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Abstract— In this paper, we present an algorithm for full-wave 

electromagnetic analysis of nanoplasmonic structures. We use the 

three-dimensional Method of Moments to solve the electric field 

integral equation. The computational algorithm is developed in the 

language C. As examples of application of the code, the problems of 

scattering from a nanosphere and a rectangular nanorod are 

analyzed. The calculated characteristics are the near field 

distribution and the spectral response of these nanoparticles. The 

convergence of the method for different discretization sizes is also 

discussed. 
 

Index Terms—Plasmonics, metal nanoparticles, optical scattering, spectral 

response, method of moments. 

I. INTRODUCTION 

Nanoplasmonics studies interaction of optical fields with metallic nanostructures beyond the 

diffraction limit of light. At optical frequencies, metals exhibit electrical charge oscillations known as 

plasmons or surface plasmon resonances [1]-[3]. The resonances of these electrical oscillations 

depend on the electrical properties of the metal element, on its dimensions and geometry and on 

polarization of the incident electromagnetic wave. In literature, one can find analysis of plasmonic 

nanoparticles with different geometries, such as spheres, rods [11], stars [12], nanoburguer [13], 

tetrahedral [14], circular [15] and  triangular nanodisks [16], etc. The growing number of publications 

in this area in recent years can be explained by numerous possible applications  such as super-

resolution microscopy [4], nanoantennas for nanophotonics [5]-[9], ultra-high-density optical data 

storage devices [10], among others. 

In this paper, we present a computational algorithm developed for nanoplasmonics which is based 

on three-dimensional Method of Moments (3D MoM) [17]. Using this algorithm, we analyze 

electromagnetic scattering of optical fields by metallic nanoparticles with different geometries. To 

characterize the complex dielectric constant of gold nanoparticles in optical frequencies, we use in the 

analysis the Lorentz-Drude model. The computational implementation of the method is performed 

using the language C. As examples of application of the code, two problems of scattering of a 

nanosphere and a rectangular nanorod are resolved. We calculate distribution of the near field, the 

spectral response and analyze the resonances of these particles. The convergence of the method for 

different discretization sizes is also investigated. To validate the developed code, we compare our 
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results with simulations carried out by the commercial package Comsol Multiphysics and by the 

analytical Mie model for spherical particle. 

II. THEORY 

A. Description of the Problem 

 
In Fig. 1, the geometries considered in this paper are shown. The problems consist of the 

electromagnetic scattering from a single nanosphere (Fig. 1a) and from a rectangular nanorod (Fig. 

1b) made of gold  centered at the origin of the rectangular coordinate system in free space. 

 

 

Fig.1. Geometries of the analyzed electromagnetic scattering problems: (a) nanosphere, (b) rectangular nanorod. 

 
The nanosphere has the diameter D=2a =120 nm and the rectangular nanorod has the length L =60 

nm and the square cross section with the dimension w =10nm. Each structure is illuminated by an 

incident plane wave
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, c is the speed of light, and j is the imaginary unit. This model is a good 

approximation for the complex permittivity at wavelengths greater than 500nm. It characterizes the 

dispersion of metals at optical frequencies [2].  
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B. Integral Equation 

 
The general electromagnetic scattering problem is presented in Fig. 2a. The total electric field E  

outside the volume Vobj of the nanoparticle is given by the sum of the incident plane wave and the 

scattered from the nanoparticle wave:  
 

 i s
( ) ( ) ( ) ,    E E Er r r  (2) 

 

where superscripts i and s indicate the incident and scattered fields. The latter can be viewed as the 

field radiated by an equivalent polarization current density ( )'
eq

J r , with 'r  objV , as shown in Fig. 

2b. The scattered fields obey the Maxwell’s equations [19]: 
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The equivalent polarization current density ( )'
eq

J r exists only inside the material, and it is given by 
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and ( ) r obj  

if r 

objV . From(3) and (4) we obtain the wave equation 
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Fig. 2.Geometry of general electromagnetic scattering problem: (a) original problem, (b) equivalent problem. 
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where 2 /   
0 0 0

k ω μ ε  and   the wavelength. The solution of (6) is given by 

 

s
( ) , ) (  ( )
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G is the dyadic Green’s function for free space defined by 
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Equation (7) is used to calculate the scattered field outside the volume Vobj of the nanoparticle. 

