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Abstract− In this paper, it is demonstrated that the efficiency and
ability to transfer power to the load in three-coil wireless power
transfer (WPT) systems are always higher than in equivalent four-
coil ones. On the other hand, it is shown that there are features
attainable in four-coil WPT system that are not in three-coil ones.
For instance, in a four-coil WPT system, which can be divided into
source, two communication, and load circuits, it is possible to devise
a method for which the maximum power transferred to the load
circuit or the maximum efficiency do not depend on the mutual
inductance between the two communication coils, independently
of the load resistance value. The necessary conditions to achieve
the above feature together with the overall circuit analysis are
discussed in details and practical results presented.

Index Terms− four-coil, power transfer efficiency, three-coil, wireless power
transfer systems.

I. INTRODUCTION

Among the several forms of energy, whenever possible, the electrical one is preferable as produces
less pollution comparatively, it is easier to handle, and mainly because it can be transmitted more
efficiently. The usual method to transmit electrical energy from the source to the load is via cables
or wires. However, from the very beginning of electrical energy distribution history, it was recognized
that wireless methods to transmit it would be comparatively more convenient [1].

Nevertheless, after the pioneering work of Tesla, which used an inductive link, composed of two
coils tuned at the same resonance frequency to transmit electrical energy at a given distance [2], the
investigation of the so-called wireless power transfer (WPT) systems was almost neglected for several
years, but by some sparse works [3]–[9]. In fact, only about a decade ago the three- [10]–[18], and
four-coil [19]–[30] WPT systems had been introduced. WPT systems using more than four coils had
also been investigated, but most of the research effort in the area had been focused in the three- and
four-coil configurations [25], [31], [32]. Here it is important to emphasize that the three- and four-coil
WPT systems are, in some aspects, similar to the two-coil WPT systems, e.g., they have one coil
connected to the source and one connected to the load. The differences are that the three-coil WPT
systems have one additional (communication) coil and the four-coil WPT systems have two additional
(communication) coils. Moreover, following Tesla’s original approach [2], all coils are tuned at the
same resonance frequency and mutual inductance of non-adjacent coils are made as small as possible.

Anyway, perhaps because it is a relatively recent circuit configuration, the three- and four-coil WPT
systems characteristics are still object of studies. For example, in a recent paper it was demonstrated
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that in a three-coil WPT system both the maximum efficiency (η3max
) and maximum power transferred

to the load (P3max
) depend on neither the mutual inductance between the coils of the communication

and load circuits nor the load resistance value (RL) [17]. This means that η3max
and P3max

are only
determined by the source and communication circuits parameters, a feature that may be relevant to
those involved in the circuit implementation. However, this also means that given a load resistance
value there is only one value of the mutual inductance between the coils of the communication and
load circuits, and vice-versa, for which either the maximum power transferred to the load circuit or the
efficiency are maximum, restricting its practical application.

The aim of this work is to show that in four-coil WPT systems the maximum efficiency or maximum
power transferred to the load do not depend on mutual inductance between the coils of the communica-
tion circuits (M23) independently of the load resistance value, and vice-versa. This is done by adjusting
the mutual inductance between the coil at the last communication circuit and that at the load circuit
(M34). In order to demonstrate this feature it is important to compare the three- and four-coil WPT
systems, for it is demonstrated that the efficiency and the ability to transfer power to the load in three-
coil WPT systems are always higher than in equivalent four-coil ones. Thus, the mutual inductance
(proportional to distance in a coaxial arrangement) between the coils of the communication circuits
were preserved in both three- and four-coil WPT systems. The necessary conditions to attain the above
feature as well as the overall circuit analysis are discussed in details and experimental results, used to
validate the theoretical analysis, presented.

II. CIRCUIT ANALYSIS

Figure 1 shows the schematic view of a four-coil WPT system. Following Tesla’s original approach
[2], all circuits should be tuned at the same resonance angular frequency (ω−1

0 =
√
L1C1 =

√
L2C2 =

√
L3C3 =

√
L4C4), and the mutual inductances between non-adjacent coils should be as small as

possible (M13 = M14 = M24 = 0). Under the above conditions, the currents and voltages at each coil
circuit are in phase so that possible losses due to reactive effects are reduced.
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Fig. 1. Schematic representation of a four-coil wireless power transfer system.

