reflection coefficient modulus of

less than 0.14 for both linear polarization. The modulus of the transmission coefficient of a polarizer

is more than 0.99 for both polarizations.

The results, which were obtained by the wave matrix model, can be used to develop and optimize

waveguide polarizers with diaphragms. Further theoretical researches should focus on the creation of

mathematical models for the devices with a larger number of diaphragms, which will provide better

characteristics of the reflection and transmission coefficients. In addition, the presented structures can

be effectively used for designing of new waveguide filters for various purposes.
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