However, to calculate the scattered field inside the nanoparticle, where there is a singularity, one 

should modify (7) according to [20] 
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where 
0( , ) ( , )

0
' jωμ ' G Gr r r r , PV means the principal value of the integral and the second term is 

a correction factor. Substituting (10) in (2), we obtain the following integral equation 
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C. Solution by 3D MoM  

This section presents a numerical solution of the integral equation (11) by 3D MoM. Firstly, we 

write the integral equation (11) in scalar form given by 
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In this equation, we set 
1

x = x , 
2

x = y and
3

x = z . To solve the integral equation (12) by 3D MoM, we 

divide the volume Vob j  into N subvolumes Vm (m=1, …, N), where ( )
pxE   r and ( ) r are constant in 

each subvolume. With 
mr as the point in the center of this subvolume, applying (12) to each 

subvolume 
mV , we obtain 
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for p,q=1, 2, 3. The elements of 
p q
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x x
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An equivalent representation for (13) is 
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This equation can be written as [G][E]=–[E
i
], where [G] is a matrix of order 3N×3N, while [E] and 

[E
i
] are vectors of dimension 3N. The elements of [G] are given by 
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The total electric field at each point 
mr is determined by inverting the matrix [G]. The elements of 

this matrix in (16) are calculated approximately by [19], [21]: 
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Obviously, the higher the number of subvolumes N the better is approximation. The geometry of 

the subvolumes Vn  should be very close to a sphere of radius
na . However, good results can be 

obtained using cubic cells as we show in this work. 

After finding the electric field inside the volume Vobj, one can calculate the electric field anywhere 

outside the nanoparticle by inversion of the system [G][E] = –[E
i
]. To do this, we use the solution [E] 

with (7) and (2) in points outside Vobj. 

III. NUMERICAL RESULTS 

 
Based on the theoretical model presented in the previous section, we develop an algorithm in C 

language. To do this, we firstly define the constants and the variables of the problem. Then a 3D cubic 

domain of height and length 4a is created, where a=60nm is the radius of the sphere. This spherical 

volume is divided into cubic cells of dimensions dx=dy=dz. The spherical volume with radius a is 

created in the point (x0, y0, z0)  

 

     
2 2 2

0 0 0
.x x y y z z a       (19) 

 

The central sphere is positioned at the origin of coordinate axis
0 0 0

( 0)x y z   . For the case of the 

nanorod, we create a rectangular volume with the length L =60nm and square cross section with the 

size w =10nm. The axis of the nanorod is placed along the axis x, and it is centered at the origin of the 

coordinate system. 

The method does not require an Absorbing Boundary Conditions (ABCs) to simulate a free space 

radiation because the Green’s function already takes into account the radiation condition. The ABCs 

are used in other numerical methods, such as the FDTD or professional programs such as software 

Comsol Multiphysics. The latter uses the Finite Element Method (FEM) and a special type of ABC, 

known as perfectly matched layer (PML), or radiation condition, for an artificial absorption of 

electromagnetic waves. 

All the cells created inside the object are excited by a plane wave [E
i
]. Subsequently, the elements 

of the matrix [  ] 3N X 3NG are calculated for the volume of the object using (17) and (18) for m n and 

m n , respectively. The field inside the volume Vobj is obtained by the inversion of the linear system 

in the form [E] = – 1[ ]G  [E
i
]. This linear system is solved by the Gaussian elimination method for 

complex numbers. Then we calculate the total field in any point outside the volume Vobj with (2) and 

with the fields inside Vobj calculated in the previous step.  

A. Nanosphere 

 
Initially, for validation of the algorithm we compare our results with the classical solution for the 

sphere by analytical Mie model [18]. We also compare our results with those obtained by the software 
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Comsol Multiphysics. Subsequently, also we analyze a rectangular nanorod to confirm the possibility 

of implementing the algorithm for different geometries. All the simulations were realized in a core i7 

computer with 16G of RAM. 

The analyzed nanosphere has the radius a   60nm. In this case, we use the total number of cubic 

elements  N=1791 with the dimensions dx=dy=dz=8×10
−9

. The results of calculations for the near 

fields in the axis x, y and z are shown in Figs. 3-5.The amplitudes of these fields are normalized to the 

magnitude of the incident plane wave Ei0. The electromagnetic wavelength used in all simulations is 

=550nm, which is near the resonance. 

 

 

Fig.3. Normalized near field distribution for =550nm along axis x for gold sphere with radius a=60 nm. 

 

 

Fig.4. Normalized near field distribution for =550 nm along axis y for gold sphere with radius a=60 nm. 
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Fig.5. Normalized near field distribution for =550nm along axis z for gold sphere with radius a=60 nm. 
 