These considerations allow to write the power dissipated at the load circuit (P4) as

P4 = R4.|i4|2 =
R4v
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where M12, M23, and M34 are the remaining mutual inductances, v the source open-terminal voltage
(when i1 = 0), R1 the sum of the source resistance and the total internal resistance of L1 and C1

(R1 = Rs + r1), r2 and r3 the total internal resistances of L2 and C2, and L3 and C3, respectively,
and R4 the sum of the load resistance and the total internal resistance of L4 and C4 (R4 = RL + r4).

The total power supplied by the voltage source can be easily calculated (PT = v.i1) giving

PT =
r2r3R4 + r2ω
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Thus, the system efficiency (η = P4/PT ) can be written as
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It is important to emphasize that if one calculates the efficiency considering only the power delivered
to the load (ηL), since the same current i4 flows through r4 and RL, the power P4 can be splitted using
the ratio of a voltage divider. Thus, PRL = P4.RL/(RL+r4) and the efficiency is ηL = η.RL/(RL+r4).
In a similar manner, if only the efficiency of the link transmission (ηLINK) is to be analyzed (excluding
the generator resistance, RS), it can be written η = ηLINK .R

∗
1/(RS +R∗

1), where R∗
1 is the sum of r1

and the reflected resistance [33] from communication and load circuits into the source circuit. Moreover,
at first glance, the WPT systems should be designed to transmit the maximum amount of power from the
source to the load (located as far as possible) with maximum efficiency. However, the maximum power
transfer theorem teaches that the maximum transference of power is attained with an overall system
efficiency of only 50%, higher efficiencies meaning a relatively reduced amount of power transferred
to the load [25], [26], [34]. Thus, it is necessary to know a priori whether the WPT system is designed
to optimize efficiency or if the amount of power transferred to load is to be the maximum [26].
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Fig. 2. Schematic representation of a three-coil wireless power transfer system.

Anyway, in order to help a comparative analysis, figure 2 shows the schematic view of the three-coil
WPT system. Observe that the four-coil WPT system can be transformed into a three-coil equivalent
one, reflecting R4 [33] into the second communication circuit (see figure 2). In other words, both
three-coil and four-coil WPT systems are equivalent whenever (see figure 2)
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In addition, it is possible to define
R3 = r3 +R∗

L, (5)

so that the power transferred to R3 in a three-coil WPT system (P3) and efficiency (η3) can be given
by

P3 = R3.|i3|2 =
R3v
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respectively.
Dividing (1) by (6) and (3) by (7), and using (4) and (5) yield

P4

P3
=
η4
η3

=

ω2
0M

2
34

R4

r3 +
ω2
0M

2
34

R4

. (8)

Therefore, the three-coil WPT systems always present better performance than the four-coil ones
(P3 > P4 and η3 > η4).

However, there are situations that performance should be relegated to a second plan to attend some
practical demand. For instance, it can be easily demonstrated that in the three-coil WPT system the M23

for maximum power transferred to R3 (M23−P3MAX
) and M23 for maximum efficiency (M23−η3MAX

)
can be written [17] as
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respectively.
Substituting (9) and (10) into (6) and (7) yield
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respectively.
Note that, as already pointed out in [17], (11) and (12) are independent on either M23 and R3, i.e.,

P3MAX or η3MAX are determined exclusively by the source and communication circuits’ parameters.
However, (9) and (10) show also that for a given R3, and consequently for a given load R∗

L = RL,
there is only one value of M23 for which P3 or η3 can be maximum, and this specific value of M23

may not be attainable.
On the other hand, in four-coil WPT systems, using (4) and (5) into (9), and substituting (11) into

(8), and using R4 = r4 +RL, yield
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respectively, whereas using (4) and (5) into (10), and substituting (12) into (8), and also using R4 =

r4 +RL, give
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respectively.
Observe that independently of RL used, the value of M34 might be adjusted so that an adequate

value of M23 may be obtained, allowing P4 or η4 to be maximum. In other words, in a four-coil WPT
system the M34 can be used as an "impedance match" circuit desvinculating the actual RL value from
the determination of M23 which allows P4 or η4 to be maximum.

III. EXPERIMENTAL RESULTS

For the experimental evaluation of the mathematical analysis, four coils with equal dimensions and
shapes were built. The coils are circular with diameter of 150 mm and 22 mm of length, wound with
23 turns of enameled copper 20 AWG wire in a single layer way. The coils have self-inductance of
138.67 ± 0.21 µH with internal resistances of 3.41 ± 0.09Ω. All measurements were made using an
Agilent precision vector impedance analyzer (model 4294A) operating at 552kHz. In order to obtain
the practical value of the mutual inductance the coils were arranged coaxially, the value of the coupling
coefficient (k) was measured, and then using Mps = k

√
LpLs the mutual inductance was determined

as follows: the primary coil was excited by a signal generator (Rigol model DG1022) with a voltage vp,
whereas the open-terminal voltage of the secondary coil, vs, was taken. Both voltages were measured
with the aid of a digital oscilloscope (Tektronix model TDS2012C). The frequency of the exciting
voltage was adjusted to a relatively low value (≈ 10kHz) to reduce the possible influence of the coils’
stray capacitances. It can be easily demonstrated that k = vp/vs, whenever Lp u Ls [26]. Figure 3
shows the measured mutual inductance as a function of the distance between the coils coaxially aligned.

Commercial capacitors of 560pF were used to tune the circuits (the practical values was 556 ±7pF ),
with a variable capacitor (trimmer) in parallel, achieving the series resonance value of 552kHz. This
frequency has been selected due to its handiness in tuning the circuits, and because it does not present
adverse health effects [35], [36]. The resistances of the capacitors at 552kHz were neglected because
they were in order of milliohms.
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Fig. 3. Experimental mutual inductance in function of distance for coils coaxially aligned.

The measured (at 552kHz) values of the load (RL) used in the experiments were 5.67Ω, 8.24Ω, 9.97Ω,
12.03Ω, 17.98Ω, 21.77Ω and 46.95Ω. The parasitic self-inductance of the resistors were neglected
because they were in order of nanohenry.

Fig. 4. Experimental setup of the four-coil wireless power transfer system.

Figure 4 shows the implemented four-coil WPT system. The coil of the source circuit was fixed to
the left end of a wood support, whereas the second coil was fixed 12.5cm apart. The value of M12

was 6.18µH (see figure 3). A sinusoidal voltage signal (v) of 7.1 VRMS with a frequency of 552kHz,
internal resistance (Rs) of 50.53Ω (Rigol signal generator - DG1022) was used as the voltage source.
The current at the source circuit (i1) was determined to measure the voltage at a series resistor (r =
1.02Ω). Therefore, the value of R1 (= r1 + r + Rs) used in the calculations was 54.89Ω. During the
experiments the phase between v and i1 was continuously monitored (ideally it must be zero) to certify
that the influence of M13, M14, and M24 could in fact be neglected.

The value of i3 in the three-coil and i4 in the four-coil WPT systems, respectively, were determined
by measuring the voltages at the used loads, and the powers at the load circuits (P3 = R3.|i3|2 and
P4 = R4.|i4|2) were calculated.
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From equations (14) and (16) it can be defined as a multiplying factor (F )

F =
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2
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r3 +
ω2
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2
34

r4 +RL

. (17)

The maximum power transferred to the load circuit (P4MAX ), and the maximum efficiency (η4MAX ),
both as a function of RL for F equal to 1/2, 2/3 and 5/6, are shown in figures 5(a) and 5(b),
respectively. Firstly, the experiments were performed keeping M23 fixed at 3.4µH . Then, just to check
the independence between RL and M23 the experiments were repeated keeping M23 fixed at 5.55µH .
In addition, for comparison purposes, the values of P3MAX and η3MAX for M23 = 3.4µH and M23 =
5.55µH were also plotted in figures 5(a) and 5(b), respectively.

Evidently, in the four-coil WPT system each time RL was changed the relative position of L4 was
modified so that

(
ω2
0M

2
34

)
/ (RL + r4) was kept constant.
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Fig. 5. Experimental results of (a) maximum power transferred to the load circuit and (b) maximum efficiency, both as a
function of RL in a four-coil WPT system. For comparison purposes the values of P3MAX and η3MAX for M23 = 3.4µH

and M23 = 5.55µH were also plotted in figures 5(a) and 5(b), respectively.
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IV. CONCLUSION

The three- and four-coil WPT systems have been compared, showing that in the four-coil ones
neither the maximum power transferred to the load nor the maximum efficiency depends on the mutual
inductance regardless of the on load resistance value, provided (ω2M2

34)/(RL + r4) is kept constant.
Although the maximum power transferred to the load or maximum efficiency of four-coil are always
smaller than those of three-coil WPT systems, the demonstrated feature allows designing optimized
WPT systems independent on load resistance value whenever the four-coil configuration is used, which
is not possible with three-coil WPT systems.
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