In Comsol simulation, we created a mesh of 131638 elements inside a spherical domain with 

diameter D=460nm. The spherical domain is limited by a PML absorbing boundary condition to 

simulate the open space. In Figs. 3-5, we observe a good agreement between the results for the used 

discretizations. However, for the points near the surface of the sphere one can note a certain 

difference in the results. This can be explained by rapid variation of the field in this region. This 

means that we need a finer discretization in these regions to obtain a higher accuracy.  

Fig.6 shows the variation of the x component of the normalized electric field versus wavelength for 

different points along the axis x. The range of the analyzed wavelengths is between 500nm and 

1000nm. The resonance of the sphere occurs near =550nm. The points where the electric fields were 

calculated are positioned in (x=a+d, y=0, z=0), a is the radius of the sphere, and d runs through the 

values  20nm, 40nm, 80nm and 160nm. 

 

 

Fig. 6. Spectral response of normalized electric field (x component) near nanosphere in different points along  axis x (x=a+d, y=0, z=0),  

a=60nm, d=20, 40, 80, and 160nm. 
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We observe from this figure a good agreement between the calculated results.  For the points near the 

sphere, electromagnetic fields vary rapidly with distance, therefore, it is necessary a finer 

discretization of the nanosphere, as it was observed also in Figs. 3-5.  

B. Rectangular Nanorod 

 
The analyzed rectangular nanorod has length L= 60nm, and width w =10nm. For this case, we 

performed two simulations with different number of total cubic cells elements of the discretization N 

to estimate convergence of the method. In one simulation, we used N=750, cubic cells of dimensions 

dx=dy=dz=2×10
−9

, and in the other one we used N= 6000, with cubic cells of dimensions 

dx=dy=dz=1×10
−9

. We also simulated this nanorod using Comsol software. In the latter case we used 

a mesh with 371747 elements, and a spherical domain limited by a PML. All the simulations were 

realized in a core i7 computer with 16G of RAM. 

We show in Fig. 7 the normalized electric field Ex  at the end of nanorod at the point (x = L/ 2 +d, y 

= 0, z = 0), where d =5nm and 20nm. Figs. 8-10 show the spectral response of the normalized electric 

field in the axis z near the middle of the nanorod at the points (0,0, w / 2 +d), where w = 10nm is the 

side of the square cross section of the nanorod (Fig. 1b), and d =5nm, 10nm and 20nm, respectively. 

The wavelength interval extends from 500nm to 1300nm, where the principal resonances of the 

nanorod occur. 

 

 

Fig. 7. Spectral response of normalized electric field (x component) near edge of nanorod in different points along the axis x at points 

(x=L/2+d, y=0, z=0), L = 60nm, w = 10nm, d = 5,  20nm. 
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Fig. 8. Spectral response of normalized electric field (x component) near middle of nanorod at point (x=0, y=0, z=w/2+d) with L = 60nm, 
w= 10nm,  d = 5nm. 

 

 

Fig. 9. Spectral response of normalized electric field (x component) near middle of nanorod at point (x=0, y=0, z=w/2+d), L = 60nm, w = 

10nm,  d=10nm. 

 

 

Fig. 10. Spectral response of normalized electric field (x component) near center of nanorod at point (x=0, y=0, z=w/2+d), L=60nm,  

w=10nm,  d=20nm. 
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We observe from Figs. 7-10 a good agreement between the MoM and Comsol Multiphysics results. 

These figures show that with increase of N, our results converge to the Comsol simulation.   

IV. CONCLUSIONS 
 

We presented in this paper a 3D MoM computational algorithm for efficient full-wave 

electromagnetic scattering analysis of plasmonic nanostructures. The method was codified in C 

language, and two gold nanoparticles were analyzed: nanosphere and rectangular nanorod. To validate 

the computational code, we compared our results with simulations carried out by the commercial 

package Comsol. In case of nanosphere, we also compared the obtained results with the classical 

analytical Mie model. In all cases, we observed a good agreement between the results obtained by our 

code, the analytical model and the commercial software. We also analyzed convergence of the 

method. For this purpose, we used different number of cubic cells N. For large values of N, our results 

approach to the Comsol simulation. The full wave method is quite general and can be used to analyze 

plasmonic nanostructures with different geometries and excitation sources. However, the method 

requires a good computational capacity in terms of memory and processing speed. 
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